用户名: 密码: 验证码:
表面修饰的银纳米材料表面增强拉曼光谱基底用于环境有机污染物检测的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机污染物广泛分布于自然界中,给人类健康和社会环境带来危害,因此发展快速、经济、高灵敏的检测有机污染物的方法刻不容缓。传统检测有机污染物的方法主要有荧光光谱法、磷光光谱法、电化学方法、色谱法以及毛细管电泳方法等。这些方法一般都需要复杂昂贵的仪器,测试前需要对样品进行预处理,存在步骤复杂、测试周期长等缺点。表面增强拉曼光谱是目前常用的一种简单快速的分析方法,目前已经广泛应用于环境有机污染物的检测中。表面增强拉曼光谱具有高灵敏度、高选择性、受水和荧光信号干扰小的优点。利用表面增强拉曼光谱对分析物进行检测首先需要制备具有高的增强效果的基底,只有当分析物分子吸附到基底表面时,才能产生高的表面增强拉曼光谱信号。有机污染物难以吸附到贵金属基底的表面,使得直接通过表面增强拉曼光谱检测这些污染物存在一定的困难。可以对基底表面进行改性,修饰上和有机污染物具有相互作用的物质,利用表面修饰剂和有机污染物之间的作用将污染物吸附到基底表面,从而可以实现对污染物的表面增强拉曼光谱检测。
     本论文在铜箔上合成了银纳米颗粒聚集体,对基底表面进行修饰,实现了对多种环境污染物的检测。论文主要内容归纳如下:
     1.我们发展了一种利用铜箔上的银纳米颗粒聚集体通过表面增强拉曼光谱定性和定量检测多环芳烃的分析法。构建具有高的增强效果的拉曼基底对表面增强拉曼光谱检测非常重要。传统的基底容易受到激光热效应的影响,会得到重复性较差的拉曼信号。有文献报道铜箔上合成的银纳米结构在激光照射下具有高的稳定性。我们利用氯化亚锡作为“敏化剂”,利用硝酸银和铜箔之间的置换反应,通过循环浸泡的方式在铜箔上沉积了银纳米结构。我们采用X射线粉末衍射(XRD)和扫描电子显微镜(SEM)对合成的银纳米结构进行了表征。表明铜箔上合成的银结构为银纳米颗粒聚集体。为了得到具有高增强因子的基底材料,我们考查了循环次数和氯化亚锡的影响,表明在氯化亚锡存在条件下循环浸泡四次具有较高的增强。我们以银纳米颗粒聚集体作为基底,正己硫醇作为表面修饰剂,对多环芳烃进行检测,说明利用正己硫醇修饰的银纳米颗粒聚集体可以实现多环芳烃的表面增强拉曼光谱检测。研究表明,正己硫醇修饰的银纳米颗粒聚集体基底具有较好的稳定性、均一性和重复利用性。我们进一步利用正己硫醇修饰的基底对多环芳烃进行了定量检测,表面增强拉曼光谱信号和多环芳烃浓度的log-log关系图呈线性。
     2.我们利用便携式拉曼光谱仪通过表面增强拉曼光谱实现了对多溴联苯醚的检测。多溴联苯醚是一种常见的溴代阻燃剂,通常通过色谱方法进行检测,存在热降解和分辨率不足的缺点,另外,在进行色谱检测之前,需要进行复杂和费时的样品预富集过程。我们通过表面增强拉曼光谱技术对这类物质进行定性和定量检测。选择硫醇修饰的银纳米颗粒聚集体作为基底材料,基底表面的硫醇可以将多溴联苯醚预浓缩到基底表面。考查了不同链长硫醇(C6、C12和C18)修饰的基底对多溴联苯醚的检测效果,表明正己硫醇修饰的基底检测效果最佳。同时正己硫醇修饰的基底具有较高的稳定性和重复利用性。利用正己硫醇修饰的基底实现了实际海水中多溴联苯醚的检测,检测限为0.12mg·L-1以上研究表明表面增强拉曼光谱是检测多溴联苯醚的一种有效方法。
     3.我们选择巯基乙胺盐酸盐作为银纳米颗粒聚集体的表面修饰剂,实现了表面增强拉曼光谱对五氯酚的检测。五氯酚是一种常见的环境污染物,广泛作为杀虫剂、除草剂以及防腐剂等。目前五氯酚在空气、水、土壤甚至人的尿液、血液和组织液中都可以检测到。多项研究表明五氯酚能够造成生物急性中毒、干扰内分泌甚至致癌。对环境中五氯酚的监测至关重要,常用的检测五氯酚的方法是色谱法,这些方法一般都需要复杂的样品预处理过程。表面增强拉曼光谱是一种快速高灵敏的检测方法,目前在环境监测以及生物医学等方面具有广泛的应用。然而该分析方法的广泛应用仍然具有一定的限制,具有巯基、羧基和胺基等容易吸附到金属基底表面上的物质具有高的表面增强拉曼光谱信号,通常生物分子具有这些官能团,很容易吸附到基底表面具有高的信号可以实现高灵敏度的检测。然而环境中很多有机污染物,比如氯代杀虫剂、多环芳烃以及其它芳香化合物难以吸附到金银基底表面,通过表面增强拉曼光谱对这些物质的直接检测有一定的困难。对纳米颗粒表面进行修饰利用修饰剂和污染物之间的作用力可以将污染物分子富集到基底表面。常见的表面修饰剂和分析物之间的作用包括疏水作用、主客体作用、抗原抗体之间的特异性结合以及离子对作用。同时基底表面的修饰剂可以作为定量检测的内标。我们选择巯基乙胺盐酸盐作为表面修饰剂,巯基乙胺盐酸盐含有正电荷的-NH3+基团,该基团能够与PCP作用,巯基乙胺盐酸盐在表面增强拉曼光谱检测中起着双重作用:其一,通过静电作用将PCP预浓缩到基底表面,其二是在定量检测中作为内标物。巯基乙胺盐酸盐修饰的基底具有较好的均一性、稳定性和重复利用性。利用巯基乙胺盐酸盐修饰的基底实现了对PCP的定性和定量检测。
Organic pollutants are widely distributed in the nature, which have severe adverse effects on human health and environment. It is crucial to develop rapid, economical and sensitive method for the detection of organic pollutants. The traditional analytical techniques for the detection of organic pollutants include fluorescence spectroscopy, phosphorescence spectroscopy, electrochemical methods, chromatographic method, capillary electrophoresis methods and so on. These methods generally require expensive equipment or complicated sample preparation before detection. Alternatively, surface-enhanced Raman spectroscopy (SERS) is a simple and rapid analytical method, which has been widely used in the detection of environmental organic pollutants. SERS has the advantages of high sensitivity, good selectivity and weak interference from water and fluorescent signals. High enhancement substrate and the analytes close to the substrate are important to SERS detection. However, the organic pollutants show weak affinity to the substrate surface, which make the SERS detection difficult. Modification of the substrate with some substances, which could adsorb the organic pollutants close to the substrate, may make the SERS detection of the organic pollutants possible.
