用户名: 密码: 验证码:
生物启发的高性能聚氨酯制备与结构性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在最近十几年中,生物启发的仿生分子设计已经成为材料科学研究领域设计、合成高性能高分子材料中引人注目的前沿领域。天然生物材料的独特性能吸引着人们不断对其结构和组成进行深入研究,生物材料的有序性、多级结构、复合特性以及自愈合特性等都已成为先进材料分子设计的仿生模型。最近,受启发于蜘蛛丝的多嵌段交替排列和氢键组装特性,制备高性能多嵌段热塑性聚氨酯倍受关注,并被认为是具有与天然高性能生物材料竞争的潜能。本文通过新的仿生分子设计来调控聚氨酯体系的多级结构,制备出集多种优良性能于一体的系列聚氨酯新材料,具体包括:
     1.受蜘蛛丝的多级结构,生物体的自愈合现象和生物弹性体对交联的精密控制的启发,我们通过新的分子设计合成了一种高力学性能、可回收、再加工同时具有白愈合性能的新型交联聚氨酯材料。在这种新材料的设计合成中,通过聚氨酯硬段中带有的马来酰亚胺悬垂侧基和多官能度呋喃交联剂之间的Diels-Alder (DA)反应,将可逆共价交联键可控地设计在聚氨酯硬段的氢键密集区域;通过在交联剂分子结构中引入氨酯键来防止它的加入破坏原有氢键作用所形成的聚氨酯微相分离结构,同时提高硬段的氢键密度以增强力学强度。上述分子设计就形成了包含柔性相和刚性相的微相分离,密集的氢键组装和可逆共价DA键组成的具有多级结构的新型聚合物材料。这种材料不仅具有优良的力学性能,还具备交联聚合物特有的耐溶剂性和耐热性,以及可再生利用和自愈合等综合特性。另外,通过简单调节交联剂的加入量就可以实现对材料力学性能在较宽范围内的连续调节。这项工作为合成与制备高性能聚合物材料提供了一个新的途径。
     2.有机-无机杂化与结晶结构的存在是天然生物材料具有优异力学性质的重要机制,基于这些分子机理我们使用超声分散快速成型的共混方法制备了热塑性聚氨酯弹性体/纳米二氧化硅的复合材料,采用多种实验技术研究了球状纳米二氧化硅对聚氨酯弹性体结晶行为的影响。TEM表明纳米二氧化硅在聚氨酯弹性体中有很好的分散性。DSC实验发现高温退火后等温结晶处理的聚氨酯纳米复合材料中软段结晶性和玻璃化转变温度显著提高,纳米二氧化硅的加入量影响玻璃化转变温度和结晶熔融焓最终的平衡值以及它们的增长速率。固体NMR实验发现退火后复合材料中的软段分子链运动受到了限制,而硬段的链运动明显提高。上述实验结果说明硬段分子链间氢键在高温下被破坏,在退火过程中硬段与纳米二氧化硅作用使得硬段链运动增强,进而促进了与硬段相连的软段的结晶能力提高。基于以上研究结果,我们建立了聚氨酯纳米复合材料在高温退火过程中微观结构和动力学演化的物理模型。另外,通过溶剂交换法制备了热塑性聚氨酯弹性体/锂藻土纳米复合材料,发现了类似的软段诱导结晶行为。
     3.热塑性聚氨酯弹性体中具有软硬交替的多嵌段高分子链形成的微相分离结构,它是这类材料拥有优异性能的结构基础。通常使用DSC来研究聚氨酯在温度变化时的玻璃化转变和结晶相变过程,但这种方法难以同时提供在温度变化中分子水平的结构演化信息。我们使用红外热分析方法对热塑性聚氨酯弹性体进行了包括升温和降温的连续变温过程中的红外分析。通过van't Hoff方程处理不同温度下的红外吸收峰强度得到聚氨酯中每个官能团在连续变温过程中的表观焓变值,从而得出每个官能团在变温过程中的热力学信息,进而获得比DSC实验更丰富的微观结构演化信息。
In the last decades, bio-inspired or biomimetic molecular design and synthesis of high-performance and self-healing polymeric materials have become a paradigm and a fascinating area of research. Natural biomaterials with excellent combination properties attract more and more research on biomimetic materials preparing. Recently, inspired by the multiblock copolymeric and H-bonding assembly nature in spider silks, the preparation of high-performance segmented thermoplastic polyurethanes has received substantial attention due to the potential in rivaling the advanced material in nature. In this dissertation, both new molecular design and organic-inorganic hybrid are utilized to form hierarchical structures in polyurethane elastomers with high performance.
     1. Nature finds its intriguing strategy to make high-performance and degradable biomaterials. Inspired by hierarchical structures in spider silk, delicately controlled cross-linking in elastin and self-healing in organism, a new molecular design is proposed to prepare advanced polymeric materials with integrated excellent properties including high mechanical strength and toughness, good solvent and heat resistance, self-repairing ability and eco-friendship into one structure. Incorporation of reversible covalent cross-links among H-bonding hard segments in linear segmented polyurethane via DA reaction between maleimide pendant groups of the chain extender (N-(2,3-dihydroxyethyl) maleimide) on hard segments and furan cross-linker (1,6-hexamethylene-bis(2-furanylmethylcarbamate)), thus thermal reversibility related to recyclability and self-healing ability can be accomplished by the retro-DA (RDA) reaction. The cross-linker containing urethane bonds is specially selected to promote the miscibility in H-bonding hard domains and further increase the H-bonding density in polymer matrix, and thus to enhance the mechanical properties. Therefore, a hierarchical structure is formed organically by microphase separation, densely H-bonding assemblies and reversible covalent cross-linking. The synthesized polymers not only exhibit excellent comprehensive mechanical properties, including high stiffness, strength, and toughness, but also have good solvent and heat resistance, and can be well reshaped and re-mended at an elevated temperature, making it eco-friendly and have great potential for widely industrial applications.
