用户名: 密码: 验证码:
杂臂星形共聚物的合成及碳纳米管的修饰
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高分子科学和材料科学的迅猛发展对基础的化学合成技术提出了新的要求,例如可控性,高选择性,高效率等。适应这种需求而发展起来的活性自由基聚合及点击反应等引起了国内外高分子化学家及材料化学家的广泛关注。活性自由基聚合反应和点击反应不仅为合成各种特殊结构的聚合物,如嵌段、接枝、星形、环形、超支化聚合物提供了有效的手段,也为各种有机或无机材料的改性提供了宽广的技术平台。灵活运用这些高分子学科的前沿技术来合成新的聚合物、对材料进行改性,以及开发新的材料已经成为高分子科学和材料科学中的一个重要课题。在前人工作的基础上,本论文在高分子合成和材料改性方向上进行了有意义的拓展:结合活性自由基聚合和点击反应等,合成了结构复杂的四杂臂星形共聚物和反转星形嵌段共聚物;应用活性自由基聚合和点击反应等,实现了对碳纳米管的聚合物修饰,赋予碳纳米管以良好的溶解性能和特定的功能。具体研究结果简述如下:
     1.采用RAFT、ROP和点击反应结合的方法,成功地制备了结构明确,分子量分布窄,分子量可以调节的四杂臂星形共聚物。其合成路线是:首先制备聚苯乙烯大分子RAFT试剂PS-SC(S)SC_(12)H_(25),然后进行PS-SC(S)SC_(12)H_(25)与不可均聚的对炔丙氧基肉桂酸羟乙酯(HEPPA)的反应,合成的聚苯乙烯大分子带有三种功能性端基:羟基,三硫代碳酸酯以及炔基;继而以这种聚苯乙烯大分子作为引发剂或RAFT试剂,依次通过已内酯的开环聚合,丙烯酸甲酯(MA)的RAFT聚合以及与PEO-N_3的点击反应,最终成功地合成了四杂臂星形共聚物S(PS)(PCL)(PMA)(PEO)。
     2.使用ATRP,ROP和点击反应结合的方法合成了结构明确的反转星形嵌段共聚物(PCL-PS)_2-core-(PCL-PS)_2。其合成路线是:从含2个烷基溴和两个羟基的非等同官能引发剂BMDB开始,首先进行苯乙烯的ATRP,经过末端溴原子的端基转换形成(N_3-PS)_2-core-(OH)_2后,与(CH≡CCH_2)PCL(OOCCH_3)进行点击反应,制备出(PCL-PS)_2-core-(OH)_2,继而以(PCL-PS)_2-core-(OH)_2为大分子引发剂,引发己内酯的开环聚合得到(PCL-PS)_2-core-(PCL-OH)_2,再将末端羟基转化为ATRP引发基团,引发苯乙烯的ATRP,得到目标产物:反转星形嵌段共聚物(PCL-PS)_2-core-(PCL-PS)_2。反转星形嵌段共聚物的特殊结构影响了PS和PCL链段的相分离以及PCL的结晶行为。
     3.发现了一种新颖高效的对碳纳米管进行非共价修饰的办法。由于三亚苯与碳纳米管之间强烈的的π—π共轭作用,三亚苯为核的六臂星形聚乳酸能够很方便地通过超声处理接枝到未经任何处理的碳纳米管上。提高聚合物的分子量或者使用极性大的溶剂会降低聚合物的接枝率。详细的研究表明,三亚苯基团很可能是锚固在具有比较完善的层状结构的碳纳米管管壁上,二者之间存在着极强的相互作用力。实验结果证明碳纳米管的内在结构在这种修饰过程中可以保留。
     4.采用溶胶-凝胶法制备了一种具有多级结构的二氧化硅纳米管。首先以MWNT-Br为ATRP引发剂,在碳纳米管表面进行了DMAEMA的ATRP,得到PDMAEMA接枝的多壁碳纳米管MWNT-g-PDMAEMA;然后以此为模板,在PH=4的水溶液中进行四乙氧基硅的水解-缩聚作用,得到一种碳纳米管-二氧化硅纳米复合材料;继而在550℃下于空气中煅烧除掉MWNT-g-PDMAEMA模板,得到具有多级结构的二氧化硅纳米管。这种纳米管的管壁上分布着很多纳米二氧化硅刷。对这种分级结构二氧化硅纳米管的分析表明,这是一种具有高比表面积,多种孔结构并存的复合材料,有望在催化剂和生物传感器中得到应用。
     5.发展了一种新颖的使用功能性聚合物修饰碳纳米管的办法。首先合成带有冠醚功能团的ATRP引发剂,引发苯乙烯聚合,得到两端分别带有溴原子和冠醚功能团的聚苯乙烯;在末端溴原子转化为叠氮基团之后,利用点击反应将带有冠醚功能团的聚苯乙烯接枝到碳纳米管表面。所得到的碳纳米管-聚苯乙烯-冠醚复合材料表面具有很多冠醚功能团,有望作为相转移催化剂或金属催化剂载体使用。以冠醚端基聚苯乙烯刷修饰的碳纳米管为模板,在碳纳米管壁上组装出粒径均匀的纳米银粒子。
With the development of polymer and material sciences,new requirements for basic synthetic technologies,such as controllabilty,high efficiency,high selectivity etc are presented.According to these requirements,those newly developed techniques, such as controlled free radical polymerization and "click chemistry",have been poured great passion by the scientists.They provided the scientists with powerful methods to synthesize various special-structured polymers as well as various organic & inorganic materials.Smartly application of these techniques in polymer synthesis and material modification is one of the most important topics in the field of chemistry. Based on the researchs of the precursors,this dissertation described several outspread works in the synthesis of topologically structured polymers and the modification of carbon nanotubes.
     All these facts are the origin and impetus of this thesis.The main results obtained in this thesis are as follows:
     1.The ABCD 4-miktoarm star polymers based on polystyrene(PS), poly(ε-caprolactone)(PCL),poly(methyl acrylate)(PMA) and poly(ethylene oxide)(PEO) were synthesized and characterized successfully.Using the mechanism transformation strategy,PS with three different functional groups, hydroxyl,alkyne and trithiocarbonate,PS-HEPPA-SC(S)SC_(12)H_(25),was synthesized by the reaction of the trithiocarbonate-terminated PS with 2-hydroxyethyl-3-(4-(prop-2-ynyloxy)phenyl)acrylate(HEPPA) in tetrahydrofuran solution.Subsequently,the ring-opening polymerization(ROP) of CL was carded out in the presence of stannous(Ⅱ) 2-ethylhexanoate and PS-HEPPA-SC(S)SC_(12)H_(25),and then the PS-HEPPA(PCL)-SC(S)SC_(12)H_(25) obtained was used in the reversible addition -fragmentation chain transfer(RAFT) polymerization of MA to produce the ABC 3-miktoarm star polymer, S(PS)(PCL)(PMA) carrying an alkyne group.The ABCD 4-miktoarm star polymer,S(PS)(PCL)(PMA)(PEO) was successfully prepared by click reaction of the alkyne group on the HEPPA unit with azide-terminated PEO(PEO-N_3).
     2.Well-defined inverse star block copolymer,(PCL-PS)_2-core-(PCL-PS)_2 has been successfully prepared through a combination of ATRP,ROP and "Click chemistry".Different from star block copolymer,core-(PCL-PS)_4 prepared using core-first method,the feasible synthetic strategy of the inverse star (PCL-PS)_2-core-(PCL-PS)_2 is a combination of core-first and ann-first methods. Starting from a heterofunctional initiator BMDB,ATRP of St and following "click" reaction of(N_3-PS)_2-core-(OH)_2 with linear(CH≡CCH_2)PCL -(OOCCH_3) produced block copolymer(PCL-PS)_2-core-(OH)_2.After ROP of CL using(PCL-PS)_2-core-(OH)_2 as macroinitiator and successive transformation of terminal hydroxyl groups into bromine groups,ATRP of St using (PCL-PS)_2-core-(PCL-Br)_2 as macroinitiator yielded successively inverse star block copolymer,(PCL-PS)_2-core-(PCL-PS)_2.The intricate structure of the inverse star block copolymer influenced the microphase separation of PS and PCL segments,in turn,affected the crystallization of PCL.
     3.Found a new noncovalent method to functionalize the carbon nanotubes with polymer.Well-defined hexa-armed star poly(L-lactic acid)(PLLA) with a triphenylene core has been prepared by ring-opening polymerization of LLA.Due to the strongπ-πinteractions between the triphenylene core and multi-walled carbon nanotubes(MWNTs),the polymer was conveniently immobilized on the surface of the as-received MWNTs by a simple ultrasonic process while the intrinsic graphitic structure of the pristine MWNTs is retained.Both debundling of MWNT ropes and polymer attachment are achieved in a single step.Increasing the molecular weight of the PLLA arms or using high polarity solvent may decrease the amount of the polymers grafted onto the MWNTs.Detailed research demonstrates that the triphenylene cores were probably strongly anchored on the side walls of the nanotubes where the carbons are in well graphitic configuration.
     4.The preparation of exquisite hierarchical worm-like silica nanotubes by a simple sol-gel method is presented for the first time,in which poly(2-(dimethylamino)ethyl methacrylate)-grafted multi-wall carbon nanotube (MWNT-g-PDMAEMA) was used as sacrificial template.A possible formation mechanism of this interesting structure has been proposed.And the protonated 2-(dimethylamino) groups of PDMAEMA chains is believed to be responsible for the formation of the exquisite hierarchical structure of the formed nanoparticles. The hierarchical silica nanotubes have characteristic of mesoporous materials, such as large surface area,multiple pore distribution and large pore volume,and would have potential applications as catalyst or biosensors.
     5.Developed a novel method to functionalize the carbon anotubes with end functioned polymer brushes.Firstly,we synthesized crown ether capped polystyrene by ATRP method using an initiator carrying the crown ether group; after the terminal bromine had been transformed into azide groups,theα-azide,ω-crown ether ended polymer was grafted onto the surfaces of carbon nanotubes by "click chemistry" conveniently.The as prepared CNT-PS-Crown composites were good candidates for phase transfer catalysts,carriers for metal catalysts or separation films.Nano sized silver particles have been synthesized in situ on the surfaces of the CNTs due to the host-guest interactions of siliver and crown ether groups.
引文
1.Szwarc,M.;Levy,M.;Milkovich,R.Polymerization initiated by electron transfer to monomer.A new method of formation of block polymers[J].J.Am.Chem.Sot.,1956,78:2656-2657.
    2.Wang,J.S.;Matyjaszewski,K.Controlled/"living" radical polymerization,atom transfer radical polymerization in the presence of transition-metal complexes[J].J.Am.Chem.Soc.,1995,117:5614-5615.
    3.Wang,J.S.;Matyjaszewski,K."Living"/Controlled Radical Polymerization.Transition-Metal-Catalyzed Atom Transfer Radical Polymerization in the Presence of a Conventional Radical Initiator[J].Macromolecules,1995,28:7572-7573.
    4.Wang,J.S.;Matyjaszewski,K.Controlled/"Living" Radical Polymerization.Halogen Atom Transfer Radical Polymerization Promoted by a Cu(Ⅰ)/Cu(Ⅱ) Redox Process[J].Macromolecules,1995,28:7901-7910.
    5.Kato,M.;Kamigaito,M.;Sawamoto,M.;Higashimura,T.Polymerization of Methyl Methacrylate with the Carbon Tetrachloride/Dichlorotris-(triphenylphosphine)ruthenium (Ⅱ)/Methylaluminum Bis(2,6-di-tert-butylphenoxide) Initiating System:Possibility of Living Radical Polymerization[J].Macromolecules,1995,28:1721-1723.
    6.Ando,T.;Kato,M.;Kamigaite,M.;Sawamoto,M.Living Radical Polymerization of Methyl Methacrylate with Ruthenium Complex:Formation of Polymers with Controlled Molecular Weights and Very Narrow Distributions[J].Macromolecules,1996,29:1070-1072.
    7.Curran,DP.1992.Comprehensive Organic Synthesis[M],Pergamon,New York.
    8.Chiefari,J.;Chong,Y.K.;Ercole,F.;Kristina,J.;Jeffery,J.;Le,T.P.T.;Mayadunne,R.T.A.;Meijs,G.F.;Moad,G;Rizzardo,E.;Thang,S.H.Living Free-Radical Polymerization by Reversible Addition-Fragmentation Chain Transfer:The RAFT Process[J].Macromolecules,1998,31:5559-5562.
    9.Le,T.P.;Moad,G.;Rizzardo,E.;Yhang,S.H.PCT Int.Appl[P].WO 9801478 A1,980115.
    10.Chong,Y.K.;Le,T.P.T.;Moad,G.;Rizzardo,E.;Thang S.H.A More Versatile Route to Block Copolymers and Other Polymers of Complex Architecture by Living Radical Polymerization:The RAFT Process[J].Macromolecules,1999,32:2071-2074.