     In this paper, silver nanoparticles aggregates were synthesized and modified with self-assembled monolayers and used as the SERS substrate to detect organic pollutants. The main contents can be summarized as follows:
     1. A simple, cost-effective and rapid method has been developed for qualitative and quantitative SERS detection of polycyclic aromatic hydrocarbons (PAHs) using silver nanoparticle aggregates on copper foil as the substrate. Fabrication of high enhancement substrate is crucial for SERS detection. However, the traditional substrate could be influenced by laser heating effect and irreversible signals were obtained. It has been reported that the silver nanostructures show high stability under the laser irradiation. In this work, SnCl2was used as the "sensitizer" and the silver nanostructures were generated based on the galvanic displacement reaction. The prepared substrate was characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). The SEM image confirmed that the copper foil surface is covered with dense silver nanoparticle aggregates. To obtain high-enhancement substrate, the influences of the number of circulation and SnCl2were investigated. The results indicated that the large enhancement substrate could be obtained under four cycles in the presence of SnCl2. The silver nanoparticle aggregates and alkanethiol were used as the substrate and the modifier to detect PAHs. Studies showed that the alkanethiol-modified silver nanoparticle aggregates could realize the SERS detection of PAHs. The substrate has good stability, uniformity and reproducibility. We further used the substrate to quantitative SERS detection of PAHs and the log-log plot of the normalized SERS intensity versus PAHs concentrations yielded a good linear relationship
     2. The SERS detection of polybrominated diphenylethers (PBDEs) was realized using a portable Raman spectrometer. PBDEs, one of the most common brominated flame retardants, are toxic and persistent, generally detected by the chromatographic method. In this work, qualitative and quantitative detection of PBDEs were explored based on surface-enhanced Raman spectroscopy (SERS) technique using a portable Raman spectrometer. Alkanethiol modified silver nanoparticle aggregates were used as the substrate and PBDEs could be pre-concentrated close to the substrate surface through their hydrophobic interactions with alkanethiol. The effect of alkanethiols with different chain length (C6、C12and C18) on the SERS detection of PBDEs was evaluated. It was shown that1-hexanethiol (HT) modified substrate has higher sensitivity, good stability and reusability. Qualitative and quantitative SERS detection of PBDEs in real sea water was accomplished, with the measured detection limits at1.2×102μg·L-1. These results illustrate SERS could be used as an effective method for the detection of PBDEs.
     3. Cysteamine-modified silver nanoparticle aggregates have been fabricated for pentachlorophenol (PCP) sensing by SERS using a portable Raman spectrometer. PCP is a common environmental contaminant, which has been widely used as insecticide, herbicide and wood preservative. PCP now can be detected in the air, water, soil, as well as in human urine, blood and adipose tissues. It is important to detect PCP. The traditional analytical techniques are chromatographic methods, which often need complex and time-consuming sample pretreatment. SERS is a rapid and sensitive analytical method, which has been widely used in biology, medicine, or environmental monitoring related fields. However, there are still some limitations that restrict the technique as SERS is observed when the analytes are close to the rough noble metal surfaces. Only these analytes with specific functional groups, such as thiol, carboxylic acid, and amine, etc., could easily adsorb onto the substrate surface and provide good signals to meet the ultrasensitive analysis. Biological related samples often contain these functional groups and hence have good singnals. However, a large group of organic pollutants in the environment characterized by nonfunctionalized groups, such as chlorinated pesticides, polycyclic aromatic hydrocarbons, trinitrotoluene, and other aromatic compounds, show weak affinity to gold or silver. It is difficult to direct detect these compounds by SERS, and thus many indirect methods emerged. Many methods rely on functionalized nanoparticles with different media to concentrate analytes close to the substrate surface. These strategies include hydrophobic interactions using alkanethiols, host-guest interactions using cyclodextrin, specific interactions using antibodies and aptamers, as well as electrostatic attraction of ion pairing. The surface modifier of the substrate may form a self-assembled monolayer (SAM) on the metal substrate, which could also be used as internal standards for the reliable quantitative assay. Cysteamine hydrochloride (Cys) was selected as the modifier, which bears positively charged groups-NH3+and could interact with the acidic PCP. Cys plays a dual role in the process: pre-concentration of PCP close to the substrate surface through their electrostatic interaction and acting as the internal spectral reference in the quantitative detection. Cys-modified substrate has good uniformity, stability and reusability. Qualitative and quantitative SERS detection of PCP were realized based on this substrate. This work is the first example to use Cys-functionalized substrate for SERS analysis of PCP.
引文
[1]R. Y. Tu, B. H. Liu, Z. P. Zhang, Amine-capped ZnS-Mn2+ nanocrystals for fluorescence detection of trace tnt explosive [J], Anal. Chem.,2008,80, 3458-3465.
    [2]H. F. Wang, Y. He, T. R. Ji, X. P. Yan, Surface molecular imprinting on Mn-doped ZnS quantum dots for room-temperature phosphorescence optosensing of pentachlorophenol in water [J], Anal. Chem.,2009,81,1615-1621.
    [3]Y. G. Leblanc, R. Gilbert, J. Hubert, Determination of pentachlorophenol and its oil solvent in wood pole samples by SFE and GC with post-column flow splitting for simultaneous detection of the species [J], Anal. Chem.,1999,71,78-85.
    [4]C. Mardones, J. Palma, C. Sepulveda, A. Berg, D. von Baer, Determination of tribromophenol and pentachlorophenol and its metabolite pentachloroanisole in asparagus officinalis by gas chromatography/mass spectrometry [J], J. Sep. Sci., 2003,26,923-926.
    [5]M. L. Reyzer, J. S. Brodbelt, Analysis of fire ant pesticides in water by solid-phase microextraction and gas chromatography/mass spectrometry or high-performance liquid chromatography/mass spectrometry [J], Anal. Chim. Acta,2001,436,11-20.
    [6]L. Ferey, N. Delaunay, D. N. Rutledge, P. Gareil, Optimizing separation conditions of 19 polycyclic aromatic hydrocarbons by cyclodextrin-modified capillary electrophoresisand applications to edible oils [J], Talanta,2014,119,572-581.
    [7]M. Amiri-Aref, J. B. Raoof, R. Ojani, A highly sensitive electrochemical sensor for simultaneous voltammetric determination of noradrenaline, acetaminophen, xanthine and caffeine based on a flavonoid nanostructured modified glassy carbon electrode [J], Sens. Actuators, B,2014,192,634-641.
    [8]T. R. Glass, N. Ohmura, Development and characterization of new monoclonal antibodies specific for coplanar polychlorinated biphenyls [J]. Anal. Chim. Acta, 2004,517:161-168.
    [9]杨序钢,吴琪琳.拉曼光谱的分析与应用[M].北京:国防工业出版社.2008.
    [10]C. V. Raman, K. S. Krishnan, A new type of secondary radiation [J]. Nature, 1928,121,501-502.
    [11]M. Fleischmann, P. J. Hendra, A. J. Mcquillan, Raman-spectra of pyridine adsorbed at a silver electrode [J]. Chem. Phys. Lett.,1974,26,163-166.
    [12]D. L. Jeanmaire, R. P. Van Duyne, Surface Raman spectroelectrochemistry:Part Ⅰ. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode [J]. J. Electroanal. Chem.,1977,84,1-20.
    [13]M. G. Albrecht, J. A. Creighton, Anomalously intese Raman spectra of pyridine at a silver electrode [J]. J. Am. Chem. Soc.,1977,99,5215-5217.
    [14]R. K. Chang, T. E. Furtak, Surface Ehanced Raman Scattering, New York: Plenum,1982.
    [15]C. G. Blatchford, J. R. Cambell, J. S. Creighton, Plasma resonance enhanced Raman scattering by absorbates on gold colloids:The effects of aggregation [J]. Surface Science,1982,120,435-455.
    [16]M. Moskovits, Surface roughness and the enhanced intensity of Raman scattering by molecules adsorbed on metals [J]. J. Chem. Phys.,1978,69,4159-4161.
    [17]P. K. Aravind, A. Nitzan, H. Metiu, The interaction between electromagnetic resonances and its role in spectroscopic studies of molecules adsorbed on colloidal particles or metal spheres [J]. Surf. Sci.,1981,110,189-204.
    [18]Y. J. Mo, J. Lei, X. Y. Li, P. Wachter, Surface-enhanced Raman scattering of Rhodamine6G and Dye-1555 adsorbed on roughened copper surfaces [J]. Solid State Commun.,1988,66,127-131.