     2. Polyurethane/silica nanocomposites are prepared by solution mixing procedure, and the effect of nano-silica on the crystalline behavior in these nanocomposites is investigated by various techniques. TEM result indicates that nano-silica is well dispersed in polyurethane matrix. It is found from the DSC experiments that the crystallization of soft segments are obviously enhanced after annealing at high temperature and subsequent isothermal crystallization at10℃, the addition of nano-silica affects the final glass transition temperature and the crystallinality of soft segments, as well as the rate of increment. Solid-state NMR reveals that the mobility of soft segments are restricted after annealing, while the mobility of hard segments obviously enhanced. The above results reveal that the interchain hydrogen bonding among hard segments are broken at high temperature, and increased interaction of hard segments and nano-silica results in the high mobility of hard segments, thus promotes the crystalline ability of the soft segments connected with hard segments. On the basis of the above results, a model concerning the evolution of the structure and dynamics in polyurethane nanocomposites under high-temperature annealing is proposed. In addition, polyurethane/Laponite nanocomposites are prepared by solution exchange method, and a similar result of Laponite induced crystallization in soft segmnets are observed.
     3. Phase transitions of polyurethane are investigated by differential scanning calorimeter (DSC) and Fourier transform infrared (FTIR) spectroscopy. FTIR spectra of the sample are measured as a function of temperature both in heating and cooling processes. The intensities of bands at different temperatures are dealt with the van't Hoff equation to get results as apparent enthalpy change of every single chemical group in the polyurethane to continuously various temperatures, which can provide detailed thermodynamics information besides the results from DSC.
引文
[1]Bond G M, Richman R H, McNaughton W P. Mimicry of natural material designs and processes. Journal of Materials Engineering and Performance,1995,4(3):334-345
    [2]Shahinpoor M. Ionic polymer-conductor composites as biomimetic sensors, robotic actuators and artificial muscles-a review. Electrochimica Acta,2003,48(14-16):2343-2353
    [3]Asai S, Koumoto K, Matsushita Y, et al. Advances in nature-guided materials processing. Science and Technology of Advanced Materials,2003,4(5):421-433
    [4]Paine M L, White S N, Luo W, et al. Regulated gene expression dictates enamel structure and tooth function. Matrix Biology,2001,20(5-6):273-292
    [5]贾贤.天然生物材料及其仿生工程材料,天然生物材料及其仿生工程材料,北京,2007.
    [6]Jin H-J, Kaplan D L. Mechanism of silk processing in insects and spiders. Nature, 2003,424(6952):1057-1061
    [7]Fantner G E, Oroudjev E, Schitter G, et al. Sacrificial bonds and hidden length: Unraveling molecular mesostructures in tough materials. Biophys J,2006,90(4):1411-1418
    [8]Keckes J, Burgert I, Fruhmann K, et al. Cell-wall recovery after irreversible deformation of wood. Nature Materials,2003,2(12):810-814
    [9]Thompson J B, Kindt J H, Drake B, et al. Bone indentation recovery time correlates with bond reforming time. Nature,2001,414(6865):773-776
    [10]Fantner G E, Hassenkam T, Kindt J H, et al. Sacrificial bonds and hidden length dissipate energy as mineralized fibrils separate during bone fracture. Nature Materials, 2005,4(8):612-616
    [11]Gupta H S, Seto J, Wagermaier W, et al. Cooperative deformation of mineral and collagen in bone at the nanoscale. Proceedings of the National Academy of Sciences of the United States of America,2006,103(47):17741-17746
    [12]Fratzl P, Gupta H S, Paschalis E P, et al. Structure and mechanical quality of the collagen-mineral nano-composite in bone. Journal of Materials Chemistry,2004,14(14): 2115-2123
    [13]Mattheck C, Bethge K. The structural optimization of trees. Naturwissenschaften, 1998,85(1):1-10
    [14]Carter D R, Beaupre G. R. Skeletal function and form:mechanobiology of skeletal development, aging, and regeneration. Skeletal function and form:mechanobiology of skeletal development, aging, and regeneration, Cambridge University Press, Cambridge, UK, 2001.
    [15]White S R, Sottos N R, Geubelle P H, et al. Autonomic healing of polymer composites. Nature,2001,409(6822):794-797
    [16]Du N, Liu X Y, Narayanan J, et al. Design of superior spider silk:from nanostructure to mechanical properties. Biophys J,2006,91(12):4528-4535
    [17]Vollrath F, Knight D P. Liquid crystalline spinning of spider silk. Nature,2001, 410(6828):541-548
    [18]Vollrath F. Biology of spider silk. International Journal of Biological Macromolecules, 1999,24(2-3):81-88
    [19]Vollrath F. Strength and structure of spiders'silks. Reviews in Molecular Biotechnology,2000,74(2):67-83
    [20]Lewis R V. Spider silk:the unraveling of a mystery. Accounts of Chemical Research, 1992,25(9):392-398
    [21]James E. Mark B E. Rubberlike Elasticity:A Molecular Primer. Rubberlike Elasticity:A Molecular Primer second edition ed., Cambridge University Press,2007.