    11.Mayadunne,R.T.A.;Rizzardo,E.;Chiefari,J.;Krstina,J.;Moad,G.;Postrna,A.;Thang,S.H. Living Polymers by the Use of Trithiocarbonates as Reversible Addition-Fragmentation Chain Transfer (RAFT) Agents: ABA Triblock Copolymers by Radical Polymerization in Two Steps [J]. Macromolecules, 2000,33: 243-245.
    12. Otsu, T; Yoshida, M. Role of initiator-transfer agent-terminator (iniferter) in radical polymerizations: Polymer design by organic disulfides as iniferters [J]. Macromol. Chem. Rap common, 1982,3:127-132.
    13. Otsu, T.; Yoshida, M.; Tazaki, T. A model for living radical polymerization [J]. Macromol. Chem. Rap common, 1982,3: 133-140.
    14. Turner, S.; Richard W. Blevins, Photoinitiated block copolymer formation using dithiocarbamate free radical chemistry [J]. Macromolecules, 1990,23:1856-1859.
    15. Lambrinos, P.; Tardi, M.; Polton, A.; Sigwalt, P. The mechanism of the polymerization of n.butyl acrylate initiated with N, N-diethyl dithiocarbamate derivatives [J]. Eur Polym. J., 1990,26:1125-1135.
    16. Otsu. T; Matsunaga, T.; kuriyama, A. et al. Living radical polymerization through the use of iniferters: Controlled synthesis of polymers [J]. Eur. Polym. J., 1989, 25: 643-650.
    17. Georges, M.; Veregin, R.; Kazmaier, P. et al. 1993. Narrow molecular weight resins by a free-radical polymerization process [J]. Macromolecules, 26: 2987-2988.
    18. Hawker, C. Molecular Weight Control by a "Living" Free-Radical Polymerization Process [J]. J. Am. Chem. Soc., 1994,116:11185-11186.
    19. Hawker, C; Barclay, G.; Orellana, A. et al. Initiating Systems for Nitroxide-Mediated "Living" Free Radical Polymerizations: Synthesis and Evaluation [J]. Macromolecules, 1996, 29: 5245-5254.
    20. Benoit, D.; Chaplinski, V.; Braslau, R. et al. Development of a Universal Alkoxyamine for "Living" Free Radical Polymerizations [J]. J. Am. Chem. Soc., 1999,121: 3904-3920.
    21. Benoit, D.; Grimaldi, S.; Robin, S. et al. Kinetics and Mechanism of Controlled Free-Radical Polymerization of Styrene and n-Butyl Acrylate in the Presence of an Acyclic β-Phosphonylated Nitroxide [J]. J. Am. Chem. Soc., 2000,122: 5929-5939.
    22. Farcet, C.; Lansalot, M.; Charleux, B. et al. Mechanistic Aspects of Nitroxide-Mediated Controlled Radical Polymerization of Styrene in Miniemulsion, Using a Water-Soluble Radical Initiator [J]. Macromolecules, 2000,33: 8559-8570.
    23. Benoit, D.; Harth, E.; Fox, P. et al. Accurate Structural Control and Block Formation in the Living Polymerization of 1,3-Dienes by Nitroxide-Mediated Procedures [J]. Macromolecules, 2000, 33: 363-370.
    24. You, Y.; Hong, C.; Wang, W.; Lu, W.; Pan. C. Preparation and Characterization of Thermally Responsive and Biodegradable Block Copolymer Comprised of PNIPAAM and PLA by Combination of ROP and RAFT Methods [J]. Macromolecules, 2004, 37: 9761-9767.
    25. You, Y.; Hong, C.; Pan. C. A novel strategy for synthesis of multiblock copolymers [J]. Chem. Commun., 2002, 2800-2801.
    26. Tao, L.; Luan, B.; Pan. C. Block and star block copolymers by mechanism transformation. VIII Synthesis and characterization of triblock poly(LLA-b-St-b-MMA) by combination of ATRP and ROP [J]. Polymer, 2003,44:1013-1020.
    27. Hong, C.; You, Y.; Pan. C. Synthesis and characterization of well-defined diblock and triblock copolymers of poly(N-isopropylacrylamide) and poly(ethylene oxide) [J]. J. Polym. Sci., Part A: Polym. Chem., 2004. 42:4873-4881.
    28. Zheng, Q.; Pan, C. Synthesis and Characterization of Dendrimer-Star Polymer Using Dithiobenzoate-Terminated Poly(propylene imine) Dendrimer via Reversible Addition-Fragmentation Transfer Polymerization [J]. Macromolecules. 2005, 38: 6841-6848.
    29. Deng, G.; Chen. Y. "A novel way to synthesize star polymers in one-pot by ATRP of N-[2-(2-bromoisobutyryloxy)ethyl]maleimide and Styrene" [J], Macromolecules, 2004, 37: 18-26.
    30. Bosman, A.; Vestberg, R.; Heumann, A.; Frechet, J; Hawker, C. A Modular Approach toward Functionalized Three-Dimensional Macromolecules: From Synthetic Concepts to Practical Applications [J]. J. Am. Chem. Soc, 2003,125: 715-728.
    31. He, T.; Pan, C. Synthesis of Cyclic Polymers and Block Copolymers by Monomer Insertion into Cyclic Initiator by a Radical Mechanism [J]. Macromolecules 2003, 36: 5960-5966.
    32. Hawker, C.; Frechet, J.;, Grubbs, R. et al. Preparation of hyperbranched and star polymers by a "living", self-condensing free radical polymerization [J]. J. Am. Chem. Soc, 1995, 117: 10763-10764.
    33. Li, C.; He, J.; Li, L. et al. Controlled radical polymerization of styrene in the presence of a polymerizable nitroxide compound [J]. Macromolecules, 1999, 32: 7012-7014.
    34. Tao, Y.; He, J.; Wang, Z. et al. Synthesis of branched polystyrene and poly(styrene-b-4-methoxystyrene) by nitroxyl stable radical controlled polymerization[J]. Macromolecules, 2001, 34:4742-4748.
    35. Gaynor, S.; Edelman, S.; Matyjaszewski, K. Synthesis of branched and hyperbranched polystyrenes [J]. Macromolecules, 1996, 29: 1079-1081.
    36. Weimer, M.; Frechet, J.; Gitsov, I. Importance of active-site reactivity and reaction conditions in the preparation of hyperbranched polymers by self-condensing vinyl polymerization: Highly branched vs. linear poly[4-(chloromethyl) styrene] by metal-catalyzed "living" radical polymerization [J]. J. Polym. Sci., Part A: Polym. Chem., 1998,36: 955-970.
    37. You, Y.; Hong, C.; Wang, W.; Wang, P.; Lu, W; Pan. C. A Novel Strategy To Synthesize Graft Copolymers with Controlled Branch Spacing Length and Defined Grafting Sites [J]. Macromolecules, 2004, 37: 7140-7145.
    38. Luan, B.; Zhang, B.; Pan, C. Synthesis and Characterizations of Well-Defined Branched Polymers with AB2 Branches by Combination of RAFT Polymerization and ROP as well as ATRP [J], J. Polym. Sci., Part A: Polym. Chem., 2006,44: 549-560.
    39. Li, Y.; Shi, P.; Pan. C. Synthesis, Characterization, and Thermal Behavior of H-Shaped Copolymers Prepared by Atom Transfer Radical Polymerization [J]. Macromolecules, 2004, 37:5190-5195.
    40. Han, D.; Pan, C. Preparation and Characterization of Heteroarm H-Shaped Terpolymers by Combination of Reversible Addition-Fragmentation Transfer Polymerization and Ring-Opening Polymerization [J]. J. Polym. Sci., Part A: Polym. Chem., 2007,45: 789-799.
    41. Han, D.; Pan, C. A novel strategy for synthesis of amphiphilic π-shaped copolymers by RAFT polymerization [J]. Eur. Polym. J., 2006,42: 507-515.
    42. Rowe, M.; Hammer, B.; Boyes, S. Synthesis of Surface-Initiated Stimuli-Responsive Diblock Copolymer Brushes Utilizing a Combination of ATRP and RAFT Polymerization Techniques [J], Macromolecules, 2008,41:4147-4157.
    43. Li, D.; Sheng, X.; Zhao, Bin. Environmentally Responsive "Hairy" Nanoparticles: Mixed Homopolymer Brushes on Silica Nanoparticles Synthesized by Living Radical Polymerization Techniques [J], J. Am. Chem. Soc, 2005,127: 6248-6256.
    44. Hong, C.; You, Y.; Pan, C. Synthesis of Water-Soluble Multiwalled Carbon Nanotubes with Grafted Temperature-Responsive Shells by Surface RAFT Polymerization [J]. Chem. Mater., 2005, 17: 2247-2254.
    45. You, Y.; Hong, C.; Pan, C. Directly growing ionic polymers on multi-walled carbon nanotubes via surface RAFT polymerization [J]. Nanotechnology, 2006,17: 2350-2354.
    46. Hong, C.; You, Y.; Pan, C. Functionalized multi-walled carbon nanotubes with poly(N-(2-hydroxypropyl)methacrylamide) by RAFT polymerization [J]. J. Polym. Sci. Part A: Polym. Chem., 2006,44: 2419-2427.
    47. Kong, H.; Gao, C; Yan, D. Controlled Functionalization of Multiwalled Carbon Nanotubes by in Situ Atom Transfer Radical Polymerization [J]. J. Am. Chem. Soc., 2004,126:412-413.
    48. Qin, S.; Qin, D.; Ford, W. T; Resasco, D. E.; Herrera, J. E. Functionalization of Single-Walled Carbon Nanotubes with Polystyrene via Grafting to and Grafting from Methods [J]. Macromolecules, 2004,37: 752-757.
    49. Qin, S.; Qin, D.; Ford, W. T.; Resasco, D. E.; Herrera, J. E. Polymer Brushes on Single-Walled Carbon Nanotubes by Atom Transfer Radical Polymerization of n-Butyl Methacrylate [J]. J. Am, Chem. Soc, 2004,126:170-176.
    50. Hong, C.; You, Y.; Wu, D.; Liu, Y.; Pan, C. Multiwalled Carbon Nanotubes Grafted with Hyperbranched Polymer Shell via SCVP [J]. Macromolecules, 2005, 38: 2606-2611.
    51. Zhou, P.; Chen, G.; Hong, H.; Du, F.; Li, Z.; Li. F. Synthesis of C60-End-Bonded Polymers with Designed Molecular Weights and Narrow Molecular Weight Distributions via Atom Transfer Radical Polymerization [J], Macromolecules, 2000, 33: 1948-1954.
    52. Zhang, B.; Pan, C.; Hong, C.; Luan, B.; Shi, P. Reversible Addition-Fragmentation Transfer Polymerization in the Presence of MMT Immobilized Amphoteric RAFT Agent [J]. Macromol. Rapid Commun., 2006, 27: 97-102.
    53. Zhao, H.; Shipp, D. Preparation of Poly(styrene-block-butyl acrylate) Block Copolymer -Silicate Nanocomposites[J]. Chem. Mater., 2003,15,2693-2695.
    54. Weimer, M.; Chen, H.; Giannelis, E.; Sogah, D. Direct Synthesis of Dispersed Nanocomposites by in Situ Living Free Radical Polymerization Using a Silicate-Anchored Initiator [J]. J. Am. Chem. Soc, 1999,121,1615-1616.
    55. Li, D.; He, Q.; Cui, Y.; Li, J. Fabrication of pH-Responsive Nanocomposites of Gold Nanoparticles/ Poly(4-vinylpyridine) [J]. Chem. Mater., 2007,19,412-417.
    56. Nuopponen, M.; Tenhu, H. Gold Nanoparticles Protected with pH and Temperature-Sensitive Diblock Copolymers [J]. Langmuir, 2007,23, 5352-5357.
    57. Zhang, F.; Xu, F.; Kang, E.; Neoh, K. Modification of Titanium via Surface-Initiated Atom Transfer Radical Polymerization (ATRP) [J].Ind. Eng. Chem. Res., 2006, 45: 3067-3073
    58. Kolb, H.; Finn, M.; Sharpless, K. Click Chemistry: Diverse Chemical Function from a Few Good Reactions [J]. Angew. Chem. Int. Ed., 2001,40: 2004-2021.
    59. Huisgen, R. In 1, 3-Dipolar Cycloaddition Chemistry (ed. Padwa A). New York, Willey, 1984. vol. 1:1—176.
    60. Rostovtsev, V.; Green, L.; Fokin, V.; Sharpless, K. A Stepwise Huisgen Cycloaddition Process: Copper(I)-Catalyzed Regioselective "Ligation" of Azides and Terminal Alkynes[J]. Angew. Chem. Int. Ed., 2002,41: 2596-2599.