    [19]K. A. Willets, R. P. Van Duyne, Localized surface plasmon resonance spectroscopy and sensing [J]. Annu. Rev. Phys. Chem.,2007,58,267-297.
    [20]C. M. Cobley, S. E. Skrabalak, Shape-controlled synthesis of silver nanoparticles for plasmonic and sensing applications [J]. Plasmonics,2009,4,171-179.
    [21]V. M. Hallmark, A. Campion, Unenhanced Raman spectroscopy of benzene adsorbed on single crystal silver surfaces evidence for surface selection rules [J]. Chem. Phys. Lett.,1984,110,561-564.
    [22]J. R. Lombardi, R. L. Birke, T. H. Lu, J. Xu, Charge-transfer theory of surface enhanced Raman spectroscopy:Herzberg-Teller contributions[J]. J. Chem. Phys., 1986,84,4174-4180.
    [23]H. Ueba, Theory of charge transfer excitation in surface enhanced Raman scattering [J]. Surf. Sci.,1983,131,347-366.
    [24]F. J. Adrian, Charge transfer effects in surface enhanced Raman scattering [J]. J. Chem. Phys.,1982,77,5302-5314.
    [25]J. Kneipp, H. Kneipp, K. Kneipp, SERS-a single-molecule and nanoscale tool for bioanalytics [J], Chem. Soc. Rev.,2008,37,1052-1060.
    [26]M. M. Harper, K. S. McKeating, K. Faulds, Recent developments and future directions inSERSfor bioanalysis [J], Phys. Chem. Chem. Phys.,2013,15, 5312-5328.
    [27]X. M. Qian, S. M. Nie, Single-molecule and single-nanoparticle SERS:from fundamental mechanisms to biomedical applications [J], Chem. Soc. Rev.,2008, 37,912-920.
    [28]W. E. Smith, Practical understanding and use of surface enhanced Raman scattering/surface enhanced resonance Raman scattering in chemical and biological analysis [J], Chem. Soc. Rev.,2008,37,955-964.
    [29]Y. Wang, B. Yan, L Chen, sers tags:novel optical nanoprobes for bioanalysis [J], Chem. Rev.,2013,1391-1428.
    [30]J. R. Lombardi, R. L. Birke, A Unified View of Surface-enhanced Raman scattering [J], Ace. Chem. Res.,2009,42,734-742.
    [31]M. J. Banholzer, J. E. Millstone, L. Qin, C. A. Mirkin, Rationally designed nanostructures for surface-enhanced Raman spectroscopy [J], Chem. Soc. Rev., 2008,37,885-897.
    [32]X. M. Lin, Y. Cui, Y. H. Xu, R. Bin, Z. Q. Tian, Surface-enhanced Raman spectroscopy:substrate-related issues [J], Anal. Bioanal. Chem.,2009,394, 1729-1745.
    [33]D. Cialla,A. Marz,R. Bohme,F. Theil,K. Weber, M. Schmitt,J. Popp, Surface-enhanced Raman spectroscopy (SERS):progress and trends [J], Anal. Bioanal. Chem.,2012,403,27-54.
    [34]P.C. Lee, D. Meisel, Adsorption and surface-enhanced Raman of dyes on silver and gold sols [J]. J. Phys. Chem.,1982,86,3391-3395.
    [35]J. A. Creighton, C. G. Blatchford, M. G. Albrecht, Plasma resonance enhancement of Raman scattering by pyridine adsorbed on silver or gold sol particles of size comparable to the excitation wavelength [J], J. Chem. Soc., Faraday Trans.,1979,75,790-798.
    [36]M.V. Canamares, J. V. Garcia-Ramos, J. D. Gomez-Varga, C. Domingo, S. Sanchez-Cortes, Comparative study of the morphology, aggregation, adherence to glass, and surface-enhanced Raman scattering activity of silver nanoparticles prepared by chemical reduction of Ag+using citrate and hydroxylamine [J]. Langmuir,2005,21,8546-8553.
    [37]U. Nickel, K. Mansyreff, S. Schneider, Production of monodisperse silver colloids by reduction with hydrazine:the effect of chloride and aggregation on SER (R) S signal intensity [J]. J. Raman Spectrosc.,2004,35,101-110.
    [38]J. Yang, H. Yin, J. Jia, Y. Wei, Facile Synthesis of high-concentration, stable aqueous dispersions of uniform silver nanoparticles using aniline as a reductant [J], Langmuir,2011,27,5047-5053.
    [39]N. Leopold, B. Lendl, A new method for fast preparation of highly surface-enhanced Raman scattering (SERS) active silver colloids at room temperature by reduction of silver nitrate with hydroxylamine hydrochloride [J], J. Phys. Chem. B,2003,107,5723-5727.
    [40]G. Frens, Controlled nucleation for regulation of particle-size in monodisperse gold suspensions [J]. Nat. Phys. Sci.,1973,241,20-22.
    [41]H. Hiramatsu, F. E. Osterloh, A Simple Large-scale synthesis of nearly monodisperse gold and silver nanoparticles with adjustable sizes and with exchangeable surfactants [J], Chem. Mater.,2004,16,2509-2511.
    [42]J. Liu, M. Anand, C. B. Roberts, Synthesis and extraction of P-D-glucose-stabilized au nanoparticles processed into low-defect, wide-area thin films and ordered arrays using CO2-expanded liquids [J], Langmuir,2006, 22,3964-3971.
    [43]O. Siiman, L.A. Bumm, R. Callaghan, C. G. Blatchford, M. Kerker, Surface-enhanced Raman scattering by citrate on colloidal silver [J]. J. Phys. Chem.,1983,87,1014-1023.
    [44]G. P.C. Lee, D. Meisel, Surface-enhanced Raman scattering of colloid-stabilizer systems [J]. Chem. Phys. Lett.,1983,99,262-265.
    [45]S.M. Heard, F. Griese, C. G. Barraclough, Surface-enhanced Raman scattering from amphiphilic and polymer molecules on silver and gold sols. [J]. Chem. Phys. Lett.,1983,95,154-158.
    [46]K. Kneipp, H. Kneipp, Surface-enhanced Raman scattering on silver nanoparticles in different aggregation stages [J]. Isr. J. Chem.,2006,46, 299-305.
    [47]L. L. Sun, Y. H. Song, L. Wang, C. L. Guo, Y. J. Sun, Z. L. Liu, Z. Li, Ethanol-induced formation of silver nanoparticle aggregates for highly active SERS substrates and application in DNA detection [J]. J. Phys. Chem.C,2008, 112,1415-1422.
    [48]P. Gao, D. Gosztola, L. W. Leung, Surface-enhanced Raman scattering at gold electrodes:dependence on electrochemical pretreatment conditions and comparisons with silver [J]. J. Electroanal. Chem. Interracial. Electroehem.,1987, 233,211-222.
    [49]B. Ren, X. Lin, J. Yan, B. Mao, Z. Q. Tian, Electrochemically Roughened Rhodium Electrode as a Substrate for Surface-enhanced Raman Spectroscopy [J], J. Phys. Chem. B,2003,107,899-902.
    [50]Z. Liu, Z. L. Yang, L. Cui, B. Ren, Z. Q. Tian, Electrochemically roughened palladium electrodes for surface-enhanced Raman spectroscopy:methodology, mechanism, and application [J], J. Phys. Chem. C,2007,111, 1770-1775.
    [51]W. Lin, L. Liao, Y. Chen, H. Chang, D. Tsai, H. Chiang, Size dependence of nanoparticle-SERS enhancement from silver film over nanosphere (AgFON) substrate [J], Plasmonics,2011,6,201-06.
    [52]J. Stropp, G. Trachta, G. Brehm, S. Schneider, A new version of AgFON substrates for high-throughput analytical SERS applications [J], J. Raman Spectrosc.,2003,34,26-32.