    [22]Tan J, Saltzman W M. Biomaterials with hierarchically defined micro-and nanoscale structure. Biomaterials,2004,25(17):3593-3601
    [23]Calvert P. Biomimetic mineralization:Processes and prospects. Materials Science and Engineering:C,1994,1(2):69-74
    [24]Rathore O, Sogah D Y. Self-assembly of β-sheets into nanostructures by poly (alanine) segments incorporated in multiblock copolymers inspired by spider silk. Journal of the American Chemical Society,2001,123(22):5231-5239
    [25]D. S. Human Physiology. Human Physiology, Pearson/benjamin Cummings, San Francisco,2006.
    [26]Teoh S H. Fatigue of biomaterials:a review. International Journal of Fatigue,2000, 22(10):825-837
    [27]Dabagh M, Abdekhodaie M J, Khorasani M T. Effects of polydimethylsiloxane grafting on the calcification, physical properties, and biocompatibility of polyurethane in a heart valve. Journal of Applied Polymer Science,2005,98(2):758-766
    [28]Kessler M R. Self-healing:a new paradigm in materials design. Proceedings of the Institution of Mechanical Engineers Part G-Journal of Aerospace Engineering,2007, 221(G4):479-495
    [29]Blaiszik B J, Caruso M M, McIlroy D A, et al. Microcapsules filled with reactive solutions for self-healing materials. Polymer,2009,50(4):990-997
    [30]Yuan Y C, Yin T, Rong M Z, et al. Self healing in polymers and polymer composites. Concepts, realization and outlook:A review. Express Polymer Letters,2008,2(4):238-250
    [31]Toohey K S, Sottos N R, Lewis J A, et al. Self-healing materials with microvascular networks. Nature Materials,2007,6(8):581-585
    [32]Ashammakhi N, Rokkanen P. Absorbable polyglycolide devices in trauma and bone surgery. Biomaterials,1997,18(1):3-9
    [33]Tormala P. Biodegradable self-reinforced composite materials; Manufacturing structure and mechanical properties. Clinical Materials, 1992,10(1-2):29-34
    [34]Gheneim R, Perez-Berumen C, Gandini A. Diels-Alder reactions with novel polymeric dienes and dienophiles:Synthesis of reversibly cross-linked elastomers. Macromolecules,2002,35(19):7246-7253
    [35]McElhanon J R, Russick E M, Wheeler D R, et al. Removable foams based on an epoxy resin incorporating reversible Diels-Alder adducts. Journal of Applied Polymer Science,2002,85(7):1496-1502
    [36]Liu Y-L, Chuo T-W. Self-healing polymers based on thermally reversible Diels-Alder chemistry. Polymer Chemistry,2013,4(7):2194-2205
    [37]Sanyal A. Diels-Alder Cycloaddition-Cycloreversion:A Powerful Combo in Materials Design. Macromolecular Chemistry and Physics,2010,211(13):1417-1425
    [38]Tasdelen M A. Diels-Alder "click" reactions:recent applications in polymer and material science. Polymer Chemistry,2011,2(10):2133-2145
    [39]Chou C-I, Liu Y-L. High performance thermosets from a curable Diels-Alder polymer possessing benzoxazine groups in the main chain. Journal of Polymer Science Part a-Polymer Chemistry,2008,46(19):6509-6517
    [40]Gandini A, Silvestre A J D, Coelho D. Reversible Click Chemistry at the Service of Macromolecular Materials.2. Thermoreversible Polymers Based on the Diels-Alder Reaction of an A-B Furan/Maleimide Monomer. Journal of Polymer Science Part a-Polymer Chemistry,2010,48(9):2053-2056
    [41]Kavitha A A, Singha N K. Smart "All Acrylate" ABA Triblock Copolymer Bearing Reactive Functionality via Atom Transfer Radical Polymerization (ATRP):Demonstration of a "Click Reaction" in Thermoreversible Property. Macromolecules,2010,43(7):3193-3205
    [42]McElhanon J R, Wheeler D R. Thermally responsive dendrons and dendrimers based on reversible furan-maleimide Diels-Alder adducts. Organic Letters,2001,3(17):2681-2683
    [43]Szalai M L, McGrath D V, Wheeler D R, et al. Dendrimers based on thermally reversible furan-maleimide Diels-Alder adducts. Macromolecules,2007,40(4):818-823
    [44]Polaske N W, McGrath D V, McElhanon J R. Thermally Reversible Dendronized Step-Polymers Based on Sequential Huisgen 1,3-Dipolar Cycloaddition and Diels-Alder "Click" Reactions. Macromolecules,2010,43(3):1270-1276
    [45]Goiti E, Heatley F, Huglin M B, et al. Kinetic aspects of the Diels-Alder reaction between poly(styrene-co-furfuryl methacrylate) and bismaleimide. European Polymer Journal,2004,40(7):1451-1460
    [46]Imai Y, Itoh H, Naka K, et al. Thermally reversible IPN organic-inorganic polymer hybrids utilizing the Diels-Alder reaction. Macromolecules,2000,33(12):4343-4346
    [47]McElhanon J R, Zifer T, Kline S R, et al. Thermally cleavable surfactants based on furan-maleimide Diels-Alder adducts. Langmuir,2005,21(8):3259-3266
    [48]Adachi K, Achimuthu A K, Chujo Y. Synthesis of organic-inorganic polymer hybrids controlled by Diels-Alder reaction. Macromolecules,2004,37(26):9793-9797
    [49]Gotsmann B, Duerig U, Frommer J, et al. Exploiting chemical switching in a Diels-Alder polymer for nanoscale probe lithography and data storage. Advanced Functional Materials,2006,16(11):1499-1505
    [50]Pauloehrl T, Inglis A J, Barner-Kowollik C. Reversible Diels-Alder Chemistry as a Modular Polymeric Color Switch. Advanced Materials,2010,22(25):2788-+
    [51]Gevrek T N, Ozdeslik R N, Sahin G S, et al. Functionalization of Reactive Polymeric Coatings via Diels-Alder Reaction Using Microcontact Printing. Macromolecular Chemistry and Physics,2012,213(2):166-172