    61. Ossipov, D.; Hilborn, J. Poly(vinyl alcohol)-Based Hydrogels Formed by "Click Chemistry" [J]. Macromolecules, 2006, 39: 1709-1718.
    62. Vogt, A.; Sumerlin, B. An Efficient Route to Macromonomers via ATRP and Click Chemistry [J]. Macromolecules, 2006, 39: 5286-5292.
    63. Liu, Q.; Chen, Y. Synthesis of well-defined macromonomers by the combination of atom transfer radical polymerization and a click reaction [J]. J. Polym. Sci., Part A: Polym. Chem., 2006,44:6103-6113.
    64. Ladmiral, V.; Mantovani, G; Haddleton, D. et al. Synthesis of Neoglycopolymers by a Combination of "Click Chemistry" and Living Radical Polymerization [J]. J. Am. Chem. Soc, 2006,128:4823-4830.
    65. Brent, S.; Nicolay, V.; Guillaume, L. et al. Highly Efficient "Click" Functionalization of Poly(3-azidopropyl methacrylate) Prepared by ATRP [J]. Macromolecules, 2005, 38: 7540-7545.
    66. Brian, C.; Selma, B.; Uwe, H. Click Chemistry as a Powerful Tool for the Construction of Functional Poly(p-phenyleneethynylene)s: Comparison of Pre- and Postfunctionalization Schemes [J]. Macromolecules, 2005,38: 5868-5877.
    67. Brian, C. Jacketed and functionalized poly(paraphenyleneethynylene)s: Nonaggregating conjugated polymers and materials functionalized through click2chemist ry [D]. Georgia Georgia Institute of Technology, 2005.
    68. Pantazis, D.; Schulz, D. Hadjichristis N.Synthesis of a model cyclic triblock terpolymer of styrene, isoprene, and methyl methacrylate [J]. J. Polym. Sci. Part A: Polym Chem., 2002,40: 1476-1483.
    69. Nicolay, V.; Brent, S.; Matyjaszewski, K. Step-Growth "Click" Coupling of Telechelic Polymers Prepared by Atom Transfer Radical Polymerization [J]. Macromolecules, 2005, 38: 3558-3561.
    70. Yuan, Q.; Yan, G.; Wei, D. et al. Novel perfluorocyclobutyl (PFCB)-containing polymers formed by click chemistry [J]. Polymer, 2006,47,6272-6279.
    71. David, D.; Sreenivas, P.; Philipp, H. et al. Click chemistry in materials synthesis. 1. Adhesive polymers from copper-catalyzed azide-alkyne cycloaddition [J]. J. Polym. Sci. Part A : Polym Chem., 2004,42: 4392-4403.
    72. Jeremiah, A.; Danielle, R.; David, D. et al. Synthesis of Degradable Model Networks via ATRP and Click Chemistry [J]. J. Am. Chem. Soc, 2006,128: 6564-6565.
    73. Georgin, K.; John, F.; Anthony, Q. et al. Assembly of Ultrathin Polymer Multilayer Films by Click Chemistry [J]. J .Am. Chem. Soc, 2006,128: 9318-9319.
    74. Gao, H.; Matyjaszewski, K. Synthesis of Star Polymers by a Combination of ATRP and the "Click" Coupling Method [J]. Macromolecules, 2006, 39:4960-4965.
    75. Michael, R.; Carl, N.; Michael, J. Synthesis of 3-Miktoarm Stars and 1st Generation Mikto Dendritic Copolymers by "Living" Radical Polymerization and "Click" Chemistry [J]. J. Am .Chem. Soc, 2006,128: 11360-11361.
    76. Jae, W.; Jung, H.; Byuang, K. Synthesis of azide-functionalized PAMAM dendrons at the focal point and their application for synthesis of PAMAM-like dendrimers [J]. Tetrahedron. Lett., 2006 ,47: 2683-2686.
    77. Michael, M.; Kristin, S.; Eric. D. et al. Structurally Diverse Dendritic Libraries: A Highly Efficient Functionalization Approach Using Click Chemistry [J]. Macromolecules, 2005, 38: 3663-3678.
    78. Brett, H.; Justi, L.; Craig, J. Dendronized Linear Polymers via "Click Chemistry" [J]. J. Am. Chem. Soc, 2004,126: 15020-15021.
    79. Boyd, A.; Scott, M. An Efficient Route to Weil-Defined Macrocyclic Polymers via "Click" Cyclization [J]. J. Am. Chem. Soc, 2006,128: 4238-4239.
    80. Rohde, R; Agnew, H.; Yeo, W.; Bailey, R.; Heath, J. A Non-Oxidative Approach toward Chemically and Electrochemically Functionalizing Si(111) [J]. J. Am. Chem. Soc, 2006, 128: 9518-9525.
    81. Britcher, L.; Barnes, T.; Griesser, H.; Prestidge, C. PEGylation of Porous Silicon Using Click Chemistry [J]. Langmuir, 2008, 24: 7625-7627.
    82. Ranjan, R.; Brittain, W. Combination of Living Radical Polymerization and Click Chemistry for Surface Modification [J]. Macromolecules, 2007,40:6217-6223.
    83. Lummerstorfer, T.; Hoffmann, H. Click Chemistry on Surfaces: 1,3-Dipolar Cycloaddition Reactions of Azide-Terminated Monolayers on Silica [J]. J. Phys. Chem. B., 2004, 108: 3963-3966.
    84. Li, H.; Cheng, F.; Duft, A.; Adronov, A. Functionalization of Single-Walled Carbon Nanotubes with Well-Defined Polystyrene by "Click" Coupling [J]. J. Am. Chem. Soc, 2005, 127: 14518-14524.
    85. Fleming, D.; Thode, C.; Williams, M. Triazole Cycloaddition as a General Route for Functionalization of Au Nanoparticles [J]. Chem. Mater. 2006, 18: 2327-2334.
    86. Pearson, D.; Downard, A.; Muscroft-Taylor, A.; Abell, A. Reversible Photoregulation of Binding of α-Chymotrypsin to a Gold Surface [J]. J. Am. Chem. Soc, 2007, 129: 14862-14863.
    87. Tasdelen, M.; Camp, W.; Goethals, E.; et.al. Polytetrahydrofuran/Clay Nanocomposites by In Situ Polymerization and "Click" Chemistry Processes [J]. Macromolecules, 2008, 41: 6035-6040.
    88. Collman, J.; Devaraj, N.; Chidsey, C. "Clicking" Functionality onto Electrode Surfaces [J]. Langmuir, 2004,20: 1051-1053.
    89. Xu, Y.; Liu, Y.; Pan, C. Synthesis and characterization of four-armed poly(1,3-dioxepane) tetraol [J]. J. Polym. Sci., Part A: Polym. Chem., 1999, 37: 2347-2353.
    90. Xu, Y.; Liu, Y.; Pan, C. Syntheses and characterization of poly (tetrahydrofuran) polyols with multifunctional oxocarbenium perchlorates as initiator [J]. J. Polym. Sci., Part A: Polym. Chem., 1999,37:3391-3399.
    91. Pan, C.; Tao, L.; Wu, D. Synthesis and characterizations of the four-armed amphiphilic block copolymer S[poly(2,3-dihydroxypropyl acrylate)-block-poly(methyl acrylate)]4 [J]. J. Polym. Sci., Part A: Polym. Chem., 2001,39: 3062-3072.
    92. Feng, X.; Pan, C.; Wang, J. Synthesis of 6-Armed Amphiphilic Block Copolymers with Styrene and 2,3-Dihydroxypropyl Acrylate by Atom Transfer Radical Polymerization [J]. Macromol. Chem. Phys., 2001,202:3403-3409.
    93. Narrainen, A.; Pascual, S.; Haddleton, D. Amphiphilic diblock, triblock, and star block copolymers by living radical polymerization: Synthesis and aggregation behavior [J].J. Polym. Sci., Part A: Polym. Chem., 2002,40:439-450.
    94. Ohno, K.; Wong, B.; Haddelton, D. Synthesis of well-defined cyclodextrin-core star polymers [J]. J. Polym. Sci., Part A: Polym. Chem., 2001, 39:2206-2214.
    95. Heise, A.; Hedrick, J.; Trollsas, L. et al. Polym. Prepr., 1999,40 ,452.
    96. Kotani, Y.; Kato, M.; Kamigaito, M. et al. Living Radical Polymerization of Alkyl Methacrylates with Ruthenium Complex and Synthesis of Their Block Copolymer [J]. Macromolecules, 1996,29: 6979-6982.
    97. Baek, K.; Kamigaito, M.; Sawamoto, M. Synthesis of star-shaped copolymers with methyl methacrylate and n-butyl methacrylate by metal-catalyzed living radical polymerization: Block and random copolymer arms and microgel cores [J].J. Polym. Sci., Part A: Polym. Chem., 2002,40: 633-641.
    98. Baek, K.; Kamigaito, M.; Sawamoto, M. Star-Shaped Polymers by Metal-Catalyzed Living Radical Polymerization. 1. Design of Ru(H)-Based Systems and Divinyl Linking Agents [J]. Macromolecules, 2001,34: 215-221.
    99. May, J. Polym. Bull. 1990,23,247.
    100. Keszler, B.; Fenyvesi, G.; Kennedy, J. Novel star-block polymers: Three polyisobutylene-b-poly(methyl methacrylate) arms radiating from an aromatic core [J]. J. Polym. Sci., Part A: Polym. Chem., 2000,38: 706-714.
    101. Sioula, S.; Tselikas, Y.; Hadjichristidis, N. Synthesis of Model 3-Miktoarm Star Terpolymers of Styrene, Isoprene, and Methyl Methacrylate [J]. Macromolecules, 1997, 30: 1518-1520.
    102. Allgaier, J.; Young, R.; Efstratiadis, V. et al. Synthesis and Characterization of Polyisoprene/Polybutadiene A2B2 Star Copolymers [J]. Macromolecules, 1996, 29: 1794-1797.
    103. Hocker, H.; Latterman, G. J. Polym. Sci. Symp., 1976, 54, 361.
    104. Fernyhough, C.; Young, R.; Tack. R. Synthesis and Characterization of Polyisoprene-Poly(methyl methacrylate) AB Diblock and A2B2 Heteroarm Star Copolymers [J]. Macromolecules, 1999, 32: 5760-5764.
    105. Xu, Y.; Pan, C.; Tao, L. Block and star block copolymers by mechanism transformation. II. Synthesis of poly(DOP-b-St) by combination of ATRP and CROP [J]. J. Polym. Sci., Part A: Polym. Chem., 2000, 38:436-443.
    106. Guo, Y.; Xu, J.; Pan, C. Block and star block copolymers by mechanism transformation. IV. Synthesis of S-(PSt)2(PDOP)2 miktoarm star copolymers by combination of ATRP and CROP [J]. J. Polym. Sci., Part A: Polym. Chem., 2001, 39: 437-445.
    107. Guo, Y.; Pan, C.; Wang, J. Block and star block copolymers by mechanism transformation. VI. Synthesis and characterization of A4B4 miktoarm star copolymers consisting of polystyrene and polytetrahydrofuran prepared by cationic ring-opening polymerization and atom transfer radical polymerization [J]. J. Polym. Sci., Part A: Polym. Chem., 2001,39: 2134-2142.
    108. Guo, Y.; Pan, C. Block and star block copolymers by mechanism transformation. Part V. Syntheses of polystyrene/polytetrahydrofuran A2B2 miktoarm star copolymers by transformation of CROP into ATRP [J]. Polymer, 2001, 42: 2863-2869.
    109. Feng, X.; Pan, C. Block and Star Block Copolymers by Mechanism Transformation. 7. Synthesis of Polytetrahydrofuran/Poly(1,3-dioxepane)/Polystyrene ABC Miktoarm Star Copolymers by Combination of CROP and ATRP [J]. Macromolecules, 2002, 35: 2084-2089.
    110. Lambert, O.; Dumas, P.; Hurtrez, G. et.al. Synthesis of an amphiphilic triarm star copolymer based on polystyrene, poly(ethylene oxide) and poly(ε-caprolactone) [J]. Macromol. Rapid. Commun., 1997, 18: 343-351.
    111. Koulouri, E.; Kallitsis, J. Terminal Anhydride Functionalized Polystyrene by Atom Transfer Radical Polymerization Used for the Compatibilization of Nylon 6/PS Blends [J]. Macromolecules, 1999, 32:6242-6248.
    112. Feng, X.; Pan, C. Synthesis of Amphiphilic Miktoarm ABC Star Copolymers by RAFT Mechanism Using Maleic Anhydride as Linking Agent [J]. Macromolecules, 2002, 35: 4888-4893.
