用户名: 密码: 验证码:
高气孔率、高强度多孔氧化铝陶瓷的制备及表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多孔陶瓷由于具备特定孔径和形貌的功能性孔洞,其在过滤、催化剂载体、吸声、隔热等方面的应用愈加广泛。但是多孔陶瓷的高孔隙率和高强度是一对矛盾,限制了多孔陶瓷的进一步发展。本文以高冰点、高饱和蒸气压的叔丁醇为溶剂,制备了两种显微结构各异的高气孔率、高强度的多孔氧化铝陶瓷:采用凝胶注模成型工艺制备了孔洞三维贯通的多孔氧化铝;采用冷冻干燥工艺制备了定向通孔结构的多孔氧化铝。
     研究了多孔氧化铝的浆料和坯体制备工艺。系统研究了分散剂含量及种类、pH值对叔丁醇基氧化铝浆料流变特性和悬浮稳定性的影响规律,以及催化剂N,N,N’,N’-四甲基乙二胺、引发剂过硫酸铵、聚合环境对原位聚合反应的影响规律,制备了高孔隙率、近乎零收缩、表面光洁的多孔氧化铝坯体。叔丁醇基氧化铝浆料呈现与水基氧化铝浆料极不相同的流变规律和聚合特点。采用刚性长链高分子聚乙烯吡咯烷酮作添加剂,成功增强了坯体强度。
     探寻了低固相含量多孔氧化铝的排胶—烧结工艺。埋粉环境可以有效避免烧结开裂。着重对不同固相含量、不同温度烧结的多孔氧化铝的物理性能进行了测量,包括孔隙率、压缩强度、比表面积、孔径大小及分布等。结果发现,凝胶注模成型工艺制备的叔丁醇基多孔氧化铝为孔径微米量级的宏孔多孔陶瓷,固相含量决定了平均孔径的大小,烧结温度决定了孔径的分布和比表面积;添加氧化镁烧结助剂能在孔隙率略降的情况下极大提高压缩强度。观察到孔洞由颗粒堆积的空隙构成且三维贯通,并从晶粒尺寸、致密程度等微观形貌对各物理参数的变化规律进行了分析解释。
     采用冷冻干燥成型工艺,制备了定向通孔氧化铝陶瓷。研究了不同固相含量、冷端温度对陶瓷体力学性能、微观形貌、不同凝固位置孔径变化的影响规律。陶瓷体呈现“塑性”特点,轴向强度远远高于径向强度。内部形成近似六棱柱的长直通孔的微观结构,孔壁平直,孔径呈双峰分布,并随在温场中位置的不同而变化。
Because porous ceramics possess functional pores with special pore size and structure, they are widely used in filtration, catalyst support, sound absorption, heat insulation field, etc. But the contradiction between high porosity and high strength restricts further development of porous ceramics.
     Tert-butyl alcohol(TBA) was used as solvent for its high freeze point and high saturated vapor pressure, and porous alumina ceramics with high porosity and high strength were fabricated, with two types of different micro structures. One was porous alumina ceramics with three-dimensional connection fabricated by gel-casting method; the other was porous alumina ceramics with aligned channels structures fabricated by freezing-casting method.
     Fabrication processes of slurry and green body were researched. The influences of dispersant kinds and contents, pH values on slurry’s rheology, and the influences of catalyst, initiator and polymerization environment on in-situ polymerization reaction were researched. Porous alumina green bodies with high porosity, no obvious shrinkage, and smooth surface were fabricated. Adding long chain polymer-polyvinylpyrrolidone(PVP) had strengthened green body successfully.
     Heating procedure of polymer removal and sintering was also investigated, and powder embedded sintering method could avoid cracks. Physical properties of porous alumina ceramics with different solid loadings and sintering temperatures were measured, such as porosity, compressive strength, specific surface area, pore size distribution. TBA-based porous alumina ceramics fabricated by gel-casting process were macro-pore porous ceramics, with pore size of micron magnitude. The mean pore size was determined by solid loading, and pore size distribution and specific surface area were determined by sintering temperature. Adding magnesia as sintering aid could raise compressive strength sharply while porosity declines slightly. SEM observation indicated that pores were constructed by particle accumulative interspace and three-dimensional connection. The variation of physical parameters was explained through micro-topography as grain size and compact degree observed by SEM.
     Porous alumina ceramics with aligned channels structure were fabricated by freezing-casting method. Influences of solid loading and cool side temperature to mechanical properties, microstructures, and pore size distribution in different freezing positions were researched. Ceramics present“plastic”properties, and axial strength far exceeds radial strength. Inner micro structure was long aligned pores approximate to hexagonal prisms, and pore walls were straight and flat. Pore size showed a double peaks distribution, which changed with positions in temperature field.