    [52]Gousse C, Gandini A, Hodge P. Application of the Diels-Alder reaction to polymers bearing furan moieties.2. Diels-Alder and retro-Diels-Alder reactions involving furan rings in some styrene copolymers. Macromolecules,1998,31(2):314-321
    [53]Chen X X, Dam M A, Ono K, et al. A thermally re-mendable cross-linked polymeric material. Science,2002,295(5560):1698-1702
    [54]Liu Y L, Hsieh C Y. Crosslinked epoxy materials exhibiting thermal remendablility and removability from multifunctional maleimide and furan compounds. Journal of Polymer Science Part a-Polymer Chemistry,2006,44(2):905-913
    [55]Kavitha A A, Singha N K. A tailor-made polymethacrylate bearing a reactive diene in reversible Diels-Alder reaction. Journal of Polymer Science Part a-Polymer Chemistry, 2007,45(19):4441-4449
    [56]Zhang Y, Broekhuis A A, Picchioni F. Thermally Self-Healing Polymeric Materials: The Next Step to Recycling Thermoset Polymers? Macromolecules,2009,42(6):1906-1912
    [57]Defize T, Riva R, Raquez J-M, et al. Thermoreversibly Crosslinked Poly(epsilon-caprolactone) as Recyclable Shape-Memory Polymer Network. Macromolecular Rapid Communications,2011,32(16):1264-1269
    [58]Gaina C, Ursache O, Gaina V. Re-Mendable Polyurethanes. Polymer-Plastics Technology and Engineering,2011,50(7):712-718
    [59]Smith B L, Schaffer T E, Viani M, et al. Molecular mechanistic origin of the toughness of natural adhesives, fibres and composites. Nature,1999,399(6738):761-763
    [60]Koerner H, Price G, Pearce N A, et al. Remotely actuated polymer nanocomposites[mdash]stress-recovery of carbon-nanotube-filled thermoplastic elastomers. Nat Mater,2004,3(2):115-120
    [61]Vaia R A, Wagner H D. Framework for nanocomposites. Materials Today,2004, 7(11):32-37
    [62]Kaushik A K, Podsiadlo P, Qin M, et al. The Role of Nanoparticle Layer Separation in the Finite Deformation Response of Layered Polyurethane-Clay Nanocomposites. Macromolecules,2009,42(17):6588-6595
    [63]van Zyl W E, Garcia M, Schrauwen B A G, et al. Hybrid Polyamide/Silica Nanocomposites:Synthesis and Mechanical Testing. Macromolecular Materials and Engineering,2002,287(2):106-110
    [64]Reynaud E, Jouen T, Gauthier C, et al. Nanofillers in polymeric matrix:a study on silica reinforced PA6. Polymer,2001,42(21):8759-8768
    [65]Hsiue G-H, Kuo W-J, Huang Y-P, et al. Microstructural and morphological characteristics of PS-SiO2 nanocomposites. Polymer,2000,41(8):2813-2825
    [66]Kashiwagi T, Morgan A B, Antonucci J M, et al. Thermal and flammability properties of a silica-poly(methylmethacrylate) nanocomposite. Journal of Applied Polymer Science,2003,89(8):2072-2078
    [67]Ma J, Zhang S, Qi Z. Synthesis and characterization of elastomeric polyurethane/clay nanocomposites. Journal of Applied Polymer Science,2001,82(6):1444-1448
    [68]Giannelis E P. Polymer Layered Silicate Nanocomposites. Advanced Materials,1996, 8(1):29-35
    [69]Solarski S, Benali S, Rochery M, et al. Synthesis of a polyurethane/clay nanocomposite used as coating:Interactions between the counterions of clay and the isocyanate and incidence on the nanocomposite structure. Journal of Applied Polymer Science,2005,95(2):238-244
    [70]Zanetti M, Camino G, Mulhaupt R. Combustion behaviour of EVA/fluorohectorite nanocomposites. Polymer Degradation and Stability,2001,74(3):413-417
    [71]Liff S M, Kumar N, McKinley G H. High-performance elastomeric nanocomposites via solvent-exchange processing. Nat Mater,2007,6(1):76-83
    [72]Chattopadhyay D K, Raju K V S N. Structural engineering of polyurethane coatings for high performance applications. Progress in Polymer Science,2007,32(3):352-418
    [73]Yeh J M, Liou S J, Lai M C, et al. Comparative studies of the properties of poly(methyl methacrylate)-clay nanocomposite materials prepared by in situ emulsion polymerization and solution dispersion. Journal of Applied Polymer Science,2004, 94(5):1936-1946
    [74]Takeichi T, Guo Y. Synthesis and characterization of poly(urethane-benzoxazine)/clay hybrid nanocomposites. Journal of Applied Polymer Science,2003,90(14):4075-4083
    [75]Alexandre M, Dubois P. Polymer-layered silicate nanocomposites:preparation, properties and uses of a new class of materials. Materials Science & Engineering R-Reports,2000,28(1-2):1-63
    [76]Wen J, Wilkes G L. Organic/Inorganic Hybrid Network Materials by the Sol-Gel Approach. Chemistry of Materials,1996,8(8):1667-1681
    [77]Garces J M, Moll D J, Bicerano J, et al. Polymeric Nanocomposites for Automotive Applications. Advanced Materials,2000,12(23):1835-1839
    [78]Weimer M W, Chen H, Giannelis E P, et al. Direct Synthesis of Dispersed Nanocomposites by in Situ Living Free Radical Polymerization Using a Silicate-Anchored Initiator. Journal of the American Chemical Society,1999,121(7):1615-1616
    [79]Zanetti M, Lomakin S, Camino G. Polymer layered silicate nanocomposites. Macromolecular Materials and Engineering,2000,279(1):1-9
    [80]Bayer O. The Diisocyanate Polyaddition Process (Polyurethanes). Angewandte Chemie,1947,59(:257-272
    [81]Wang F, Polydimethylsiloxane modification of segmented thermoplastic polyurethanes and polyureas, in, Virginia Polytechnic Institute and State University,1998.