    113. Iijima S. Helical microtubles of graphite carbon [J]. Nature, 1991, 354: 56-58.
    114. Ebbesen, T. Self-preservation of rough-wall turbulent boundary layers [J]. Phys. Today., 1996,49:26-31.
    115. Treacy, M.; Ebbsen, T.; Gibson, J. Exceptionally high Young's modulus observed for individual carbon nanotubes [J]. Nature, 1996,381: 678-680.
    116. Carroll, D; Redich, P.; Ajayan, P. et.al. Electronic structure and localized states at carbon nanotubes [J].Phys. Rev. Lett., 1997, 78: 2811-2814.
    117. Rao, A.; Eklund, P.; Bandow, S. et al. Evidence for charge transfer in doped carbon nanotubes bundles from Raman scattering [J]. Nature, 1997, 388: 257-259.
    118. Tsang, S.; Harris, P.; Green, M. Thinning and opening of carbon nanotubes by oxidation dioxide using carbon dioxide [J]. Nature, 1993,362: 520-522.
    119. Pederson, M.; Broughtonl, G. Nanocapillarity in fullerenetubules [J]. Phys. Rev. Lett., 1992,69:2689-2692.
    120. Dujardin, E.; Ebbesen, T.; Hiura, H. et al. Capillarity and wetting of carbon nanotubes[J]. Science, 1994, 265:1850-1852.
    121. Lago, R.; Tsang, S.; Green, M. et al. Filling carbon nanotubes with small palladium metal crystallites: the effect of surface acid groups [J]. Chem. Commu., 1995,261:1355-1356.
    122. Hiura, H.; Ebbesen, T.; Tanigaki, K. Opening and purification of carbon nanotubes in high yields [J]. Adv. Mater., 1995, 7:275-276.
    123. Liu, J., Rinzler, A.; Smalley, R. et al. Fullerene pipes [J]. Science, 1998, 280: 1253-1256.
    124. Mickelson, E.; Chiang, I.; Margrave, J. et al. Solvation of fluorinated single-wall carbon nanotubes in alcohol solvents [J]. J. Phys.Chem. B., 1999, 103: 4318-4322.
    125. Boul, P.; Liu, J.; Smalley, R. et al. Reversible sidewall functionalization of buckytubes [J]. Chem. Phys. Lett., 1999,310: 367-372.
    126. Sarbajit, B.; Tirandai, H.; Stanislaus, S. Covalent Surface Chemistry of Single-Walled Carbon Nanotubes [ J]. Adv. Mater., 2005. 17:17-29.
    127. Chen, R.; Zhang, Y.; Dai, H. et al. Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization [J]. J. Am. Chem. Soc, 2001, 123: 3838-3839.
    128. Curran, S.; Ajayan, P.; Blau, W. et al. A composite from poly (m-phenylenevinylene -co-2, 5-dioctoxy -p-phenylenevinylene) and carbon nanotubes: a novel material for molecular optoelectronics [J]. Adv. Mater., 1998,10: 1091-1093.
    129. Star, A.; Stoddart, J.; Steuerman, D. et al. Preparation and properties of polymer-wrapped single-walled carbon nanotubes [J]. Angew. Chem. Int. Ed., 2001, 40: 1721-1725.
    130. Tang, B.; Xu, H. Preparation, alignment, and optical properties of soluble poly(phenylacetylene)-wrapped carbon nanotubes [J]. Macromolecules, 1999, 32: 2569-2576.
    131. Fan, J.; Wan, M.; Zhu, D. et al. Synthesis, characterizations, and physical properties of carbon nanotubes coated by conducting polypyrrole [J]. J. Appl. Poly. Sci., 1999, 74: 2605-2610.
    132. Fan, J.; Wan, M.; Zhu, D. et al. Synthesis and properties of carbon nanotube-polypyrrole composites [J]. Synthetic. Metals., 1999,102:1266-1267.
    133. Huang, S.; Mau, A.; Dai, L. et al. Patterned growth of well-aligned carbon nanotubes: a soft-lithographic approach [J]. J. Phys. Chem. B., 2000, 104: 2193-2196.
    134. Gao, M.; Huang, S.; Dai, L. et al. Aligned coaxial nanowires of carbon nanotube sheathed with conducting polymers [J]. Angew. Chem. Int. Ed., 2000, 39: 3664-3667.
    135. Chen, Q.; Dai, L.; Gao, M. et al. Plasma activation of carbon nanotubes for chemical modification [J]. J. Phys. Chem. B., 2001,105: 618-622.
    136. Balavoine, F.; Schultz, P.; Mioskowski, C. et al. Helical crystallization of proteins on carbon nanotubes: a first step towards the development of new biosensors [J]. Angew. Chem. Int. Ed., 1999, 38:1912-1915.
    137. Chen, R.; Zhang, Y.; Dai, H. et al. Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization [J]. J. Am. Chem. Soc., 2001, 123: 3838-3839.
    1.Matsushita,Y.;Choshi,H.;Fujimoto,T.;Nagasawa,M.Preparation and Morphological Properties of a Tdblock Copolymer of the ABC Type[J].Macromolecules,1980,13:1053-1058.
    2.Arai,K.;Kotaka,T.;Kitano,Y.;Yoshimura,K.Poly(styrene-b-butadiene-b-4-vinylpyridine)Three-Block Polymers.Synthesis,Characterization,Morphology,and Mechanical Properties [J].Macromolecules,1980,13:1670-1678.
    3.Shibayama,M.;Hasegawa,H.;Hashimoto,T.;Kawai,H.Microdomain structure of an ABC-type tdblock polymer of polystyrene-poly[(4-vinylbenzyl)dimethylamine]-polyisoprene cast from solutions[J].Macromolecules,1982,15:274-280.
    4.Miyaki,Y.;Nagamatsu,H.;Iwata,M.;Ohkoshi,K.;Se,K.;Fujimoto,T.Artificial membranes from multiblock copolymers.3.Preparation and characterization of charge-mosaic membranes[J].Macromolecules,1984,17:2231-2236.
    5.Xu,Y.;Pan,C.Block and Star-Block Copolymers by Mechanism Transformation.3.S-(PTHF-PSt)_4 and S-(PTHF-PSt-PMMA)_4 from Living CROP to ATRP[J].Macromolecules,2000,33:4750-4756.
    6.Angot,S.;Murthy,K.S.;Taton,D.;Gnanou,Y.Atom Transfer Radical Polymerization of Styrene Using a Novel Octafunctional Initiator:Synthesis of Well-Defined Polystyrene Stars [J].Macromolecules,1998,31:7218-7225.
    7.Zhao,Y.;Shuai,X.;Chen,C.;Xi,E Synthesis of Star Block Copolymers from Dendrimer Initiators by Combining Ring-Opening Polymerization and Atom Transfer Radical Polymerization[J].Macromolecules,2004,37:8854-8862.
    8.Matyjaszewski,K.;Miller,E J.;Pyun,J.;Kickelbick,G.;Diamanti,S.Synthesis and Characterization of Star Polymers with Varying Arm Number, Length, and Composition from Organic and Hybrid Inorganic/Organic Multifunctional Initiators [J]. Macromolecules, 1999, 32: 6526-6535.
    9. Sioula, S.; Hadjichristidis, N.; Thomas, E. L. Novel 2-Dimensionally Periodic Non-Constant Mean Curvature Morphologies of 3-Miktoarm Star Terpolymers of Styrene, Isoprene, and Methyl Methacrylate [J]. Macromolecules, 1998, 31: 5272-5277.
    10. Ioula, S.; Hadjichristidis, N.; Thomas, E. Direct Evidence for Confinement of Junctions to Lines in an 3 Miktoarm Star Terpolymer Microdomain Structure [J]. Macromolecules, 1998, 31:8429-8432.
    11. Huckstadt, H.; Gopfert, A.; Abetz, V. Synthesis and morphology of ABC heteroarm star terpolymers of polystyrene, polybutadiene and poly(2-vinylpyridine [J]. Macromol Chem Phys., 2000, 201: 296-307.
    12. Pispas, S.; Hadjichristidis, N.; Potemkin, I.; Khokhlov, A. Effect of Architecture on the Micellization Properties of Block Copolymers: A_2B Miktoarm Stars vs AB Diblocks [J]. Macromolecules, 2000,33:1741-1746.
    13. Beyer, F. L.; Gido, S. P.; Velis, G.; Hadjichristidis, N.; Tan, N. B. Morphological Behavior of A_5B Miktoarm Star Block Copolymers [J]. Macromolecules, 1999,32: 6604-6607.
    14. Vlahos, C.; Hadjichristidis, N. Second Virial Coefficient of A_xB_y Miktoarm Star Copolymers in Common, Common Good, and Selective Solvents [J]. Macromolecules, 1998, 31: 6691-6696.
    15. Hadjichristidis, N. Synthesis of miktoarm star (μ-star) polymers [J]. J. Polym. Sci Part A: Polym. Chem., 1999,37: 857-871.
    16. Hadjichristidis, N.; Iatrou, H.; Behal, S. K.; Chludzinski, J. J.; Disko, M. M.; Garner, R. T.; Liang, K. S.; Lohse, D. J.; Milner, S. T. Morphology and miscibility of miktoarm styrene-diene copolymers and terpolymers [J]. Macromolecules, 1993,26: 5812-5815.
    17. Huckstiidt, H.; Abetz, V.; Stadler, R. Synthesis of a polystyrene-arm-polybutadiene -arm-poly(methyl methacrylate) triarm star copolymer [J]. Macromol Rapid Commun., 1996, 17: 599-606.
    18. Lu, Z.; Chen, S.; Huang, J. Preparation and characterization of a novel star ABC triblock copolymer of styrene, ethylene oxide, and methacrylic acid [J]. Macromol Rapid Commun., 1999,20:394-400.
    19. Feng, X.; Pan, C. Synthesis of Amphiphilic Miktoarm ABC Star Copolymers by RAFT Mechanism Using Maleic Anhydride as Linking Agent [J]. Macromolecules, 2002, 35: 4888-4893.
    20. Feng, X.; Pan, C. Block and Star Block Copolymers by Mechanism Transformation. 7. Synthesis of Polytetrahydrofuran/Poly(1,3-dioxepane)/Polystyrene ABC Miktoarm Star Copolymers by Combination of CROP and ATRP [J]. Macromolecules, 2002, 35: 2084-2089.
    21. Li, Y.; Wang, Y.; Pan, C. Block and star block copolymers by mechanism transformation 9: Preparation and characterization of poly(methyl methacrylate)/poly(1,3-dioxepane) /polystyrene ABC miktoarm star copolymers by combination of reversible addition -fragmentation chain-transfer polymerization and cationic ring-opening polymerization [J]. J Polym Sci Part A: Polym Chem., 2003,41: 1243-1250.
    22. Shi, P.; Li, Y.; Pan,C. Block and star block copolymers by mechanism transformation X. Synthesis of poly(ethylene oxide) methyl ether/polystyrene/poly(ι-lactide) ABC miktoarm star copolymers by combination of RAFT and ROP [J]. Europ Polym J., 2004,40: 1283-1290.
    23. Guo, Y.; Xu, J.; Pan, C. Block and star block copolymers by mechanism transformation. IV. Synthesis of S-(PSt)_2(PDOP)_2 miktoarm star copolymers by combination of ATRP and CROP [J]. J Polym Sci Part A: Polym Chem., 2001, 39: 437-445.
    24. Li, Y.; Shi, P.; Pan, C. Synthesis, Characterization, and Thermal Behavior of H-Shaped Copolymers Prepared by Atom Transfer Radical Polymerization [J]. Macromolecules, 2004, 37:5190-5195.
    25. Han, D.; Pan, C. Simple route for synthesis of H-shaped copolymers [J]. J Polym Sci Part A: Polym Chem., 2006,44: 2794-2801.
    26. Han, D.; Pan, C. Preparation and characterization of heteroarm H-shaped terpolymers by combination of reversible addition-fragmentation transfer polymerization and ring-opening polymerization [J]. J Polym Sci Part A: Polym Chem., 2007,45: 789-799.
    27. Han, D.; Pan, C. A novel strategy for synthesis of amphiphilic π-shaped copolymers by RAFT polymerization [J]. Europ Polym J., 2006,42: 507-515.
    28. Tunca, U.; Ozyurek, Z.; Erdogan, T.; Hizal, G. Novel miktofunctional initiator for the preparation of an ABC-type miktoarm star polymer via a combination of controlled polymerization techniques [J]. J Polym Sci Part A: Polym Chem., 2004,42: 4228-4236.
    29. Celik, C.; Hizal, G.; Tunca, U. Synthesis of miktoarm star and miktoarm star block copolymers via a combination of atom transfer radical polymerization and stable free-radical polymerization [J]. J Polym Sci Part A: Polym Chem., 2003,41: 2542-2548.