引文
[1] Schwartzwalder K, Somers A V. Method of making porous ceramic. US Pat. No.3090094, 1963-05-21
    [2]高正亚,史旭莲.多孔陶瓷的制备工艺.佛山陶瓷,1999,(4):19-20
    [3]任雪潭,曾可令,王慧.泡沫陶瓷制备工艺的探讨.材料科学与工程,2001,19(1):102-103
    [4] Sepulveda P. Gelcasting foams for porous ceramics. Am. Ceram. Soc. Bull. 1997, 76(10): 61-65
    [5] Bao X, Nangrejo M R, Edirisinghe M J. Preparation of silicon carbide foams using polymeric precursor solutions. Journal of Material Science. 2000, 35:4365-4372
    [6]肖群芳.泡沫凝胶法制备工艺及多孔羟基磷灰石湿敏材料研究:[硕士学位论文].北京:清华大学材料系,2006
    [7]王连星,宁青菊,姚治才.多孔陶瓷材料.硅酸盐通报.1998,1:41-45
    [8] Nangrejo M. R., Bao Xujin, Edirisinghe Mohan J.. Preparation of silicon carbide–silicon nitride composite foams from pre-ceramic polymers. Journal of the European Ceramic Society. 2000, 20(11):1777-1785
    [9]马文,沈卫平,董红英,等.多孔陶瓷的制造工艺及进展.粉末冶金工技术.2002,20(6):365-368
    [10]史可顺.多孔陶瓷制造工艺及进展.硅酸盐通报,1994(3):38-44
    [11]王圣威,金宗哲,黄丽容.多孔陶瓷材料的制备及应用进展.硅酸盐通报.2006,25(4):124-129
    [12]张宇民,刘殿魁.多孔陶瓷材料制备工艺研究进展,2002,25(2):62-67
    [13]钱军民.多孔陶瓷制备技术研究进展.兵器材料科学与工程,2005,9(5)
    [14] Guzman I Y. Certain principles of formation of porous ceramic structures. properties and applications (A Review). Glass and Ceramics. 2003, 60(9-10):280-283
    [15]朱小龙,苏雪筠.多孔陶瓷材料.中国陶瓷.2000,36(4):36-39
    [16]李月琴,吴基球.多孔陶瓷的制备、应用及发展前景.陶瓷工程,2000,12:44-47
    [17]黄燕群,王星连,姚治才.刚玉-莫来石质泡沫陶瓷的研制.江苏陶瓷.1999,32(1):11-12
    [18] Montanaro L, Jorand Y, Fantozzi G, et al. Ceramic foams by powder procceing. Journal of the European Ceramic Society. 1998, 18:1339-1350
    [19] Netteship I. Applications of porous ceramics. Key Engineering Materials. 1996, 122-124:305-324
    [20] Colombo P. Ceramic foams: fabrication, proprties and application. Key Engineering Materials. 2002, 206-213:1913-1918
    [21]吴庆祝,刘永先,李福功,等.泡沫陶瓷及其应用.陶瓷,2002,2:12-14
    [22]吴庆祝.汽车柴油机排气颗粒泡沫陶瓷过滤器的研制.河北陶瓷,1997,25(2):3-8
    [23] Kaplan M, Hall M J. The combustion of liquid fuels within a porous media radiant burner. Experimental Thermal and Fluid Science. 1995, 11:13-20
    [24]靳洪允.泡沫陶瓷材料的研究进展.现代技术陶瓷,2005,3:33-36
    [25]张晓霞.多孔陶瓷的制备与应用.现代技术陶瓷,2005,26(4):37-40
    [26]冯胜山,陈巨桥.应加强推广泡沫陶瓷过滤净化铸铁工艺.铸造设备研究,2001,6:38-41
    [27]冯胜山.泡沫陶瓷过滤器的研究现状和发展趋势.耐火材料,2002:235-239
    [28]刘海燕.多孔陶瓷二次干燥技术与应用研究,中国优秀硕士学位论文全文数据库,2006
    [29]清华大学出版社.多孔材料引论.刘培生.北京:清华大学出版社,2004:214-267
    [30] Studart A R, Gonzenbach U T, Tervoort E, et al. Processing routes to macroporous ceramics: A Review. J. AM. Ceram. Soc. 2006, 89:1771-1798
    [31] Fukasawa T, Deng Z Y, Ando M. Pore structure of porous ceramics synthesized from water-based slurry by freeze-dry process. Journal of Material Science. 2001, 36:2523-2527
    [32] Fukasawa T, Ando M, Ohji T, et al. Synthesis of porous ceramics with complex pore structure by freeze-dry processing. J. Am. Ceram. Soc. 2001, 84(1):230-232
    [33] Zhang G J, Yang J F, Ohji T, et al. Fabrication of porous ceramics with unidirectionally aligned continuous pores. J. Am. Ceram. Soc. 2001, 84(6):1395-1397
    [34]高陇桥.蜂窝陶瓷的应用与进展.真空电子技术,2003,3:70-71
    [35] Saggio-Woyansky J, Scott C E, Minnerar W P. Processing of porous ceramics. Am. Ceram. Soc. Bull. 1992, 71:1674-1682