    [82]Narayan R, Chattopadhyay D K, Sreedhar B, et al. Synthesis and characterization of crosslinked polyurethane dispersions based on hydroxylated polyesters. Journal of Applied Polymer Science,2006,99(1):368-380
    [83]Levchik S V, Weill E D. Thermal decomposition, combustion and fire-retardancy of polyurethanes-a review of the recent literature. Polymer International,2004,53(11): 1585-1610
    [84]Cooper S L, Tobolsky A V. Properties of linear elastomeric polyurethanes. Journal of Applied Polymer Science,1966,10(12):1837-1844
    [85]Schoiienberger C S, SIMULATED VULCANIZATES OF POLY, in, Google Patents, 1959
    [86]Koutsky J A, Hien N, Cooper S. Some results on electron microscope investigations of polyether-urethane and polyester-urethane block copolymers. Journal of Polymer Science Part B:Polymer Letters,1970,8(5):353-359
    [87]Miller J A, Lin S B, Hwang K K, et al. Properties of polyether-polyurethane block copolymers:effects of hard segment length distribution. Macromolecules,1985,18(1): 32-44
    [88]Paik Sung C, Hu C, Wu C. Properties of segmented poly (urethaneureas) based on 2, 4-toluene diisocyanate.1. Thermal transitions, X-ray studies, and comparison with segmented poly (urethanes). Macromolecules,1980,13(1):111-116
    [89]Paik Sung C, Smith T, Sung N. Properties of segmented polyether poly (urethaneureas) based of 2,4-toluene diisocyanate.2. Infrared and mechanical studies. Macromolecules. 1980,13(1):117-121
    [90]Adhikari R, Gunatillake P A, McCarthy S J, et al. Mixed macrodiol-based siloxane polyurethanes:Effect of the comacrodiol structure on properties and morphology. Journal of Applied Polymer Science,2000,78(5):1071-1082
    [91]Martin D J, Meijs G F, Gunatillake P A, et al. The effect of average soft segment length on morphology and properties of a series of polyurethane elastomers. H. SAXS-DSC annealing study. Journal of Applied Polymer Science,1997,64(4):803-817
    [92]Wang C B, Cooper S L. Morphology and properties of segmented polyether polyurethaneureas. Macromolecules,1983,16(5):775-786
    [93]Aitken R, Jeffs G. Thermoplastic polyurethane elastomers based on aliphatic diisocyanates:thermal transitions. Polymer,1977,18(2):197-198
    [94]Leung L M, Koberstein J T. DSC annealing study of microphase separation and multiple endothermic behavior in polyether-based polyurethane block copolymers. Macromolecules,1986,19(3):706-713
    [95]Pandya M, Deshpande D, Hundiwale D. Effect of diisocyanate structure on viscoelastic, thermal, mechanical and electrical properties of cast polyurethanes. Journal of Applied Polymer Science,1986,32(5):4959-4969
    [96]Speckhard T, Ver Strate G, Gibson P, et al. Properties of Polyisobutylene-Polyurethane Block Copolymers. Journal of Elastomers and Plastics,1983,15(3):183-192
    [97]Chang S, Yu T, Huang C, et al. Effect of polyester side-chains on the phase segregation of polyurethanes using small-angle X-ray scattering. Polymer,1998,39(15): 3479-3489
    [98]Bengtson B, Feger C, MacKnight W, et al. Thermal and mechanical properties of solution polymerized segmented polyurethanes with butadiene soft segments. Polymer, 1985,26(6):895-900
    [99]Camberlin Y, Pascault J, Letoffe J, et al. Synthesis and DSC study of model hard segments from diphenyl methane diisocyanate and butane diol. Journal of Polymer Science: Polymer Chemistry Edition,1982,20(2):383-392
    [100]Tonelli C, Trombetta T, Maccone P. Synthesis and physical characterization of model hard segments based on diphenyl methane diisocyanate and hydroquinone bis (2-hydroxyethyl) ether. Journal of Polymer Science Part A:Polymer Chemistry,1999, 37(10):1473-1487
    [101]Tonelli C, Trombetta T, Scicchitano M, et al. New fluorinated thermoplastic elastomers. Journal of Applied Polymer Science,1996,59(2):311-327
    [102]Sperling L H, Cooper S L, Tobolsky A V. Elastomeric and mechanical properties of poly-m-carboranylenesiloxanes. Journal of Applied Polymer Science,1966,10(11): 1725-1735
    [103]Mishra A K, Chattopadhyay D K, Sreedhar B, et al. FT-IR and XPS studies of polyurethane-urea-imide coatings. Progress in Organic Coatings,2006,55(3):231-243
    [104]Pimentel G C, Sederholm C H. Correlation of infrared stretching frequencies and hydrogen bond distances in crystals. The Journal of Chemical Physics,1956,24(4):639
    [105]Masiulanis B, Zielin□ski R. Mechanical, thermal, and electric properties of polyurethaneimide elastomers. Journal of Applied Polymer Science,1985,30(7):2731-2741
    [106]Haska S B, Bayramli E, Pekel F, et al. Mechanical properties of HTPB-IPDI-based elastomers. Journal of Applied Polymer Science,1997,64(12):2347-2354
    [107]Kothandaraman H, Venkatarao K, Thanoo B C. Crosslinking studies of polyether-ester-based polyurethane systems. Journal of Applied Polymer Science,1990,39(4): 943-954
    [108]Desai S, Thakore I, Sarawade B, et al. Effect of polyols and diisocyanates on thermo-mechanical and morphological properties of polyurethanes. European Polymer Journal,2000,36(4):711-725