    30. He, T.; Li, D.; Sheng, X.; Zhao, B. Synthesis of ABC 3-Miktoarm Star Terpolymers from a Trifunctional Initiator by Combining Ring-Opening Polymerization, Atom Transfer Radical Polymerization, and Nitroxide-Mediated Radical Polymerization [J]. Macromolecules 2004, 37:3128-3135.
    31. Zhao, Y.; Higashihara, T.; Sugiyama, K.; Hirao, A. Synthesis of Functionalized Asymmetric Star Polymers Containing Conductive Polyacetylene Segments by Living Anionic Polymerization [J]. J Am Chem Soc, 2005,127: 14158-14159.
    32. Iatrou, H.; Hadjichristidis, N. Synthesis and characterization of model 4-miktoarm star co-and quaterpolymers [J]. Macromolecules, 1993,26: 2479-2484.
    33. Mavroudis, A.; Hadjichristidis, N. Synthesis of Weil-Defined 4-Miktoarm Star Quarterpolymers (4(?)-SIDV) with Four Incompatible Arms: Polystyrene (S), Polyisoprene-1,4 (I), Poly(dimethylsiloxane) (D), and Poly(2-vinylpyridine) (V) [J]. Macromolecules, 2006, 39: 535-540.
    34. Higashihara, T.; Nagura, M.; Inoue, K.; Haraguchi, N.; Hirao, A. Successive Synthesis of Well-Defined Star-Branched Polymers by a New Iterative Approach Involving Coupling and Transformation Reactions [J]. Macromolecules, 2005,38: 4577-4587.
    35. Wang, X.; He, J.; Yang, Y. Synthesis of ABCD-type miktoarm star copolymers and transformation into zwitterionic star copolymers [J]. J Polym Sci Part A: Polym Chem., 2007, 45:4818-4828.
    36. Altintas, O.; Hizal, G.; Tunca, U. ABCD 4-miktoarm star quarterpolymers using click [3 + 2] reaction strategy [J]. J Polym Sci Part A: Polym Chem., 2008,46:1218-1228.
    37. Wang, G.; Luo, X.; Liu, C.; Huang, J. Synthesis of ABCD 4-Miktoarm star-shaped quarterpolymers by combination of the "click" chemistry with multiple polymerization mechanism [J]. J Polym Sci Part A: Polym Chem., 2008,46: 2154-2166.
    38. Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. A Stepwise Huisgen Cycloaddition Process: Copper(I)-Catalyzed Regioselective "Ligation" of Azides and Terminal Alkynes [J]. Angew Chem Int Ed., 2002,41: 2596-2599.
    39. Laurent, B. A.; Grayson, S. M. An Efficient Route to Well-Defined Macrocyclic Polymers via "Click" Cyclization [J]. J Am Chem Soc, 2006,128:4238-4239.
    40. Opsteen, J. A.; Van Hest, J. C. M. Modular synthesis of block copolymers via cycloaddition of terminal azide and alkyne functionalized polymers [J]. Chem Commun., 2005, 57-59.
    41. Tsarevsky, N. V.; Bernaerts, K. V.; Dufour, B.; Du Prez, F. E.; Matyjaszewski, K. Well-Defined (Co)polymers with 5-Vinyltetrazole Units via Combination of Atom Transfer Radical (Co)polymerization of Acrylonitrile and "Click Chemistry"-Type Postpolymerization Modification [J]. Macromolecules, 2004, 37:9308-9313.
    42. Tsarevsky, N. V.; Sumerlin, B. S.; Matyjaszewski, K. Step-Growth "Click" Coupling of Telechelic Polymers Prepared by Atom Transfer Radical Polymerization [J]. Macromolecules, 2005,38:3558-3561.
    43. Vogt, A. P.; Sumerlin, B. S. An Efficient Route to Macromonomers via ATRP and Click Chemistry [J]. Macromolecules, 2006,39: 5286-5292.
    44. Gondi, S. R.; Vogt, A. P.; Sumerlin, B. S. Versatile Pathway to Functional Telechelics via RAFT Polymerization and Click Chemistry [J]. Macromolecules, 2007,40: 474-481.
    45. Liu, Q.; Chen, Y. Synthesis of well-defined macromonomers by the combination of atom transfer radical polymerization and a click reaction [J]. J Polym Sci Part A: Polym Chem., 2006,44:6103-6113.
    46. Wu, P.; Feldman, A. K.; Nugent, A. K.; Hawker, C. J.; Scheel, A.; Voit, B.; Pyun, J.; Frechet, J. M.J.; Sharpless, K. B.; Fokin, V. V. Efficiency and Fidelity in a Click-Chemistry Route to Triazole Dendrimers by the Copper(I)-Catalyzed Ligation of Azides and Alkynes [J]. Angew Chem Int Ed., 2004,43: 3928-3932.
    47. Malkoch, M.; Schleicher, K.; Drockenmuller, E.; Hawker, C. J.; Russell, T. P.; Wu, P.; Fokin, V. V. Structurally Diverse Dendritic Libraries: A Highly Efficient Functionalization Approach Using Click Chemistry [J]. Macromolecules, 2005, 38: 3663-3678.
    48. Lee, J. W.; Kim, B. K.; Kim, H. J.; Han, S. C; Shin, W. S.; Jin, S. H. Convergent Synthesis of Symmetrical and Unsymmetrical PAMAM Dendrimers [J]. Macromolecules, 2006, 39: 2418-2422.
    49. Fernandez-Megia, E.; Correa, J.; Rodriguez-Meizoso, I.; Riguera, R. A Click Approach to Unprotected Glycodendrimers [J]. Macromolecules, 2006, 39: 2113-2120.
    50. Inhibit Nanoparticle Aggregation and Promote pDNA Delivery in Serum [J]. J Am Chem Soc., 2006,128: 8176-8184.
    51. Whittaker, M. R.; Urbani, C. N.; Monteiro, M. J. Synthesis of 3-Miktoarm Stars and 1st Generation Mikto Dendritic Copolymers by "Living" Radical Polymerization and "Click" Chemistry [J]. JAm Chem Soc, 2006,128:11360-11361.
    52. Durmaz, H.; Karatas, F.; Tunca, U.; Hizal, G. Preparation of ABC miktoarm star terpolymer containing poly(ethylene glycol), polystyrene, and poly(tert-butylacrylate) arms by combining diels-alder reaction, atom transfer radical, and stable free radical polymerization routes [J]. J Polym Sci Part A: Polym Chem., 2006,44: 499-509.
    53. Altintas, O.; Hizal, G.; Tunca, U. ABC-type hetero-arm star terpolymers through "Click" chemistry [J]. J Polym Sci Part A: Polym Chem., 2006,44: 5699-5707.
    54. Altintas, O.; Yankul, B.; Hizal, G.; Tunca, U. A_3-type star polymers via click chemistry [J]. J Polym Sci Part A: Polym Chem., 2006,44:6458-6465.
    55. Deng, G.; Ma, D.; Xu, Z. Synthesis of ABC-type miktoarm star polymers by "click" chemistry, ATRP and ROP [J]. Europ Polym J., 2007, 43: 1179-1187.
    56. Altintas, O.; Yankul, B.; Hizal, G.; Tunca, U. One-pot preparation of 3-miktoarm star terpolymers via click [3 + 2] reaction [J]. J Polym Sci Part A: Polym Chem., 2007, 45: 3588-3598.
    57. Opsteen, J.A.; Van Hest, J. C. M. Modular synthesis of ABC type block copolymers by " click" chemistry [J]. J Polym Sci Part A: Polym Chem., 2007,45: 2913-2924.
    58. Vestberg, R.; Malkoch, M.; Kade, M.; Wu, P.; Fokin, V.V.; Sharpless, K. B.; Drockenmuller, E.; Hawker, C. Role of architecture and molecular weight in the formation of tailor-made ultrathin multilayers using dendritic macromolecules and click chemistry [J]. J Polym Sci Part A: Polym Chem., 2007,45: 2835-2846.
    59. Qingchun Liu, Peng Zhao, Yongming Chen. Divergent synthesis of dendrimer-like macromolecules through a combination of atom transfer radical polymerization and click reaction [J]. J Polym Sci Part A: Polym Chem., 2007,45:3330-3341.
    60. Hong, C.; Pan, C. Direct Synthesis of Biotinylated Stimuli-Responsive Polymer and Diblock Copolymer by RAFT Polymerization Using Biotinylated Trithiocarbonate as RAFT Agent [J]. Macromolecules, 2006,39: 3517-3524.
    61. You, Y.; Hong, C.; Wang, W.; Lu, W.; Pan, C. Preparation and Characterization of Thermally Responsive and Biodegradable Block Copolymer Comprised of PNIPAAM and PLA by Combination of ROP and RAFT Methods [J]. Macromolecules, 2004, 37:9761-9767.
    62. Yuan, W.; Yuan, J.; Zhang, F.; Xie, X.; Pan, C. Synthesis, Characterization, Crystalline Morphologies, and Hydrophilicity of Brush Copolymers with Double Crystallizable Side Chain [J]. Macromolecules, 2007,40: 9094-9102.
    1.Hadjichfistidis,N.Synthesis of miktoarm star(0--star) polymers[J].J.Polym.Sci Part A:Polym.Chem.,1999,37:857-871.
    2.Hadjichdstidis,N.;Pitsikalis,M.;Pispas,S.;Iatrou,H.Polymers with Complex Architecture by Living Anionic Polymerization[J].Chem Rev.,2001,I01,3747-3792.
    3.Matyjaszewski,K.;Xia,J.Atom Transfer Radical Polymerization[J].Chem Rev.,2001,101,2921-2990.
    4.Hawker,C.J.;Bosman,A.W.;Harth,E.New Polymer Synthesis by Nitroxide Mediated Living Radical Polymerizations[J].Chem Rev.,2001,101,3661-3688.
    5.Guo,Y.;Xu,J.;Pan,C.Block and star block copolymers by mechanism transformation.Ⅳ.Synthesis of S-(PSt)_2(PDOP)_2 miktoarm star copolymers by combination of ATRP and CROP [J].J Polym Sci Part A:Polym Chem.,2001,39:437-445.
    1.Guo,Y.-M.;Pan,C.-Y.Mechanism of degradation of cis-,4-polisopene in conditions of inhibited oxidation[J].Polymer,2001,24,2863-2869.
    2.Feng,X.;Pan,C.Block and Star Block Copolymers by Mechanism Transformation.7.Synthesis of Polytetrahydrofuran/Poly(1,3-dioxepane)/Polystyrene ABC Miktoann Star Copolymers by Combination of CROP and ATRP[J].Macromolecules,2002,35:2084-2089.
    3.Feng,X.;Pan,C.Synthesis of Amphiphilic Miktoarm ABC Star Copolymers by RAFT Mechanism Using Maleic Anhydride as Linking Agent[J].Macromolecules,2002,35:4888-4893.
    4.Li,Y.;Wang,Y.;Pan,C.Block and star block copolymers by mechanism transformation 9:Preparation and characterization of poly(methyl methacrylate)/poly(1,3-dioxepane) /polystyrene ABC miktoarm star copolymers by combination of reversible addition -fragmentation chain-transfer polymerization and cationic ring-opening polymerization [J]. J Polym Sci Part A: Polym Chem., 2003,41: 1243-1250.
    5. Shi, P.; Li, Y.; Pan,C. Block and star block copolymers by mechanism transformation X. Synthesis of poly(ethylene oxide) methyl ether/polystyrene/poly(L-lactide) ABC miktoarm star copolymers by combination of RAFT and ROP [J]. Europ Polym J., 2004, 40: 1283-1290.
    6. Tselikas, Y.; Hadjichristidis, N. Architecturally-Induced Tricontinuous Cubic Morphology in Compositionally Symmetric Miktoarm Starblock Copolymers [J]. Macromolecules, 1996, 29, 3390-3396.
    7. Pemy, S.; Allgaier, J. Synthesis and Structural Analysis of an H-Shaped Polybutadiene [J]. Macromolecules, 2001,34, 5408-5415.
    8. Albertsson, A.; Varma, I. Recent Developments in Ring Opening Polymerization of Lactones for Biomedical Applications [J]. Biomacromolecules, 2003,4,1466-1486.
    9. Wiltshire, J.; Qiao, G. Degradable Core Cross-Linked Star Polymers via Ring-Opening Polymerization [J]. Macromolecules, 2006,39,4282-4285.
    10. Dong, C.; Qiu, K.; Gu, Z.; Feng, X. Synthesis of Star-Shaped Poly(ε -caprolactone)-b-poly(DL-lactic acid-alt-glycolic acid) with Multifunctional Initiator and Stannous Octoate Catalyst [J]. Macromolecules, 2001, 34,4691-4696.
    11. Cui, Y.; Tang, X.; Huang, X.; Chen, Y. Synthesis of the Star-Shaped Copolymer of ε -Caprolactone and L-Lactide from a Cyclotriphosphazene Core [J]. Biomacromolecules, 2003, 4,1491-1494.