    [53]H. Im, K. C. Bantz, N. C. Lindquist, C. L. Haynes, S. H. Oh, Vertically oriented sub-10-nm plasmonic nanogap arrays [J], Nano Lett.,2010,10,2231-2236.
    [54]O. Lyandres, N. C. Shah, C. R. Yonzon, R. P. Van Duyne, Real-time glucose sensing by surface-enhanced Raman spectroscopy in bovine plasma facilitated by a mixed decanethiol/mercaptohexanol partition layer [J], Anal. Chem.,2005, 77,6134-6139.
    [55]S. Lv, H. Suo, H. Wang, C. Wang, J. Wang, Y. Xu, C. Zhao, Effect of additives on the morpholog ies of silver nanostructures prepared by galvanic displacement reaction[J], Solid State Sci.,2010,12,1287-1291.
    [56]S. Lv, H. Suo, T. Zhou, C. Wang, S. Jing, Q. Fu, Y. Xu, C. Zhao, Effect of synthesis route on the morphologies of silver nanostructures by galvanic displacement reaction [J], Solid State Commun.,2009,149,227-230.
    [57]R. Liu, A. Sen, Unified Synthetic Approach to silver nanostructures by galvanic displacement reaction on copper:from nanobelts to nanoshells [J], Chem. Mater., 2012,524,48-54.
    [58]S. Y. Sayed, F. Wang, M. Malac, A. Meldrum, R. F. Egerton, J. M. Buriak, Heteroepitaxial growth of gold nanostructures on silicon by galvanic displacement [J], ACS Nano,2009,3,2809-2817.
    [59]A. Gutes, C. Carraro, R. Maboudian, Silver dendrites from galvanic displacement on commercial aluminum foil as an effective SERS substrate [J], J. Am. Chem. Soc,2010,132,1476-1477.
    [60]H. H. Lin, J. Mock, D. Smith, T. Gao, M. J. Sailor, Surface-enhanced Raman scattering from silver-plated porous silicon [J], J. Phys. Chem. B,2004,108, 11654-11659.
    [61]W. Song, Y. Cheng, H. Jia, W. Xu, B. Zhao, Surface enhanced Raman scattering based on silver dendrites substrate [J], J. Colloid Interface Sci.,2006,298, 765-768.
    [62]Y. Lai, J. Cui, X. Jiang, S. Zhu, J. Zhan, Combination of solid phase extraction and surface-enhanced Raman spectroscopy for rapid analysis, Analyst,2013,138, 2598-2603
    [63]J. Yuan, Y. Lai, J. Duan, Q. Zhao, J. Zhan, Synthesis of a β-cyclodextrin-modified Ag film by the galvanic displacement on copper foil for SERS detection of PCBs [J], J. Colloid Interface Sci.,2011,365,122-126.
    [64]S. Mahima, C. Karthik, S. Garg, R. Mehta, R. Teki, N. Ravishankar, G. Ramanath, Branched copper nanocrystal corals by room-temperature galvanic displacement [J], Cryst. Growth Des.,2010,10,3925-3928.
    [65]A. R. Tao, J. Huang, P. D. Yang, Langmuir-Blodgettry of nanocrystals and nanowires [J], Ace. Chem. Res,2008,41,1662-1673.
    [66]A. Tao, F. Kim, C. Hess, J. Goldberger, R. He, Y. Sun, Y. Xia, P. Yang, LangmuirBlodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy [J], Nano Lett.,2003,3,1229-1233.
    [67]M. Mulvihill, A. Tao, K. Benjauthrit, J. Arnold, P. Yang, Surface-enhanced Raman spectroscopy for trace arsenic detection in contaminated water [J], Angew. Chem.,2008,120,6556-6560.
    [68]J. Klug, L. A. Perez, E. A. Coronado, G. I. Lacconi, Chemical and electrochemical oxidation of silicon surfaces functionalized with APTES:the role of surface roughness in the AuNPs anchoring kinetics [J], J. Phys. Chem. C, 2013,117,11317-11327.
    [69]Q. Su, X. Ma, J. Dong, C. Jiang, W. Qiang, A reproducible SERS substrate based on electrostatically assisted APTES-functionalized surface-assembly of gold nanostars [J], ACS Appl. Mater. Interfaces,2011,3,1873-1879.
    [70]H. Wang, C. S. Levin, N. J. Halas, Nanosphere arrays with controlled sub-10-nm gaps as surface-enhanced Raman spectroscopy substrates [J], J. Am. Chem. Soc., 2005,127,14992-14993.
    [71]W. Lee, S. Y. Lee, R. M. Briber, O. Rabin, Self-assembled SERS substrates with tunable surface plasmon resonances [J], Adv. Funct. Mater.,2011,21, 3424-3429.
    [72]童林荟,环糊精化学:基础与应用[M].科学出版社2001.
    [73]J. Szejtli, Introduction and general overview of cyclodextrin chemistry [J].Chem. Rev.,1998,98,1743-1754
    [74]K. A. Cannors, The Stability of cyclodextrin complexes in solution [J]. Chem. Rev.,1997,97,1325-1358.
    [75]A. Harada, Cyclodextrin-based molecular machines [J], Acc. Chem. Res.,2001, 34,456-464.
    [76]叶素芳,环糊精和环糊精包合物[J].化工时刊.2002,16,1-8.
    [77]W. Hill, V. Fallourd, D. Klockow, Investigation of the adsorption of gaseous aromatic compounds at surfaces coated with heptakis (6-thio-6-deoxy)-β-cyclodextrin by Surface-Enhanced Raman Scattering [J], J. Phys. Chem. B, 1999,103,4707-4713.
    [78]J. Wang, L. T. Kong, Z. Guo, J. Y. Xu, J. H. Liu, Synthesis of novel decorated one-dimensional gold nanoparticle and its pplication in ultrasensitive detection of insecticide [J], J. Mater. Chem.,2010,20,5271-5279.
    [79]J. Y. Xu, J. Wang, L. T. Kong, G. C. Zheng, Z. Guo, J. H. Liu, SERS detection of explosive agent by macrocyclic compound functionalized triangular gold nanoprisms [J], J. Raman Spectrosc.,2011,42,1728-1735.
    [80]Y. Xie, X. Wang, X. Han, X. Xue, B. Zhao, Y. Ozaki, Sensing of polycyclic aromatic hydrocarbons with cyclodextrin inclusion complexes on silver nanoparticles by surface-enhanced Raman scattering [J], Analyst,2010,135, 1389-1394
    [81]P. Leyton, C. Domingo, S.Sanchez-Cortes, M. Campos-Vallette, G.F. Diaz, J.V. Garcia-Ramos, Reflection-absorption IR and surface-enhanced IR spectroscopy of tetracarboethoxy t-butyl-calix[4]arene, as a host molecule with potential applications in sensor devices [J], Vib. Spectrosc,2007,43,358-365.
    [82]H. Li, F. Qu, Synthesis of CdTe quantum dots in sol-gel-derived composite silica spheres coated with calix[4]arene as luminescent probes for pesticides [J], Chem. Mater.,2007,19,4148-4154.
    [83]P. Leyton, S. Sanchez-Cortes, J. V. Garcia-Ramos, C. Domingo, M. Campos-Vallette, C. Saitz, R. E. Clavijo, Selective molecular recognition of polycyclic aromatic hydrocarbons (PAHS) on calix[4]arene-functionalized ag nanoparticles by surface-enhanced Raman scattering [J], J. Phys. Chem. B,2004, 108,17484-17490.
    [84]L. Guerrini, J. V. Garcia-Ramos, C. Domingo, S. Sanchez-Cortes, Sensing Polycyclic Aromatic Hydrocarbons with dithiocarbamate-functionalized Ag nanoparticles by surface-enhanced Raman scattering [J], Anal. Chem.,2009,81, 953-960.