    [109]Smith T L, Magnusson A B. Diisocyanate-linked polymers. Ⅲ. Relationships between the composition and ultimate tensile properties of some polyurethane elastomers. Journal of Applied Polymer Science,1961,5(14):218-232
    [110]Chiou B S, Schoen P E. Effects of crosslinking on thermal and mechanical properties of polyurethanes. Journal of Applied Polymer Science,2002,83(1):212-223
    [111]Thomas O, Priester Jr R D, Hinze K J, et al. Effect of cross-link density on the morphology, thermal and mechanical properties of flexible molded polyurea/urethane foams and films. Journal of Polymer Science Part B:Polymer Physics,1994,32(13):2155-2169
    [112]Petrovic Z S, Javni I, Banhegy G. Mechanical and dielectric properties of segmented polyurethane elastomers containing chemical crosslinks in the hard segment. Journal of Polymer Science Part B:Polymer Physics,1998,36(2):237-251
    [113]Dounis D V, Wilkes G L. Influence of diethanolamine on hard segment ordering in flexible polyurethane foams. Journal of Applied Polymer Science,1997,65(3):525-537
    [114]Guan Z, Roland J T, Bai J Z, et al. Modular domain structure:A biomimetic strategy for advanced polymeric materials. Journal of the American Chemical Society, 2004,126(7):2058-2065
    [115]Mecking S. Nature or petrochemistry?—biologically degradable materials. Angewandte Chemie International Edition,2004,43(9):1078-1085
    [116]Allen S G, Bevington J. Comprehensive Polymer Science:The Synthesis, Characterization, Reaction & Application of Polymers. Pergamon Press, Oxford, Vols, 1989,1(6):7
    [117]Keten S, Xu Z, Ihle B, et al. Nanoconfinement controls stiffness, strength and mechanical toughness of [beta]-sheet crystals in silk. Nature Materials,2010,9(4):359-367
    [118]Giesa T, Arslan M, Pugno N M, et al. Nanoconfinement of spider silk fibrils begets superior strength, extensibility, and toughness. Nano letters,2011,11(11):5038-5046
    [119]Keten S, Buehler M J. Geometric confinement governs the rupture strength of H-bond assemblies at a critical length scale. Nano letters,2008,8(2):743-748
    [120]Gronau G, Krishnaji S T, Kinahan M E, et al. A review of combined experimental and computational procedures for assessing biopolymer structure-process-property relationships. Biomaterials,2012,33(33):8240-8255
    [121]Kushner A M, Gabuchian V, Johnson E G, et al. Biomimetic design of reversibly unfolding cross-linker to enhance mechanical properties of 3D network polymers. Journal of the American Chemical Society,2007,129(46):14110-14111
    [122]Roland J T, Guan Z. Synthesis and single-molecule studies of a well-defined biomimetic modular multidomain polymer using a peptidomimetic P-sheet module. Journal of the American Chemical Society,2004,126(44):14328-14329
    [123]Krishnaji S T, Bratzel G, Kinahan M E, et al. Sequence-Structure-Property Relationships of Recombinant Spider Silk Proteins:Integration of Biopolymer Design, Processing, and Modeling. Advanced Functional Materials,2013,23(2):241-253
    [124]Rabotyagova O S, Cebe P, Kaplan D L. Self-assembly of genetically engineered spider silk block copolymers. Biomacromolecules,2009,10(2):229-236
    [125]Dang Q, Lu S, Yu S, et al. Silk fibroin/montmorillonite nanocomposites:effect of pH on the conformational transition and clay dispersion. Biomacromolecules,2010, 11(7):1796-1801
    [126]Fernandez-d'Arlas B, Ramos J A, Saralegi A, et al. Molecular engineering of elastic and strong supertough polyurethanes. Macromolecules,2012,45(8):3436-3443
    [127]Johnson J C, Wanasekara N D, Korley L T. Utilizing Peptidic Ordering in the Design of Hierarchical Polyurethane/Ureas. Biomacromolecules,2012,13(5):1279-1286
    [128]Montarnal D, Capelot M, Tournilhac F, et al. Silica-like malleable materials from permanent organic networks. Science,2011,334(6058):965-968
    [129]Grubbs R B, Dean J M, Broz M E, et al. Reactive block copolymers for modification of thermosetting epoxy. Macromolecules,2000,33(26):9522-9534
    [130]Gandini A. The furan/maleimide Diels-Alder reaction:A versatile click-unclick tool in macromolecular synthesis. Progress in Polymer Science,2013,38(1):1-29
    [131]Chen X, Dam M A, Ono K, et al. A thermally re-mendable cross-linked polymeric material. Science,2002,295(5560):1698-1702
    [132]Liu Y-L, Chen Y-W. Thermally reversible cross-linked polyamides with high toughness and self-repairing ability from maleimide- and furan-functionalized aromatic polyamides. Macromolecular Chemistry and Physics,2007,208(2):224-232
    [133]Chen X X, Wudl F, Mal A K, et al. New thermally remendable highly cross-linked polymeric materials. Macromolecules,2003,36(6):1802-1807
    [134]Hager M D, Greil P, Leyens C, et al. Self-Healing Materials. Advanced Materials, 2010,22(47):5424-5430
    [135]J. Mark K N, W. Graessley, L. Mandelkern, S. Edward, J. Koenig, G. Wignall. Physical Properties of Polymers. Physical Properties of Polymers third ed., Cambridge University Press,2003.