    12. Choi, Y.; Bae, Y.; Kim, S. Star-Shaped Poly(ether-ester) Block Copolymers: Synthesis, Characterization, and Their Physical Properties [J]. Macromolecules, 1998, 31, 8766-8774.
    13. Rieger, J.; Coulembier, O.; Dubois, P.; Bernaerts, K. V.; Du Prez, F. E.; Jerome, R.; Jerome, C. Controlled Synthesis of an ABC Miktoarm Star-Shaped Copolymer by Sequential Ring-Opening Polymerization of Ethylene Oxide, Benzyl β-Malolactonate, and ε -Caprolactone [J]. Macromolecules, 2005, 38, 10650-10657.
    14. Heise, A.; Trollsas, M.; Magbitang, T.; Hedrick, J.; Frank, C.; Miller, R. Star Polymers with Alternating Arms from Miktofunctional μ-Initiators Using Consecutive Atom Transfer Radical Polymerization and Ring-Opening Polymerization [J]. Macromolecules, 2001, 34, 2798-2804.
    15. Butsele, K. V.; Stoffelbach, F.; Jerome, R.; Jerome, C. Synthesis of Novel Amphiphilic and pH-Sensitive ABC Miktoarm Star Terpolymers [J]. Macromolecules, 2006, 39, 5652-5656.
    16. Priftis, D.; Pitsikalis, M.; Hadjichristidis, N. Miktoarm star copolymers of poly( ε -caprolactone) from a novel heterofunctional initiator [J]. J Polym Sci Part A: Polym Chem., 2007,45,5164-5181.
    17. Lorenzo, A.; Muller, A.; Priftis, D.; Pitsikalis, M.; Hadjichristidis, N. Synthesis and morphological characterization of miktoarm star copolymers (PCL)2(PS)2 of poly(ε -caprolactone) and polystyrene [J]. J Polym Sci Part A: Polym Chem., 2007, 45, 5387-5397.
    18. Yuan, W.; Yuan, J.; Zhang, F.; Xie, X.; Pan, C. Synthesis, Characterization, Crystalline Morphologies, and Hydrophilicity of Brush Copolymers with Double Crystallizable Side Chain [J]. Macromolecules, 2007, 40: 9094-9102.
    19. Pan, C.-Y; Tao, L.; Wu, D.-C. Synthesis and characterizations of the four-armed amphiphilic block copolymer S[poly(2,3-dihydroxypropyl acrylate)-block-poly(methyl acrylate)]_4 [J]. J Polym Sci Part A: Polym Chem., 2001, 39,3062-3072.
    20. Xu, Y.-J; Pan, C.-Y. Block and Star-Block Copolymers by Mechanism Transformation. 3. S-(PTHF-PSt)_4 and S-(PTHF-PSt-PMMA)_4 from Living CROP to ATRP [J]. Macromolecules, 2000, 33,4750-4756.
    21. Meng, F.; Xu, Z.; Zheng, S. Microphase Separation in Thermosetting Blends of Epoxy Resin and Poly(ε-caprolactone)-block-Polystyrene Block Copolymers [J]. Macromolecules, 2008, 41, 1411-1420.
    22. Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. A Stepwise Huisgen Cycloaddition Process: Copper(I)-Catalyzed Regioselective "Ligation" of Azides and Terminal Alkynes [J]. Angew Chem Int Ed., 2002,41: 2596-2599.
    23. Laurent, B. A.; Grayson, S. M. An Efficient Route to Well-Defined Macrocyclic Polymers via "Click" Cyclization [J]. J Am Chem Soc., 2006, 128:4238-4239.
    24. Opsteen, J. A.; Van Hest, J. C. M. Modular synthesis of block copolymers via cycloaddition of terminal azide and alkyne functionalized polymers [J]. Chem Commun., 2005, 57-59.
    25. Tsarevsky, N. V.; Sumerlin, B. S.; Matyjaszewski, K. Step-Growth "Click" Coupling of Telechelic Polymers Prepared by Atom Transfer Radical Polymerization [J]. Macromolecules, 2005,38:3558-3561.
    26. Vogt, A. P.; Sumerlin, B. S. An Efficient Route to Macromonomers via ATRP and Click Chemistry [J]. Macromolecules, 2006,39: 5286-5292.
    27. Gondi, S. R.; Vogt, A. P.; Sumerlin, B. S. Versatile Pathway to Functional Telechelics via RAFT Polymerization and Click Chemistry [J]. Macromolecules, 2007,40: 474-481.
    28. Liu, Q.; Chen, Y. Synthesis of well-defined macromonomers by the combination of atom transfer radical polymerization and a click reaction [J]. J Polym Sci Part A: Polym Chem., 2006,44:6103-6113.
    29.Wu,P.;Feldman,A.K.;Nugent,A.K.;Hawker,C.J.;Scheel,A.;Voit,B.;Pyun,J.;Frechet,J.M.J.;Sharpless,K.B.;Fokin,V.V.Efficiency and Fidelity in a Click-Chemistry Route to Triazole Dendrimers by the Copper(Ⅰ)-Catalyzed Ligation of Azides and Alkynes[J].Angew Chem Int Ed.,2004,43:3928-3932.
    30.Lee,J.W.;Kim,B.K.;Kim,H.J.;Han,S.C.;Shin,W.S.;Jin,S.H.Convergent Synthesis of Symmetrical and Unsymmetrical PAMAM Dendrimers[J].Maeromolecules,2006,39:2418-2422.
    31.Fernandez-Megia,E.;Correa.J.;Rodriguez-Meizoso,I.;Riguera,R.A Click Approach to Unprotected Glyeodenddmers[J].Macromolecules,2006,39:2113-2120.
    32.Sdnivasachari,S.;Liu,Y.;Zhang,G.;Prevette,L.;Reineke,T.M.Trehalose Click Polymers Inhibit Nanoparticle Aggregation and Promote pDNA Delivery in Serum[J].J Am Chem Soe.,2006,128,8176-8184.
    33.Whittaker,M.R.;Urbani,C.N.;Monteiro,M.J.Synthesis of 3-Miktoarm Stars and Ist Generation Mikto Dendritic Copolymers by "Living" Radical Polymerization and "Click"Chemistry[J].J Am Chem Soe.,2006,128,11360-11361.
    34.Shi,G.-Y.;Tang,X.-Z.;Pan,C.-Y.Tadpole-shaped amphiphilic copolymers prepared via RAFT polymerization and click reaction[J].J.Polym Sci PartA:Polym Chem.,2008,46,2390-2401.
    35.Shi,G.-Y.;Yang,L.-P.;Pan,C.-Y.Synthesis and characterization of well-defined polystyrene and poly(ε-eaprolaetone) hetero eight-shaped copolymers[J].J.Polym Sci PartA:Polym Chem.,2008.46,6496-6508.
    36.Yang,L.-P.;Zhou,H-X.;Shi,G.-Y.;Wang,Y.;Pan,C.-Y.Synthesis ofABCD 4-miktoarm star polymers by combination of RAFT,ROP,and "Click Chemistry"[J].J.Polym Sci PartA:Polym Chem.,2008.46,6641-6653.
    37.Altintas,O.;Yankul,B.;Hizal,G.;Tunca,U.One-pot preparation of 3-miktoarm star terpolymers via click[3+2]reaction[J].J Polym Sci Part A:Polym Chem.,2007,45:3588-3598.
    38.Qingchun Liu,Peng Zhao,Yongming Chen.Divergent synthesis of dendrimer-like macromoleeules through a combination of atom transfer radical polymerization and click reaction[J].J Polym Sci Part A:Polym Chem.,2007,45:3330-3341.
    39.Opsteen,J.A.;Van Hest.J.C.M.Modular synthesis of ABC type block eopolymers by "click" chemistry[J].J Polym Sci Part A:Polym Chem.,2007,45:2913-2924.
    40.Gungor,E.;Cote,G.;Erdogan,T.;Durmaz,H.;Demirel,A.L.;Hizal,G.;Tunca.U.Heteroarm H-shaped terpolymers through click reaction[J].J Polym Sci Part A:Polym Chem., 2007,45,1055-1065.
    41. Muhlebach, A.; Gaynor, S. G.; Matyjaszewski, K. Synthesis of Amphiphilic Block Copolymers by Atom Transfer Radical Polymerization (ATRP) [J]. Macromolecules, 1998, 31,6046-6052.
    42. Meng, F.; Xu, Z.; Zheng, S. Microphase Separation in Thermosetting Blends of Epoxy Resin and Poly(ε-caprolactone)-block-Polystyrene Block Copolymers [J]. Macromolecules, 2008,41, 1411-1420.
    43. Zou, P; Pan, C.-Y. Multiple Vesicle Morphologies Formed from Reactive H-Shaped Block Copolymers [J]. Macromol. Rapid Commun., 2008,29, 763-771.
    44. Urbani, C.N.; Bell, C.A.; Lonsdale, D.E.; Whittaker, M.R.; Monteiro, M.J. Reactive Alkyne and Azide Solid Supports To Increase Purity of Novel Polymeric Stars and Dendrimers via the "Click" Reaction [J]. Macromolecules, 2007, 40, 7056-7059.
    45. Gao, H.; Matyjaszewski, K. Synthesis of Star Polymers by a Combination of ATRP and the "Click" Coupling Method [J]. Macromolecules, 2006,39, 4960-4965.
    1.R.H.Baughman,A.A.Zakhidov,W.A.de Heer,Carbon Nanotubes—the Route Toward Applications[J].Science,2002,297:787-792.
    2.P.M.Ajayan,Nanotubes from Carbon[J].Chem Rev.1999,99:1787-1799.
    3.H.Dai,Carbon Nanotubes:Synthesis,Integration,and Properties[J].Acc Chem Res.2002,35:1035-1044.
    4.P.Avouris,Molecular Electronics with Carbon Nanotubes[J].Ace Chem Res.2002,35: 1026-1034.
    5. W. B. Choi, D. S. Chung, J. H. Kang, H. Y. Kim, Y. W. Jin, I. T. Han, Y. H. Lee, J. E. Jung, N. S. Lee, G. S. Park, and J. M. Kim, Fully sealed, high-brightness carbon-nanotube field-emission display [J]. Appl Phys Lett. 1999, 75: 3129-3131.
    6. J. Chen, M. A. Hamon, H. Hu, Y. S. Chen, A. M. Rao, P. C. Eklund, R. C. Haddon, Solution Properties of Single-Walled Carbon Nanotubes [J]. Science 1998, 282: 95-98.
    7. V. Georgakilas, K. Kordatos, M. Prato, D. M. Guldi, M. Holzinger, and A. Hirsch, Organic Functionalization of Carbon Nanotubes [J]. J Am Chem Soc. 2002,124: 760-761.
    8. C. A. Dyke and J. M. Tour, Solvent-Free Functionalization of Carbon Nanotubes [J]. J Am Chem Soc. 2003,125:1156-1157.
    9. M. Holzinger, J. Abraham, P. Whelan, R. Graupner, L. Ley, F. Hennrich, M. Kappes, and A. Hirsch, Functionalization of Single-Walled Carbon Nanotubes with (R-)Oxycarbonyl Nitrenes [J]. J Am Chem Soc. 2003,125: 8566-8580.
    10. A. Star, D. W. Steuerman, J. R. Heath,and J. F. Stoddart, Starched Carbon Nanotubes [J]. Angew Chem Int Ed. 2002,41: 2508-2512.
    11. H. Kong, W.W. Li, C. Gao, D.Y. Yan, Y.Z. Jin, D. R. M. Walton, and H. W. Kroto, Poly(N-isopropylacrylamide)-Coated Carbon Nanotubes: Temperature-Sensitive Molecular Nanohybrids in Water [J]. Macromolecules 2004, 37: 6683-6686.
    12. H. Kong, C. Gao, D.Y. Yan, Controlled Functionalization of Multiwalled Carbon Nanotubes by in Situ Atom Transfer Radical Polymerization [J]. J Am Chem Soc. 2004,126: 412-413.
    13. L. Li and C. M. Lukehart, Synthesis of Hydrophobic and Hydrophilic Graphitic Carbon Nanofiber Polymer Brushes [J]. Chem Mater. 2006,18: 94-99.
    14. C.Y. Hong, Y.Z. You, and C. Y. Pan, Synthesis of Water-Soluble Multiwalled Carbon Nanotubes with Grafted Temperature-Responsive Shells by Surface RAFT Polymerization [J]. Chem Mater. 2005, 17: 2247-2254.
    15. C.Y. Hong, Y.Z. You, and C. Y. Pan, Functionalized Multi-Walled Carbon Nanotubes with Poly(N-(2-hydroxypropyl)methacrylamide) by RAFT Polymerization [J]. J Polym Sci Part A: Polym Chem., 2006,44: 2419-2427.