    [85]J. W. Lee, S. Samal, N. Selvapalam, H-J. Kim, K. Kim, Cucurbituril homologues and derivatives:new opportunities in supramolecular chemistry [J], Acc. Chem. Res.,2003,36,621-630.
    [86]J. Kim, I-S. Jung, S-Y. Kim, E. Lee, J. K. Kang, S. Sakamoto, K. Yamaguchi, K. Kim, New Cucurbituril Homologues:Syntheses, Isolation, Characterization, and X-ray crystal structures of cucurbit[n]uril (n 5,7, and 8) [J], J. Am. Chem. Soc., 2000,122,540-541
    [87]R. W. Taylor, T-C. Lee, O. A. Scherman, R. Esteban, J. Aizpurua, F. M. Huang, J. J. Baumberg, S. Mahajan, Precise subnanometer plasmonic junctions for SERS within gold nanoparticle assemblies using cucurbit[n]uril gluey [J], ACS Nano, 2011,5,3878-3887.
    [88]J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, G. M. Whitesides, Self-Assembled monolayers of thiolates on metals as a form of nanotechnology [J], Chem. Rev.,2005,105,1103-1169.
    [89]A. Ulman, Formation and structure of self-assembled monolayers [J], Chem. Rev.,1996,96,1533-1554.
    [90]C. L. Jones, K. C. Bantz, C. L. Haynes, Partition layer-modified substrates for reversible surface-enhanced Raman scattering detection of polycyclic aromatic hydrocarbons [J], Anal. Bioanal. Chem.,2009,394,303-311.
    [91]M. A. A. Bryant, J. E. Pemberton, Surface-enhanced Raman scattering of self-assembled monolayers formed from 1-alkanethiols at Ag [J], J. Am. Chem. Soc.,1991,113,3629-3637.
    [92]C. E. Taylor, M. H. Schoenfisch, J. E. Pemberton, Sequestration of carbonaceous species within alkanethiol self-assembled monolayers on Ag by Raman spectroscopy [J], Langmuir,2000,16,2902-2906.
    [93]K. C. Bantz, C. L. Haynes, Surface-enhanced Raman scattering detection and discrimination of polychlorinated biphenyls [J], Vib. Spectrosc,2009,50, 29-352.
    [94]C. Zhu, G. Meng, Q. Huang, Z. Huang, Z. Chu, Au Hierarchical micro/nanotower arrays and their improved SERS Effect by Ag nanoparticle decoration [J], Cryst. Growth Des.,2011,11,748-752.
    [95]J. Du, C. Jing, Preparation of Thiol modified Fe3O4@Ag magnetic SERS probe for PAHs detection and identification [J], J. Phys. Chem. C,2011,115, 17829-17835.
    [1]X. M. Qian, S. M. Nie, Single-molecule and single-nanoparticle SERS:from fundamental mechanisms to biomedical applications [J], Chem. Soc. Rev.,2008, 37,912-920.
    [2]R. A. Halvorson, P. J. Vikesland, Surface-enhanced Raman spectroscopy (SERS) for environmental analyses [J], Environ. Sci. Technol.,2010,44,7749-7755.
    [3]Z. Q. Tian, B. Ren, D. Y. Wu, Surface-enhanced Raman scattering:from noble to transition metals and from rough surfaces to ordered nanostructures [J], J. Phys. Chem. B,2002,106,9463-9483.
    [4]A. Campion, P. Kambhampati, Surface-enhanced Raman scattering [J], Chem. Soc. Rev.,1998,27,241-250.
    [5]C. M. Aikens, G. C. Schatz, TDDFT studies of absorption and SERS spectra of pyridine interacting with Au20 [J], J. Phys. Chem. A,2006,110,13317-13324.
    [6]K. Hering, D. Cialla, K. Ackermann, T. Dorfer, R. Moller, H. Schneidewind, R. Mattheis, W. Fritzsche, P. Rosch, J. Popp, SERS:a versatile tool in chemical and biochemical diagnostics [J], Anal Bioanal Chem,2008,390,113-124.
    [7]C. Schmuck, P. Wich, B. Kustner, W. Kiefer, S. Schlucker, Direct and Label-Free Detection of solid-phase-bound compounds by using surface-enhanced Raman scattering microspectroscopy [J], Angew. Chem.Int. Ed.,2007,46,4786-4789.
    [8]S. D. Hudson, G. Chumanov, Bioanalytical applications of SERS (surface-enhanced Raman spectroscopy) [J], Anal Bioanal Chem,2009,394, 679-686.
    [9]G. Braun, S. J. Lee, M. Dante, T. Q. Nguyen, M. Moskovits, N. Reich, Surface-enhanced Raman spectroscopy for DNA detection by nanoparticle assembly onto smooth metal films [J], J. Am. Chem. Soc,2007,129, 6378-6379.
    [10]L. Fabris, M. Dante, T. Q. Nguyen, J. B. H. Tok, G C. Bazan, SERS aptatags: new responsive metallic nanostructures for heterogeneous protein detection by surface enhanced Raman spectroscopy [J], Adv. Funct. Mater.,2008,18, 2518-2525.
    [11]V. Wang, K. Lee, J. Irudayaraj, Silver nanosphere SERS probes for sensitive identification of pathogens [J], J. Phys. Chem. C,2010,114,16122-16128.
    [12]J. Yuan, Y. Lai, J. Duan, Q. Zhao, J. Zhan, Synthesis of a β-cyclodextrin-modified Ag film by the galvanic displacement on copper foil for SERS detection of PCBs [J], J. Colloid Interface Sci.,2011,365,122-126.
    [13]N. A. Hatab, G. Eres, P. B. Hatzinger, B. Gu, Detection and analysis of cyclotrimethylenetrinitramine (RDX) in environmental samples by surface-enhanced Raman spectroscopy [J], J. Raman Spectrosc.2010,41, 1131-1136.
    [14]O. Peron, E. Rinnert, T. Toury, M. L. De La Chapelle, C. Compere, Quantitative SERS sensors for environmental analysis of naphthalene [J], Analyst,2010, 1021,1018-1022.
    [15]J. Y. Xu, J. Wang, L. T. Kong, G. C. Zheng, Z. Guo, J. H. Liu, SERS detection of explosive agent by macrocyclic compound functionalized triangular gold nanoprisms [J], J. Raman Spectrosc.,2011,42,1728-1735.
    [16]L. Guerrini, J. V. Garcia-Ramos, C. Domingo, S. Sanchez-Cortes, Sensing polycyclic aromatic hydrocarbons with dithiocarbamate-functionalized Ag nanoparticles by surface-enhanced Raman scattering [J], Anal. Chem., 2009,81, 953-960.
    [17]S. Nie, S. R. Emory, Probing single molecules and single nanoparticles by surface-enhanced Raman scattering [J], Science,1997,275,1102-1106.
    [18]M. Suzuki, Y. Niidome, Y. Kuwahara, N. Terasaki, K. Inoue, S. Yamada, Surface-enhanced nonresonance Raman scattering from size-and morphology-controlled gold nanoparticle films [J], J. Phys. Chem. B,2004,108, 11660-11665.
    [19]A. M. Michaels, J. Jiang, L. Brus, Ag nanocrystal junctions as the site for surface-enhanced Raman scattering of single Rhodamine 6G molecules [J], J. Phys. Chem. B,2000,104,11965-11971.
    [20]J. Jiang, K. Bosnick, M. Maillard, L. Brus, Single molecule Raman spectroscopy at the junctions of large Ag nanocrystals [J], J. Phys. Chem. B,2003,107, 9964-9972.
    [21]F. Castillo, E. De la Rosa, Perez, Gold aggregates on silica templates and decorated silica arrays for SERS applications [J], Eur E. Phys. J. D,2011,63, 301-306.