    [136]White J L, Beck L W, Ferguson D B, et al. Background suppression in MAS NMR. Journal of Magnetic Resonance (1969),1992,100(2):336-341
    [137]Li B, Xu L, Wu Q, et al. Various Types of Hydrogen Bonds, Their Temperature Dependence and Water-Polymer Interaction in Hydrated Poly (Acrylic Acid) as Revealed by 1H Solid-State NMR Spectroscopy. Macromolecules,2007,40(16):5776-5786
    [138]Schmidt-Rohr K, Clauss J, Spiess H W. Correlation of structure, mobility, and morphological information in heterogeneous polymer materials by two-dimensional wideline-separation NMR spectroscopy. Macromolecules,1992,25(12):3273-3277
    [139]Schmidt-Rohr K, Spiess H W. Multidimensional solid-state NMR and polymers. Academic Press, London,1994,
    [140]Tekely P, Palmas P, Mutzenhardt P. Elimination of heteronuclear dipolar interactions from carbon-13-detected proton spectra in wideline-separation nuclear magnetic resonance spectroscopy. Macromolecules,1993,26(26):7363-7365
    [141]Saalwachter K. Proton multiple-quantum NMR for the study of chain dynamics and structural constraints in polymeric soft materials. Progress in Nuclear Magnetic Resonance Spectroscopy,2007,51(1):1-35
    [142]Saalwachter K, Heuer A. Chain dynamics in elastomers as investigated by proton multiple-quantum NMR. Macromolecules,2006,39(9):3291-3303
    [143]Saalwachter K, Herrero B, L6pez-Manchado M A. Chain Order and Cross-Link Density of Elastomers As Investigated by Proton Multiple-Quantum NMR. Macromolecules,2005,38(23):9650-9660
    [144]Serbescu A, Saalwachter K. Particle-induced network formation in linear PDMS filled with silica. Polymer,2009,50(23):5434-5442
    [145]Chasse W, Valentin J L, Genesky G D, et al. print-Precise dipolar coupling constant distribution analysis in proton multiple-quantum NMR of elastomers. Journal of Chemical Physics,2011,134(4)
    [146]Gaborieau M, Graf R, Spiess H W. Versatility of the dipolar filter selection:From< sup>1 H nuclear spin diffusion experiment to the measurement of nuclear Overhauser effect in homopolymer melts. Solid State Nuclear Magnetic Resonance,2005,28(2):160-172
    [147]Li X, Nardi P. Micro/nanomechanical characterization of a natural nanocomposite material—the shell of Pectinidae. Nanotechnology,2004,15(1):211
    [148]Zhou B-L. The biomimetic study of composite materials. JOM,1994,46(2):57-62
    [149]Koerner H, Kelley J J, Vaia R A. Transient Microstructure of Low Hard Segment Thermoplastic Polyurethane under Uniaxial Deformation. Macromolecules,2008, 41(13):4709-4716
    [150]Liu C, Qin H, Mather P T. Review of progress in shape-memory polymers. Journal of Materials Chemistry,2007,17(16):1543-1558
    [151]Powers D S, Vaia R A, Koerner H, et al. NMR Characterization of Low Hard Segment Thermoplastic Polyurethane/Carbon Nanofiber Composites. Macromolecules, 2008,41(12):4290-4295
    [152]Liff S M, Kumar N, McKinley G H. High-performance elastomeric nanocomposites via solvent-exchange processing. Nature Materials,2006,6(1):76-83
    [153]Hedayati M, Salehi M, Bagheri R, et al. Tribological and mechanical properties of amorphous and semi-crystalline PEEK/SiO2 nanocomposite coatings deposited on the plain carbon steel by electrostatic powder spray technique. Progress in Organic Coatings,2012, 74(1):50-58
    [154]Schaefer D W, Justice R S. How nano are nanocomposites? Macromolecules, 2007,40(24):8501-8517
    [155]Gan Z, Kuwabara K, Abe H, et al. Metastability and Transformation of Polymorphic Crystals in Biodegradable Poly(butylene adipate). Biomacromolecules,2004, 5(2):371-378
    [156]Okrasa L, Pakula T, Inoue Y, et al. Morphology and thermomechanical properties of well-defined polyethylene- <i>graft -poly(<i>n -butyl acrylate) prepared by atom transfer radical polymerization. Colloid & Polymer Science,2004,282(8):844-853
    [157]Voda M, Demco D, Perlo J, et al. Multispin moments edited by multiple-quantum NMR:application to elastomers. Journal of Magnetic Resonance,2005,172(1):98-109
    [158]Fechete R, Demco D, Blumich B. Segmental Anisotropy in Strained Elastomers bylH NMR of Multipolar Spin States. Macromolecules,2002,35(:6083-6085
    [159]Baum J, Pines A. NMR studies of clustering in solids. Journal of the American Chemical Society,1986,108(24):7447-7454