    16. Y.Z. You, C.Y. Hong, and C. Y. Pan, Directly growing ionic polymers on multi-walled carbon nanotubes via surface RAFT polymerization [J]. Nanotechnology 2006, 17: 2350-2354.
    17. C.Y. Hong, Y.Z. You, and C. Y. Pan, A new approach to functionalize multi-walled carbon nanotubes by the use of functional polymers [J]. Polymer 2006,47:4300-4309.
    18. G. Viswanathan, N. Chakrapani, H.C. Yang, B.Q Wei, H. Chung, K. Cho, C. Y. Ryu, and P. M. Ajayan, Single-Step in Situ Synthesis of Polymer-Grafted Single-Wall Nanotube Composites [J].J Am Chem Soe.2003,125:9258-9259.
    19.H.L.Zeng,C.Gao,D.Y.Yan,Poly(ε-eaprolactone)-Functionalized Carbon Nanotubes and Their Biodegradation Properties[J].Adv Funct Mater.,2006,16:812-818.
    20.Z.L.Yao,N.Braidy,G.A.BoRon,and A.Adronov,Polymerization from the Surface of Single-Walled Carbon Nanotubes-Preparation and Characterization of Nanoeomposites[J].J Am Chem Soc.2003,125:16015-16024.
    21.S.H.Qin,D.Q.Qin,W.T.Ford,D.E.Resasco,and J.E.Herrera,Polymer Brushes on Single-Walled Carbon Nanotubes by Atom Transfer Radical Polymerization of n-Butyl Methacrylate[J].J Am Chem Soc.2004,126:170-176.
    22.G.X.Chen,H.S.Kim,B.H.Park,and J.S.Yoon,Controlled Functionalization of Multiwalled Carbon Nanotubes with Various Molecular-Weight Poly(L-lactic acid)[J].J Phys Chem B.2005,109:22237-22243.
    23.B.Zhao,H.Hu,A.P.Yu,D.Perea,and R.C.Haddon,Synthesis and Characterization of Water Soluble Single-Walled Carbon Nanotube Graft Copolymers[J].J Am Chem Soe.2005,127:8197-8203.
    24.K.A.S.Femando,Y.Lin,and Y.P.Sun,High Aqueous Solubility of Functionalized Single-Walled Carbon Nanotubes[J].Langrnuir 2004,20:4777-4778.
    25.H.X.Wu,R.Tong,X.Q.Qiu,H.F.Yang,Y.H.Lin,R.F.Cai,S.X.Qian,Functionalization of multiwalled carbon nanotubes with polystyrene under atom transfer radical polymerization conditions[J].Carbon 2007,45:152-159.
    26.Y.Q.Liu,Z.L.Yao,and A.Adronov,Functionalization of Single-Walled Carbon Nanotubes with Well-Defined Polymers by Radical Coupling[J].Macromolecules 2005,38:1172-1179.
    27.X.d.Lou,C.Detrembleur,V.Sciannamea,C.Pagnoulle,R.Je'ro^me,Grafting of alkoxyamine end-capped(co)polymers onto multi-walled carbon nanotubes[J].Polymer 2004,45:6097-6102.
    28.H.X.Xu,X.B.Wang,Y.F.Zhang,and S.Y.Liu,Single-Step in Situ Preparation of Polymer-Grafted Multi-Walled Carbon Nanotube Composites under~(60) Co-γ-Ray Irradiation[J].Chem Mater.,2006,18:2929-2934.
    29.A.Satake,Y.Miyajima,and Y.Kobuke,Porphyrin-Carbon Nanotube Composites Formed by Noncovalent Polymer Wrapping[J].Chem Mater.,2005,17:716-724.
    30.X.D.Lou,R.Daussin,S.Cuenot,A.S.Duwez,C.Pagnoulle,C.Detrembleur,C.Bailly,and R.Je'ro^me,Synthesis of Pyrene-Containing Polymers and Noncovalent Sidewall Functionalization of Multiwalled Carbon Nanotubes[J].Chem Mater.,2004,16:4005-4011.
    31.A.Star,J.F.Stoddart,D.Steuerman,M.Diehl,A.Boukai,E.W.Wong,X.Yang,S.W.Chung, H. Choi, and J. R. Heath, Preparation and Properties of Polymer-Wrapped Single-Walled Carbon Nanotubes [J].Angew Chem Int Ed., 2001,40: 1721-1725.
    32. P. Petrov, F. Stassin, C. Pagnoulle and R. Jerome, Noncovalent functionalization of multi-walled carbon nanotubes by pyrene containing polymers [J]. Chem Commun., 2003, 2904-2905.
    33. J. Chen, H.Y. Liu, W. A. Weimer, M. D. Halls, D. H. Waldeck, and G. C. Walker, Noncovalent Engineering of Carbon Nanotube Surfaces by Rigid, Functional Conjugated Polymers [J]. J Am Chem Soc, 2002,124: 9034-9035.
    34. D. W. Steuerman, A. Star, R. Narizzano, H. Choi, R. S. Ries, C. Nicolini, J. F.r Stoddart, and J. R. Heath, Interactions between Conjugated Polymers and Single-Walled Carbon Nanotubes [J]. J Phys Chem B., 2002,106: 3124-3130.
    35. A. Star, Y. Liu, K. Grant, L. Ridvan, J. F. Stoddart, D. W. Steuerman, M. R. Diehl, A. Boukai, and J. R. Heath, Noncovalent Side-Wall Functionalization of Single-Walled Carbon Nanotubes [J]. Macromolecules, 2003,36: 553-560.
    36. Y.Y. Ou and M. H. Huang, High-Density Assembly of Gold Nanoparticles on Multiwalled Carbon Nanotubes Using 1-Pyrenemethylamine as Interlinker [J]. J Phys Chem B., 2006, 110: 2031-2036.
    37. G. J. Bahun, C. Wang, A. Adronov, Solubilizing Single-Walled Carbon Nanotubes with Pyrene-Functionalized Block Copolymers [J]. J Polym Sci Part A: Polym Chem., 2006, 44: 1941-1951.
    38. X.Yu, X.Z. Tang, C.Y. Pan, Synthesis, characterization and self-assembly behavior of six-armed star block copolymers with triphenylene core [J]. Polymer, 2005,46: 11149-11156.
    39. X.S. Feng, C.Y. Pan, Synthesis and Characterization of Star Polymers Initiated by Hexafunctional Discotic Initiator through Atom Transfer Radical Polymerization [J]. J Polym Sci Part A: Polym Chem., 2001,39: 2233-2243.
    40. P.J. Shi, Y.G. Li, C.Y. Pan, Block and star block copolymers by mechanism transformation X. Synthesis of poly(ethylene oxide) methyl ether/polystyrene/poly(L-lactide) ABC miktoarm star copolymers by combination of RAFT and ROP [J]. Europ Polym J., 2004,40:1283-1290.
    41. V.Georgakilas, V. Tzitzios, D. Gournis, and D. Petridis, Attachment of Magnetic Nanoparticles on Carbon Nanotubes and Their Soluble Derivatives [J]. Chem Mater., 2005, 17: 1614-1617.
    42. A. Jorio, M. A. Pimental, A. G. S. Filho, R. Saito, G. Dresselhaus and M. S. Dresselhaus, Characterizing carbon nanotube samples with resonance Raman scattering [J]. New J Phys., 2003,5:139.1-17.
    43. C. Gao, Y. Z. Jin, H. Kong, R. L. D. Whitby, S. F. A. Acquah, G. Y. Chen, H.H. Qian, A. Hartschuh, S. R. P. Silva, S. Henley, P. Fearon, H. W. Kroto, and D. R. M. Walton, Polyurea-Functionalized Multiwalled Carbon Nanotubes: Synthesis, Morphology, and Raman Spectroscopy [J]. J Phys Chem B., 2005,109: 11925-11932.
    44. H. Tsuji, M. Ogiwara, S. K. Sana, and T. Sakaki, Enzymatic, Alkaline, and Autocatalytic Degradation of Poly(L-lactic acid): Effects of Biaxial Orientation [J].Biomacromolecules, 2006, 7: 380-387.
    45. H. Tsuji, Y. Echizen, S. K. Sana, Y. Nishimura, Photodegradation of Poly(L-lactic acid):Effects of Photosensitizer [J]. Macromol Mater Eng., 2005,290:1192-1203.
    46. H. Ago, T. Kugler, F. Cacialli, W. R. Salaneck, M.S. P. Shaffer, A. H. Windle, and R. H. Friend. Work Functions and Surface Functional Groups of Multiwall Carbon Nanotubes [J]. J Phys Chem B., 1999,103: 8116-8121.
    1.a) Kresge,C.T.;Leonowicz,M.E.;Roth,W.J.;Vartuli,T.C.;Beck,J.S.Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism[J].Nature,1992,359:710-712;
    b) Beck,J.S.;Vartuli,J.C.;Roth,W.J.;Leonowicz,M.E.;Kresge,C.T.;Sehmitt,K.D.;Chu,C.T-W.;Olson,D.H.;Sheppard,E.W.;McCullen,S.B.;Higgins,J.B.;Schlenkert,J.L.A New Family of Mesoporous Molecular Sieves Prepared with Liquid Crystal Templates[J].J.Am.Chem.Soc.,1992,114:10834-10843.
    2.a) Sumper,M.;Lorenz,S.;Brunner,E.Biomimetic Control of Size in the Polyamine-Directed Formation of Silica Nanospheres[J].Angew.Chem.Int.Ed.,2003,42:5192-5195;
    b) Jeong,U.;Wang,Y.;Ibisate,M.;Xia,Y.Some new developments in the synthesis,functionalization,and utilization of monodisperse colloidal spheres[J].Adv.Funct.Mater.,2005,15:1907-1921.
    3.a) Nagle,L.;Fitzmaurice,D.Templated nanowire assembly on the surface of a pattemed nanosphere[J].Adv.Mater.,2003,15:933-935;
    b) Ye,C.;Zhang,L.;Fang,X.;Wang,Y.;Yan,P.;Zhao,J.Hierarchical structure:silicon nanowires standing on silica microwires[J].Adv.Mater.,2004,16:1019-1023.
    4.a) Zygmunt,J.;Krumeich,F.;Nesper,R.Novel Silica Nanotubes with a High Aspect Ratio-Synthesis and Structural Characterization[J].Adv.Mater.,2003,15:1538-1541;
    b) Harada M.;Adachi.M.Surfactant-Mediated Fabrication of Silica Nanotubes[J].Adv.Mater.,2000,12:839-841;
    c) Zollfrank,C.;Scheel,H.;Greil,P.Regioselectively Ordered Silica Nanotubes by Molecular Templating[J].Adv.Mater.,2007,19:984-987;
    d) Ogihara,H.;Takenaka,S.;Yamanaka,I.;Tanabe,E.;Genseki,A.;Otsuka,K.Synthesis of SiO2Nanotubes and Their Application as Nanoscale Reactors[J].Chem.Mater.,2006,18:996-1000;
    e) Li,Y.;Bando,Y.;Golberg,D.Indium-Assisted Growth of Aligned Ultra-Long Silica Nanotubes[J].Adv.Mater.,2004,16:37-40;
    f) Zhang,Y.;Li,Y.;Li,G.;Huang,H.;Chan,H.L.W.;Daoud,W.A.;Xin,J.H.;Li,L.Polyimide-Surface-Modified Silica Tubes:Preparation and Cryogenic Prope[J].Chem.Mater.,2007,19:1939-1945.
    5.a) Chert,Y.;Kang,E.-T.;Neoh,K.-G.;Greiner,A.Preparation of Hollow Silica Nanospheres by Surface-Initiated Atom Transfer Radical Polymerization on Polymer Latex Templates[J].Adv.Funct.Mater.,2005,15:113-117;
    b) Khanal,A.;Inoue,Y.;Yada,M.;Nakashima,K.J.Synthesis of Silica Hollow Nanoparticles Templated by Polymeric Micelle with Core-Shell-Corona Structure[J].Am.Chem.Soc.,2007,129:1534-1535.
    6.Ono,Y.;Nakashima,K.;Sano,M.;Kanekiyo,Y.;Inoue,K.;Hojo,J.;Shinkai,S.Organic gels are useful as a template for the preparation of hollow fiber silica[J].Chem.Commun.,1998,1477-1478.
    7.Wang,Z.L.;Gao,R.P.;Gole,J.L.;Stout,J.D.Silica Nanotubes and Nanofiber Arrays[J].Adv.Mater.,2000,12,1938-1940.
    8.Fan,R.;Wu,Y.;Li,D.;Yue,M.;Majumdar,A.;Yang,P.Fabrication of Silica Nanotube Arrays from Vertical Silicon Nanowire Templates[J].J.Am.Chem.Soc.,2003,125,5254-5255.