    [22]S. P. Mulvaney, L. He, M. J. Natan, C. D. Keating, Three-layer substrates for surface-enhanced Raman scattering:preparation and preliminary evaluation [J], J. Raman Spectrosc,2003,34,163-171.
    [23]K. W. Kho, Z. X. Shen, Z. Lei, F. Watt, K. C. Soo, M. Olivo, Investigation into a surface plasmon related heating effect in surface enhanced Raman spectroscopy [J], Anal. Chem.,2007,79,8870-8882.
    [24]Y. S. Choi, J. J. Kim, S. Miyajima, Diffusive loss of surface adatoms and surface enhanced Raman scattering intensity [J], Chem. Phys. Lett.,1996,255,45-48.
    [25]M. A. De, K. S. Giesfeldt, M. Sepaniak, Use of a Sample translation technique to minimize adverse effects of laser irradiation in surface-enhanced Raman spectrometry [J], J. Appl. Spectrosc.,2003,57,428-438.
    [26]T. Kang, S. Hong, Y. Choi, L. P. Lee, The effect of thermal gradients in SERS spectroscopy [J], Small,2010,6,2649-2652.
    [27]P. G. Etchegoin, E. C. Le Ru, Surface Enhanced Raman Spectroscopy [M], WILEY-VCH,2011.
    [28]Y. Lai, W. Pan, D. Zhang, J. Zhan, Silver nanoplates prepared by modified galvanic displacement for surface-enhanced Raman spectroscopy [J], Nanoscale, 2011,3,2134-2137.
    [29]Y. Han, R. Lupitskyy, S. Sukhishvili, Effect of Oxidation on Surface-enhanced Raman scattering activity of silver nanoparticles:a quantitative correlation [J], Anal. Chem.,2011,83,5873-5880.
    [30]M. Erol, Y. Han, R. Lupitskyy, S. Sukhishvili, SERS not to be taken for granted in the presence of oxygen [J], J. Am. Chem. Soc.,2009,131,7480-7481.
    [31]J. Hao, Z. Xu, M. J. Han, S. Xu, X. Meng, Surface-enhanced Raman scattering analysis of perchlorate using silver nanofilms deposited on copper foils [J], Colloids Surf. A:Physicochem. Eng. Aspects,2010,366,163-169.
    [32]Y. Hu, S. Liu, S. Huang, W. Pan, Superhydrophobicity and surface enhanced Raman scattering activity of dendritic silver layers [J], Thin Solid Films,2010, 519,1314-1318.
    [33]S. Chang, Z. A. Combs, M. K. Gupta, R. Davis, V. V. Tsukruk, In situ growth of silver nanoparticles in porous membranes for surface-enhanced Raman scattering [J], ACS Appl. Mater. Interfaces,2010,2,3333-3339.
    [34]W. Lee, R. Scholz, K. Nielsch, U. Gosele, A Template-based electrochemical method for the synthesis of multisegmented metallic nanotubes [J], Angew. Chem. Int. Ed.,2005,117,6204-6208.
    [35]K. Carron, L. Peitersen, M. Lewis, Octadecylthiol-modified surface-enhanced Raman spectroscopy substrates:a new method for the detection of aromatic compounds [J], Environ. Sci. Technol.,1992,26,1950-1954.
    [36]A. Ulman, Formation and Structure of Self-Assembled Monolayers [J], Chem. Rev.,1996,96,1533-1554.
    [37]K. C. Bantz, C. L. Haynes, Surface-enhanced Raman scattering detection and discrimination of polychlorinated biphenyls [J], Vib. Spectrosc,2009,50, 29-35.
    [38]C. L. Jones, K. C. Bantz, C. L. Haynes, Partition layer-modified substrates for reversible surface-enhanced Raman scattering detection of poly cyclic aromatic hydrocarbons [J], Anal Bioanal Chem,2009,394,303-311.
    [39]J. Du, C. Jing, Preparation of thiol modified Fe3O4@Ag magnetic SERS probe for PAHs detection and identification [J], J. Phys. Chem. C,2011,115, 17829-17835.
    [40]V. P. Menon, C. R. Martin, Fabrication and evaluation of nanoelectrode ensembles [J], Anal. Chem.,1995,67,1920-1928.
    [41]C. H. Moran, M. Rycenga, Q. Zhang, Y. Xia, Replacement of poly (vinyl pyrrolidone) by thiols:a systematic study of ag nanocube functionalization by surface-enhanced Raman scattering [J], J. Phys. Chem. C,2011,115, 21852-21857.
    [42]N. Grova, G. Salquebre, H. Schroeder, B. M. Appenzeller, Determination of PAHs and OH-PAHs in rat brain by gas chromatography tandem (triple quadrupole) mass spectrometry [J], Chem. Res. Toxicol.,2011,24,1653-1667.
    [43]Y. Liu, M. L. Lee, K. J. Hageman, S. B. Hawthorne, Solid-phase microextraction of PAHs from aqueous samples using fibers coated with HPLC chemically bonded silica stationary phases [J], Anal. Chem.,1997,69,5001-5005.
    [44]B. C. Lee, Y. Shimizu, T. Matsuda, S. Matsui, Characterization of polycyclic aromatic hydrocarbons (PAHs) in different size fractions in deposited road particles (DRPs) from lake biwa area, Japan [J], Environ. Sci. Technol.,2005, 39,7402-7409.
    [45]Gaussian 03, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian, Inc., Wallingford CT,2004.
    [46]A. D. Becke, Density-functional thermochemistry. Ⅲ. The role of exact exchange [J], J. Chem. Phys.,1993,98,5648-5652.
    [47]C. Lee, W. Yang, R. G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density [J], Physical Review B,1988,37,785-789.
    [48]Y. Lai, W. Pan, S. Ni, D. Zhang, J. Zhan, Theoretical evaluation of the configurations and Raman spectra of 209 poly chlorinated biphenyl congeners [J], Chemosphere,2011,85,412-417.
    [49]S. E. J. Bell, N. M. S. Sirimuthu, Quantitative surface-enhanced Raman spectroscopy [J], Chem. Soc. Rev.,2008,37,1012-1024.
    [50]B. Gu, C. Ruan, W. Wang, Perchlorate detection at nanomolar concentrations by surface-enhanced Raman scattering [J], Appl. Spectrosc.,2009,63,98-102.
    [51]J. Kneipp, H. Kneipp, K. Kneipp, SERS-a single-molecule and nanoscale tool for bioanalytics [J], Chem. Soc. Rev.,2008,37,1052-1060.
    [52]L. E. Sverdrup, T. Nielsen, P. H. Krogh, Soil ecotoxicity of polycyclic aromatic hydrocarbons in relation to soil sorption, lipophilicity, and water solubility [J], Environ. Sci. Technol.,2002,36,2429-2435.
    [1]J. Wang, Z. Lin, Q. Dong, C. Huang, Polybrominated diphenyl ethers in water, sediment, soil, and biological samples [J], J. Hazard. Mater., 2011,197,211-219.
    [2]R. Castorina, A. Bradman, A. Sjodin, Determinants of serum polybrominated diphenyl ether (PBDE) levels among pregnant women in the CHAMACOS cohort [J], Environ. Sci. Technol.,2011,45,6553-6560.
    [3]G. Chen, A. D. Konstantinov, B. G. Chittim, E. M. Joyce, N. C. Bols, N. J. Bunce, Synthesis of polybrominated diphenyl ethers and their capacity to induce CYP1A by the Ah receptor mediated pathway [J], Environ. Sci. Technol.,2001,35, 3749-3756.
    [4]W. Zhang, Y. Sun, C. Wu, J. Xing, J. Li, Polymer-functionalized single-walled carbon nanotubes as a novel sol-gel solid-phase micro-extraction coated fiber for determination of poly-brominated diphenyl ethers in water samples with gas chromatography-electron capture detection [J], Anal. Chem.,2009,81, 2912-2920.