    [36]朱新文,江东亮.有机泡沫浸渍工艺—一种经济实用的多孔陶瓷制备工艺,硅酸盐通报,2000,3:45-51
    [37] Colombo P. Conventional and novel processing method. Phil. Trans. R. Soc. A. 2006, 364:109-124
    [38] Nettleship I. Application of porous ceramics. Key Engineering Materials. 2002, 206-213:1913-1918
    [39] Leenaars A F M, KeizeK r, Burggraaf A J. Porous alumina as membrane materials in separation processes. Science of Ceramics. 1984, 12:101-106
    [40]王公应.微孔Al2O3膜的研究进展.无机材料学报.1993,8(3):257
    [41] Ashkin D, Haber R A, Wachtman J B. J. Am. Ceram. Soc. 1990, 73(11):3376
    [42] Vogt U, Herzog A, Graule T, et al. Porous ceramics derived from wood. Key Engineering Materials. 2002, 206-213:1941-1944
    [43] Young A C, Omatete O O, Janney M A, et al. Gelcasting of alumina. J. Am. Ceram. Soc. 1991, 74 (3):612–618
    [44] Omateta O O, Janney M A, Strehlow R A. Gelcasting: a new ceramic forming process, Ceram. Bull. 1991, 70(10):1641-1649
    [45]傅献彩,陈瑞华.物理化学.北京:高等教育出版社,1986
    [46]林尚安,陆耘,梁兆熙.高分子化学.北京:科学出版社,1982
    [47]潘祖仁.高分子化学.北京:化学工业出版社,1997:52-54
    [48] Kinemuchi Y, Watari K, Uchimura S, et al. Grading porous ceramics by centrifugal sintering. J. Atcta Materialia. 2003, 51:3225-3231
    [49]林煌.凝胶注模成型颗粒稳定型多孔陶瓷:[硕士学位论文].北京:清华大学材料系,2007
    [50] Koh Young-Hag, Jun In-Kook, Sun Jong-Jae, et al. In situ fabrication of a dense/porous bi-layered ceramic composite using freeze casting of a ceramic-camphene slurry. J. Am. Ceram. Soc. 2006, 89:763-766
    [51] Koh Y H, Song J H, Lee E J, et al. Freezing dilute ceramic/camphene slurry for ultra-high porosity ceramics with completely interconnected pore networks. J. Am. Ceram. Soc. 2006, 89:3089–3093
    [52]陈瑞峰.陶瓷胶态成型中缺陷产生、演变的微观机理及其应用:[博士学位论文].北京:清华大学材料系,2007
    [53]国家技术监督局. GB/T 1964-1996.中华人民共和国国家标准-多孔陶瓷压缩强度试验方法.北京:中国标准出版社,1997
    [54]马景陶.氧化铝陶瓷多聚体系凝胶注模成型:[博士学位论文].北京:清华大学材料系,2003
    [55] Sylvain Deville, Eduardo Saiz , Antoni P. Tomsia. Ice-templated porous alumina structures. Acta Materialia. 2007, 55: 1965-1974
    [56] Koh Young-Hag, Lee Eun-Jung, Yoon Byung-Ho, et al. Effect of polystyrene addition on freeze casting of ceramic/camphene slurry for ultra-high porosity ceramics with aligned pore channels. J. Am. Ceram. Soc. 2006, 89: 3646-3653
    [57] Yoon Byung-Ho, Choi Won-Young, Kim Hyoun-Ee, et al. Aligned porous alumina ceramics with high compressive strengths for bone tissue engineering. Scripta Materialia. 2008, 58: 537-540
    [58] Fu Qiang, Rahaman Mohamed N., Dogan Fatih, et al. Freeze casting of porous hydroxyapatite scaffolds. II. sintering, microstructure, and mechanical behavior. Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater. 2008, 86B: 514-522
    [59] Macchetta A., Turner I.G. , Bowen C.R. . Fabrication of ha/tcp scaffolds with a graded and porous structure using a camphene-based freeze-casting method. Acta Biomaterialia. 2009, 5: 1319-1327
    [60] Yook Se-Won , Kim Hyoun-Ee , Koh Young-Hag. Fabrication of porous titanium scaffolds with high compressive strength using camphene-based freeze casting. Materials Letters. 2009, in press

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700