    9.a) Ogihara,H.;Sadakane,M.;Nodasaka,Y.;Ueda,W.Shape-Controlled Synthesis of ZrO2,Al2O3,and SiO2 Nanotubes Using Carbon Nanofibers as Templates[J].Chem.Mater.,2006,18:4981-4983;
    b) Yuwono,V.M.;Hartgerink,J.D.Peptide Amphiphile Nanofibers Template and Catalyze Silica Nanotube Formation[J].Langmuir,2007,23:5033-5038.
    10.a) Lin,H.-P.;Mou,C.-Y.;Liu,S.-B.Formation of Mesoporous Silica Nanotubes[J].Adv.Mater.,2000,12:103-106;
    b) Liang,Z.;Susha,A.S.Mesostructured Silica Tubes and Rods by Templating Porous Membranes[J].Cbem.Eur.J.,2004,10:4910-4914;
    c) Yu,Y.;Qiu,H.;Wu,X.;Li,H.;Li,Y.;Sakamoto,Y.;Inoue,Y.;Sakamoto,K.;Terasaki,O.;Che,S.Synthesis and Characterization of Silica Nanotubes with Radially Oriented Mesopores[J].Adv.Funct.Mater.,2008,18:541-550.
    11.a) Hong,C.-Y.;You,Y.-Z.;Pan,C.-Y.Synthesis of Water-Soluble Multiwalled Carbon Nanotubes with Grafted Temperature-Responsive Shells by Surface RAFT Polymerization [J].Chem.Mater.,2005,17:2247-2254;
    b) Li,W.;Gao,C.;Qian,H.;Ren,J.;Yan,D.Multiamino-functionalized carbon nanotubes and their applications in loading quantum dots and magnetic nanoparticles[J].J.Mater.Chem.,2006,16:1852-1859.
    12.a) Qin,S.;Qin,D.;Ford,W.T.;Resasco,D.E.;Hen'era,J.E.Polymer Brushes on Single-Walled Carbon Nanotubes by Atom Transfer Radical Polymerization of n-Butyl Methacrylate[J].J.Am.Chem.Soc.,2004,126:170-176;
    b) Kong,H.;Li,W.;Gao,C.;Yan,D.;Jin,Y.;Walton,D.R.M.;Kroto,H.W.Poly(N-isopropylacrylamide)-Coated Carbon Nanotubes:Temperature-Sensitive Molecular Nanohybrids in Water[J].Macromolecules,2004,37:6683-6686.
    13.van Bommel,K.J.C.;Friggeri,A.;Shinkai,S.Organic Templates for the Generation of Inorganic Materials[J].Angew.Chem.Int.Ed.,2003,42:980-999.
    14.Yuan,J.-J.;Mykhaylyk,O.O.;Ryan,A.J.;Armes,S.P.Cross-Linking of Cationic Block Copolymer Micelles by Silica Deposition[J].J.Am.Chem.Soc.,2007,129:1717-1723
    15.Noll,E;Sumper,M.;Hampp,N.Nanostructure of Diatom Silica Surfaces and of Biomimetic Analogues [J]. Nano Lett., 2002,2: 91-95.
    16. Menzel, H.; Horstmann, S.; Behrens, P.; Barnreuther, P.; Krueger, I.; Jahns, M. Chemical properties of polyamines with relevance to the biomineralization of silica [J]. Chem. Commun., 2003,2994.
    17. R. K. Her, in The Chemistry of Silica, Willey, Delaware, American, 1979, Ch.3.
    18. Corma, A. From Microporous to Mesoporous Molecular Sieve Materials and Their Use in Catalysis [J]. Chem. Rev., 1997, 97: 2373-2419.
    1.R.H.Baughman,A.A.Zakhidov,W.A.de Heer,Carbon Nanotubes—the Route Toward Applications[J].Science,2002,297:787-792.
    2.P.M.Ajayan,Nanotubes from Carbon[J].Chem Rev.1999,99:1787-1799.
    3.H.Dai,Carbon Nanotubes:Synthesis,Integration,and Properties[J].Acc Chem Res.2002,35:1035-1044.
    4.P.Avouris,Molecular Electronics with Carbon Nanotubes[J].Acc Chem Res.2002,35:1026-1034.
    5.W.B.Choi,D.S.Chung,J.H.Kang,H.Y.Kim,Y.W.Jin,I.T.Han,Y.H.Lee,J.E.Jung,N.S.Lee,G.S.Park,and J.M.Kim,Fully sealed,high-brightness carbon-nanotube field-emission display[J].Appl Phys Lett.1999,75:3129-3131.
    6. J. Chen, M. A. Hamon, H. Hu, Y. S. Chen, A. M. Rao, P. C. Eklund, R. C. Haddon, Solution Properties of Single-Walled Carbon Nanotubes [J]. Science 1998, 282:95-98.
    7. V. Georgakilas, K. Kordatos, M. Prato, D. M. Guldi, M. Holzinger, and A. Hirsch, Organic Functionalization of Carbon Nanotubes [J]. J Am Chem Soc. 2002, 124: 760-761.
    8. C. A. Dyke and J. M. Tour, Solvent-Free Functionalization of Carbon Nanotubes [J]. J Am Chem Soc. 2003,125: 1156-1157.
    9. M. Holzinger, J. Abraham, P. Whelan, R. Graupner, L. Ley, F. Hennrich, M. Kappes, and A. Hirsch, Functionalization of Single-Walled Carbon Nanotubes with (R-)Oxycarbonyl Nitrenes [J]. J Am Chem Soc. 2003,125: 8566-8580.
    10. A. Star, D. W. Steuerman, J. R. Heath,and J. F. Stoddart, Starched Carbon Nanotubes [J]. Angew Chem Int Ed. 2002,41: 2508-2512.
    11. L. Li and C. M. Lukehart, Synthesis of Hydrophobic and Hydrophilic Graphitic Carbon Nanofiber Polymer Brushes [J]. Chem Mater. 2006,18: 94-99.
    12. C.Y. Hong, Y.Z. You, and C. Y. Pan, Synthesis of Water-Soluble Multiwalled Carbon Nanotubes with Grafted Temperature-Responsive Shells by Surface RAFT Polymerization [J]. Chem Mater. 2005,17: 2247-2254.
    13. Y.Z. You, C.Y. Hong, and C. Y. Pan, Directly growing ionic polymers on multi-walled carbon nanotubes via surface RAFT polymerization [J]. Nanotechnology 2006,17: 2350-2354.
    14. G. Viswanathan, N. Chakrapani, H.C. Yang, B.Q Wei, H. Chung, K. Cho, C. Y. Ryu, and P. M. Ajayan, Single-Step in Situ Synthesis of Polymer-Grafted Single-Wall Nanotube Composites [J]. J Am Chem Soc. 2003,125: 9258-9259.
    15. H.L.Zeng, C. Gao, D.Y. Yan, Poly(E-caprolactone)-Functionalized Carbon Nanotubes and Their Biodegradation Properties [J]. Adv Funct Mater., 2006, 16: 812-818.
    16. S.H. Qin, D.Q. Qin, W. T. Ford, D. E. Resasco, and J. E. Herrera, Polymer Brushes on Single-Walled Carbon Nanotubes by Atom Transfer Radical Polymerization of n-Butyl Methacrylate [J]. J Am Chem Soc. 2004,126: 170-176.
    17. G.X. Chen, H.S. Kim, B. H. Park, and J.S. Yoon, Controlled Functionalization of Multiwalled Carbon Nanotubes with Various Molecular-Weight Poly(L-lactic acid) [J]. J Phys Chem B. 2005, 109:22237-22243.
    18. B. Zhao, H. Hu, A.P. Yu, D. Perea, and R. C. Haddon, Synthesis and Characterization of Water Soluble Single-Walled Carbon Nanotube Graft Copolymers [J]. J Am Chem Soc. 2005, 127: 8197-8203.
    19. Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. A Stepwise Huisgen Cycloaddition Process: Copper(I)-Catalyzed Regioselective "Ligation" of Azides and Terminal Alkynes [J]. Angew Chem Int Ed., 2002,41: 2596-2599.
    20. Laurent, B. A.; Grayson, S. M. An Efficient Route to Well-Defined Macrocyclic Polymers via "Click" Cyclization [J]. J Am Chem Soc., 2006, 128:4238-4239.
    21. Opsteen, J. A.; Van Hest, J. C. M. Modular synthesis of block copolymers via cycloaddition of terminal azide and alkyne functionalized polymers [J]. Chem Commun., 2005, 57-59.
    22. Tsarevsky, N. V.; Sumerlin, B. S.; Matyjaszewski, K. Step-Growth "Click" Coupling of Telechelic Polymers Prepared by Atom Transfer Radical Polymerization [J]. Macromolecules, 2005,38: 3558-3561.
    23. Vogt, A. P.; Sumerlin, B. S. An Efficient Route to Macromonomers via ATRP and Click Chemistry [J]. Macromolecules, 2006, 39: 5286-5292.
    24. Wu, P.; Feldman, A. K.; Nugent, A. K.; Hawker, C. J.; Scheel, A.; Voit, B.; Pyun, J.; Frechet, J. M.J.; Sharpless, K. B.; Fokin, V. V. Efficiency and Fidelity in a Click-Chemistry Route to Triazole Dendrimers by the Copper(I)-Catalyzed Ligation of Azides and Alkynes [J]. Angew Chem Int Ed., 2004,43: 3928-3932.
    25. Lee, J. W.; Kim, B. K.; Kim, H. J.; Han, S. C; Shin, W. S.; Jin, S. H. Convergent Synthesis of Symmetrical and Unsymmetrical PAMAM Dendrimers [J]. Macromolecules, 2006, 39: 2418-2422.
    26. Fernandez-Megia, E.; Correa, J.; Rodriguez-Meizoso, I.; Riguera, R. A Click Approach to Unprotected Glycodendrimers [J]. Macromolecules, 2006, 39: 2113-2120.
    27. Srinivasachari, S.; Liu, Y.; Zhang, G.; Prevette, L.; Reineke, T. M. Trehalose Click Polymers Inhibit Nanoparticle Aggregation and Promote pDNA Delivery in Serum [J]. J Am Chem Soc., 2006,128, 8176-8184.
    28. Li, H.; Cheng, F.; Duft, AM.; Adronov, Alex. Functionalization of Single-Walled Carbon Nanotubes with Weil-Defined Polystyrene by "Click" Coupling [J].J. AM. CHEM. SOC., 2005, 127:14518-14524.
    29. Feng, L.; Li, H.; Li, F.; Shi, Z.; Gu, Z. Functionalization of carbon nanotubes with amphiphilic molecules and their Langmuir-Blodgett films [J]. Carbon, 2003,41:2385-2391.
    30. M. G. C. Kann.; S. Banerjee.; S. S. Wong. Solubilization of Oxidized Single-Walled Carbon Nanotubes in Organic and Aqueous Solvents through Organic Derivatization [J]. Nano Lett., 2002,2:1215-1218.
    31. S. Banerjee.; M. G. C. Kahn.; S. S. Wong. Rational Chemical Strategies for Carbon Nanotube Functionalization [J].Chem. Eur. J., 2003,9:1898-1908.
    32. Pedersen, C. J. Cyclic Polyethers and Their Complexes with Metal Salts [J]. J Am Chem Soc., 1967, 89: 7017-7036
    33. Tunca, U.; Yagci, Y. Crown ether-containing polymers [J]. Prog. Polym. Sci., 1994, 19: 233-286.
    34. Akashi, R.; Nagasaki, Y.; Tsuruta, T. Makrom. Chem., 1987,188, 719-724
    35. Chujo, Y.; Nakamura, T.; Yamashita, Y. Synthesis of crown ether-terminated poly(methyl methacrylate) by radical chain transfer polymerization [J]. J. Polym. Sci. Chem. Ed., 1990, 28: 59-65.
    36. Gao, H.; Matyjaszewski, K. Synthesis of Star Polymers by a Combination of ATRP and the "Click" Coupling Method [J]. Macromolecules, 2006, 39,4960-4965.
    37. Benaglia, M.; Puglisi, A.; Cozzi, F. Polymer-Supported Organic Catalysts [J]. Chem. Rev., 2003, 103:3401-3429.
    38. Bergbreiter, D. Using Soluble Polymers To Recover Catalysts and Ligands [J]. Chem. Rev., 2002,102: 3345-3384.
    39. Leadbeater, N.; Marco, M. Preparation of Polymer-Supported Ligands and Metal Complexes for Use in Catalysis [J]. Chem. Rev. 2002, 102:3217-3274.
    40. Gokel, G.; Leevy, W.; Weber, M. Crown Ethers: Sensors for Ions and Molecular Scaffolds for Materials and Biological Models [J]. Chem. Rev. 2004,104: 2723-2750.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700