    [5]D. L. Wang, Z. W. Cai, G B. Jiang, A. Leung, M. H. Wong, W. K. Wong, Determination of polybrominated diphenyl ethers in soil and sediment from an electronic waste recycling facility [J], Chemosphere,2005,60,810-816.
    [6]M. Shoeib, T. Harner, M. Ikonomou, K. Kannan, Indoor and outdoor air concentrations and phase partitioning of perfluoroalkyl sulfonamides and polybrominated diphenyl ethers [J], Environ. Sci. Technol.,2004,38,1313-1320.
    [7]C. Allchin, R. Law, S. Morris, Polybrominated diphenylethers in sediments and biota downstream of potential sources in the UK [J], Environ. Pollut,1999,105, 197-207.
    [8]S. Lacorte, M. G Ikonomou, Occurrence and congener specific profiles of polybrominated diphenyl ethers and their hydroxylated and methoxylated derivatives in breast milk from Catalonia [J], Chemosphere,2009,74 (3), 412-420.
    [9]F. C. Calvosa, A. F. Lagalante, Supercritical fluid extraction of polybrominated diphenyl ethers (PBDEs) from house dust with supercritical 1,1,1,2-tetrafluoroethane (R134a) [J], Talanta,2010,80,1116-1120.
    [10]B. Cetin, M. Odabasi, Polybrominated diphenyl ethers (PBDEs) in indoor and outdoor window organic films in Izmir, Turkey [J], J. Hazard. Mater.,2011,185, 784-791.
    [11]F. Rahman, K. H. Langford, M. D. Scrimshaw, J. N. Lester, Polybrominated diphenyl ether (PBDE) flame retardants [J], Sci. Total Environ.,2001,275,1-17.
    [12]N. Wu, T. Herrmann, O. Paepke, Human exposure to PBDEs:associations of PBDE body burdens with food consumption and house dust concentrations [J], Environ. Sci. Technol,2007,41 (5),1584-1589.
    [13]Y. B. Man, B. N. Lopez, H. S. Wang, M. H. Wong, Cancer risk assessment of polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) in former agricultural soils of Hong Kong [J], J. Hazard. Mater.,2011,195, 92-99.
    [14]J. Bjorklund, P. Tollback, C. Hiarne, E. Dyremark, Ostman. Ostman, Influence of the injection technique and the column system on gas chromatographic determination of polybrominated diphenyl ethers [J], J. Chromatogr. A,2004, 1041,201-210.
    [15]L. Debrauwer, A. Riu, M. Covaci, Probing new approaches using atmospheric pressure photo ionization for the analysis of brominated flame retardants and their related degradation products by liquid chromatography-mass spectrometry [J], J. Chromatogr. A,2005,1082,98-109.
    [16]A. Gonzalez-Gago, J. M. Marchante-Gayon, M. Ferrero, Synthesis of 81Br-Labeled Polybrominated Diphenyl Ethers and Their Characterization Using GC(EI)MS and GC(ICP)MS [J], Anal. Chem.,2010,82,2879-2887.
    [17]X. Zheng, D. Guo, Y. Shao, Photochemical modification of an optical fiber tip with a silver nanoparticle film:a SERS chemical sensor [J], Langmuir,2008,24, 4394-4398.
    [18]X. M. Qian, S. Nie, Single-molecule and single-nanoparticle SERS:from fundamental mechanisms to biomedical applications [J], Chem. Soc. Rev.,2008, 37,912-920.
    [19]R. A. Halvorson, P. J. Vikesland, Surface-enhanced Raman spectroscopy (SERS) for environmental analyses [J], Environ. Sci. Technol.,2010,44,7749-7755.
    [20]S. S. R. Dasary, A. K. Singh, D. Senapati, H. Yu, P. C. Ray, Gold nanoparticle based label-free SERS Probe for ultrasensitive and selective detection of trinitrotoluene [J], J. Am. Chem. Soc.,2009,131,13806-13812.
    [21]K. C. Bantz, C. L. Haynes, Surface-enhanced Raman scattering detection and discrimination of poly chlorinated biphenyls [J], Vib. Spectrosc,2009,50,29-35.
    [22]J. Du, C. Jing, Preparation of thiol modified Fe3O4@Ag magnetic SERS probe for PAHs detection and identification [J], J. Phys. Chem. C,2011,115, 17829-17835.
    [23]L. Guerrini, J. V. Garcia-Ramos, C. Domingo, S. Sanchez-Cortes, Sensing polycyclic aromatic hydrocarbons with dithiocarbamate-functionalized Ag nanoparticles by surface-enhanced Raman scattering [J], Anal. Chem.,2009,81, 953-960.
    [24]J. P. Yuan, Y. C. Lai, J. L. Duan, Q. Q. Zhao, J. H. Zhan, Synthesis of a β-cyclodextrin-modified Ag film by the galvanic displacement on copper foil for SERS detection of PCBs [J], J. Colloid Interface Sci.,2012,365,122-126.
    [25]Y. C. Lai, J. C. Cui, X. H. Jiang, S. Zhu, J. H. Zhan, Combination of solid phase extraction and surface-enhanced Raman spectroscopy for rapid analysis [J], Analyst,2013,138,2598-2603..
    [26]X. H. Jiang, Y. C. Lai, M. Yang, H. Yang, W. Jiang, J. H. Zhan, Silver nanoparticle aggregates on copper foil for reliable quantitative SERS analysis of polycyclic aromatic hydrocarbons with a portable Raman [J], Analyst,2012,137, 3995-4000.
    [27]K. Carron, L. Peitersen, M. Lewis, Octadecylthiol-modified surface-enhanced Raman spectroscopy substrates:a new method for the detection of aromatic compounds [J], Environ. Sci. Technol.,1992,26,1950-1954.
    [28]A. Ulman, Formation and structure of self-assembled monolayers [J], Chem. Rev., 1996,96,1533-1554.
    [29]K. E. Shafer-Peltier, C. L. Haynes, M. R. Glucksberg, R. P. Van Duyne, Toward a glucose biosensor based on surface-enhanced Raman scattering [J], J. Am. Chem. Soc,2003,125,588-593.
    [30]C. R. Yonzon, C. L. Haynes, X. Zhang, Jr. J. T. Walsh, R. P. Van Duyne, A glucose biosensor based on surface-enhanced Raman scattering:? improved partition layer, temporal stability, reversibility, and resistance to serum protein interference [J], Anal. Chem.,2004,76,78-85.
    [31]B. Kennedy, S. Spaeth, M. Dickey, K. Carron, Determination of the distance dependence and experimental effects for modified SERS substrates based on self-assembled monolayers formed using alkanethiols [J], J. Phys. Chem. B, 1999,103,3640-3646.
    [32]L. Xu, Y. Fang, Temperature-induced effect on surface-enhanced Raman scattering of p,m-hydroxybenzoic acid on silver nanoparticles [J], Spectrosc., 2003,18,26-31.
    [33]H.P. Chiang, P.T. Leung, W.S. Tse, Remarks on the Substrate-temperature dependence of surface-enhanced Raman scattering [J], J. Phys. Chem. B,2000, 104,2348-2350.
    [34]G Das, F. Mecarini, F. Gentile, F. D. Angelis, Temperature-induced effect on surface-enhanced Raman scattering of p,m-hydroxybenzoic acid on silver nanoparticles [J], Spectrosc.,2003,18,26-31.
    [35]S. E. J. Bell, N. M. S. Sirimuthu, Quantitative surface-enhanced Raman spectroscopy [J], Chem. Soc. Rev.,2008,37,1012-1024.
    [36]R. A. Alvarez-Puebla, L. M. Liz-Marzan, Environmental applications of plasmon assisted Raman scattering [J], Energy Environ. Sci.,2010,3,1011-1017.