    [160]Wang M, Bertmer M, Demco D, et al. Indication of heterogeneity in chain-segment order of a PDMS layer grafted onto a silica surface by 1H multiple-quantum NMR. Macromolecules,2003,36(12):4411-4413
    [161]Saalwachter K, Kleinschmidt F, Sommer J-U. Swelling heterogeneities in end-linked model networks:A combined proton multiple-quantum NMR and computer simulation study. Macromolecules,2004,37(23):8556-8568
    [162]Saalwachter K, Gottlieb M, Liu R, et al. Gelation as studied by proton multiple-quantum NMR. Macromolecules,2007,40(5):1555-1561
    [163]韩文慧,孙平川,陈铁红,李宝会,丁大同.纳米二氧化硅结构_表面修饰与分子运动的固体核磁共振研究.第十二届全国波谱学学术会议论文摘要集,2002,254-255
    [164]Bauer F, Freyer A, Ernst H, et al. Application of temperature-programmed oxidation, multinuclear MAS NMR and DRIFT spectroscopy to the surface characterization of modified silica nanoparticles. Applied surface science,2001,179(1):118-121
    [165]Zhang W, Bao X, Guo X, et al. A high-resolution solid-state NMR study on nano-structured HZSM-5 zeolite. Catalysis Letters,1999,60(1-2):89-94
    [166]Weeding T, Veeman W, Jenneskens L, et al. Carbon-13 and silicon-29 NMR investigations of glass-filled polymer composites. Macromolecules,1989,22(2):706-714
    [167]Magi M, Lippmaa E, Samoson A, et al. Solid-state high-resolution silicon-29 chemical shifts in silicates. The Journal of Physical Chemistry,1984,88(8):1518-1522
    [168]Van Krevelen D W, Te Nijenhuis K. Properties of polymers:their correlation with chemical structure; their numerical estimation and prediction from additive group contributions. Properties of polymers:their correlation with chemical structure; their numerical estimation and prediction from additive group contributions, Elsevier Science, 2009.
    [169]Hong S, Bushelman A A, MacKnight W J, et al. Morphology of semicrystalline block copolymers:polyethylene-b-atactic-polypropylene. Polymer,2001,42(13):5909-5914
    [170]Sun P C, Dang Q Q, Li B H, et al. Mobility, miscibility, and microdomain structure in nanostructured thermoset blends of epoxy resin and amphiphilic poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) triblock copolymers characterized by solid-state NMR. Macromolecules,2005,38(13):5654-5667
    [171]Senich G, MacKnight W. Fourier transform infrared thermal analysis of a segmented polyurethane. Macromolecules,1980,13(1):106-110
    [172]Qian J, Cheng G, Zhang H, et al. Preparation and characterization of polypropylene/silica nanocomposites by gamma irradiation via ultrafine blend. Journal of Polymer Research,18(3):409-417
    [173]Mauri M, Thomann Y, Schneider H, et al. Spin-diffusion NMR at low field for the study of multiphase solids. Solid State Nuclear Magnetic Resonance,2008,34(1-2):125-141
    [174]吴强,李晨曦,李学臣,et al.红外光谱法热分析液晶相变过程.高等学校化学学报,2001,22(12):2123-2125
    [175]O'Reilly J M, Mosher R. Conformational energies of stereoregular poly (methyl methacrylate) by Fourier transform infrared spectroscopy. Macromolecules,1981,14(3): 602-608
    [176]Coleman M M, Lee K H, Skrovanek D J, et al. Hydrogen bonding in polymers.4. Infrared temperature studies of a simple polyurethane. Macromolecules,1986,19(8): 2149-2157
    [177]Schrader B. Infrared and Raman spectroscopy. Infrared and Raman spectroscopy, Wiley-VCH, New York,2008.
    [178]Koerner H, Liu W, Alexander M, et al. Deformation-morphology correlations in electrically conductive carbon nanotube—thermoplastic polyurethane nanocomposites. Polymer,2005,46(12):4405-4420
    [179]Koenig J L. Spectroscopy of polymers. Spectroscopy of polymers, Elsevier Science, 1999.
    [180]Ishihara H, Kimura I, Saito K, et al. Infrared studies on segmented polyurethane-urea elastomers. Journal of Macromolecular Science, Part B:Physics,1974,10(4):591-618
    [181]Nakayama K, Ino T, Matsubara I. Infrared spectra and structure of polyurethane elastomers from polytetrahydrofuran, diphenylmethane-4,4'-diisocyanate, and ethylenediamine. Journal of Macromolecular Science—Chemistry,1969,3(5):1005-1020
    [182]Sung C S P, Schneider N. Infrared studies of hydrogen bonding in toluene diisocyanate based polyurethanes. Macromolecules,1975,8(1):68-73

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700