    [37]Q. Zhou, Y. Yang, J. Ni, Z. Li, Z. Zhang, Rapid recognition of isomers of monochlorobiphenyls at trace levels by surface-enhanced Raman scattering using Ag nanorods as a substrate [J], Nano Res.,2010,3,423-428.
    [38]Y. Yang, G. Meng, Ag dendritic nanostructures for rapid detection of poly chlorinated biphenyls based on surface-enhanced Raman scattering effect [J], J. Appl. Phys.,2010,107,044315-1-5.
    [39]Y. Xie, X. Wang, X. Han, B. Zhao, Y. Ozaki, Selective SERS detection of each poly cyclic aromatic hydrocarbon (PAH) in a mixture of five kinds of PAHs [J], J. Raman Spectrosc,2011,42,945-950.
    [40]A. D. Becke, Density-functional thermochemistry. III. The role of exact exchange [J], J. Chem. Phys.,1993,87,5648-5652.
    [41]C. Lee, W. Yang, R. G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density [J], Phys. Rev. B,1998,37,785-789.
    [42]Y. C. Lai, W. X. Pan, S. Q. Ni, D. J. Zhang, J. H. Zhan, Theoretical evaluation of the configurations and Raman spectra of 209 polychlorinated biphenyl congeners [J], Chemosphere,2011,85,412-417.
    [1]W. Zheng, X. Wang, H. Yu, X. Tao, Y. Zhou, W. Qu, Global trends and diversity in pentachlorophenol levels in the environment and in humans:a meta-analysis [J], Environ. Sci. Technol.,2011,45,4668-4675.
    [2]J. Ge, J. Pan, Z. Fei, G. Wu, J. P. Giesy, Concentrations of pentachlorophenol (PCP) in fish and shrimp in Jiangsu Province, China [J], Chemosphere,2007,69, 164-169.
    [3]V. Vaidyanathan, P. W. Villalta, S. J. Sturla, Nucleobase-dependent reactivity of a quinone metabolite of pentachlorophenol [J], Chem. Res. Toxicol.,2007,20, 913-919.
    [4]H. Hong, H. Zhou, C. Lan, Y. Liang, Pentachlorophenol induced physiological-biochemical changes in Chlorella pyrenoidosa culture [J], Chemosphere,2010,81,1184-1188.
    [5]T. Luo, Z. Ai, L. Zhang, Fe@Fe2O3 core—shell nanowires as iron reagent.4. sono-fenton degradation of pentachlorophenol and the mechanism analysis [J], J. Phys. Chem. C,2008,112,8675-8681.
    [6]J. Muir, G. Eduljee, PCP in the freshwater and marine environment of the European Union [J], Sci. Total Environ.,1999,236,41-56.
    [7]H. O. Gulcan, Y. Liu, M. W. Duffel, Pentachlorophenol and other chlorinated phenols are substrates for human hydroxysteroid sulfotransferase SULT2A1 [J], Chem. Res. Toxicol.,2008,21,1503-1508.
    [8]F. Orton, I. Lutz, W. Kloas, E. J. Routledge, Endocrine disrupting effects of herbicides and pentachlorophenol:in vitro and in vivo evidence [J], Environ. Sci. Technol.,2009,43,2144-2150.
    [9]T. Basova, V. Plyashkevich, A. Hassan, A. G. Gurek, G. Gumu, V. Ahsen, Phthalocyanine films as active layers of optical sensors for pentachlorophenol detection [J], Sens. Actuators, B,2009,139,557-562.
    [10]A. M. Awawdeh, H. J. Harmon, Spectrophotometric detection of pentachlorophenol (PCP) in water using immobilized and water-soluble porphyrins [J], Biosens. Bioelectron.,2005,20,1595-1601.
    [11]M. Labra-Espina, B. Keith, J. H. T. Luong, A Flow injection (FI) biosensor system for pentachlorophenol (PCP) using a substrate recycling scheme [J], Environ. Sci. Technol.,2000,34,3291-3295.
    [12]C. Tang, G. Meng, Q. Huang, Z.; Huang, X. Zhang, M. Wang, A silica xerogel thin film based fluorescent sensor for pentachlorophenol rapid trace detection [J], Sens. Actuators, B,2012,171-172,332-337.
    [13]Y. G. Leblanc, R. Gilbert, J. Hubert, Determination of pentachlorophenol and its oil solvent in wood pole samples by SFE and GC with post-column flow splitting for simultaneous detection of the species [J], Anal. Chem.,1999,71,78-85.
    [14]C. Mardones, J. Palma, C. Sepulveda, A. Berg, D. von Baer, Determination of tribromophenol and pentachlorophenol and its metabolite pentachloroanisole in Asparagus officinalis by gas chromatography/mass spectrometry [J], J. Sep. Sci., 2003,26,923-926.
    [15]M. L. Reyzer, J. S. Brodbelt, Analysis of fire ant pesticides in water by solid-phase microextraction and gas chromatography/mass spectrometry or high-performance liquid chromatography/mass spectrometry [J], Anal. Chim. Acta,2001,436,11-20.
    [16]U. Berger, D. Herzke, T. M. Sandanger, Two trace analytical methods for determination of hydroxylated PCBs and other halogenated phenolic compounds in eggs from Norwegian birds of prey [J], Anal. Chem.,2004,76,441-452.
    [17]Q. Mei, Z. Zhang, Photoluminescent graphene oxide ink to print sensors onto microporous membranes for versatile visualization bioassays [J], Angew. Chem. Int. Ed.,2012,51,5602-5606.
    [18]R. A. Alvarez-Puebla, Effects of the excitation wavelength on the SERS spectrum [J], J. Phys. Chem. Lett.,2012,3,857-866.
    [19]J. Du, C. Jing, Preparation of thiol modified Fe3O4@Ag magnetic SERS probe for PAHs detection and identification [J], J. Phys. Chem. C,2011,115, 17829-17835.
    [20]K. C. Bantz, C. L. Haynes, Surface-enhanced Raman scattering detection and discrimination of poly chlorinated biphenyls [J], Vib. Spectrosc.,2009,50,29-35.
    [21]C. Zhu, G. Meng, Q. Huang, Large-scale well-separated Ag nanosheet-assembled micro-hemispheres modified with HS-β-CD as effective SERS substrates for trace detection of PCBs [J], J. Mater. Chem.,2012,22,2271-2278.
    [22]O. Peron, E. Rinnert, T. Toury, M. L. Chapelle, C. Compere, Quantitative SERS sensors for environmental analysis of naphthalene [J], Analyst,2011,136, 1018-1022.
    [23]Q. An, P. Zhang, J. Li, W. Ma, J. Guo, J. Hu, C. C. Wang, Silver-coated magnetite-carbon core-shell microspheres as substrate-enhanced SERS probes for detection of trace persistent organic pollutants [J]. Nanoscale,2012,4, 5210-5216.
    [24]E. Z. Tan, P. G. Yin, T. You, H. Wang, L. Guo, Three dimensional design of large-scale TiO2 nanorods scaffold decorated by silver nanoparticles as SERS sensor for ultrasensitive malachite green detection [J], ACS Appl. Mater. Interfaces,2012,4,3432-3437.
    [25]O. Lyandres, N. C. Shah, C. R. Yonzon, J. T. Walsh Jr, M. R. Glucksberg, R. P. Van Duyne, Real-time glucose sensing by surface-enhanced Raman spectroscopy in bovine plasma facilitated by a mixed decanethiol/mercaptohexanol partition layer [J], Anal. Chem.,2005,77,6134-6139.
    [26]N. Gandra, S. Singamaneni, Bilayered Raman-intense gold nanostructures with hidden tags (BRIGHTs) for high-resolution bioimaging [J], Adv. Mater.,2013, 25,1022-1027.
    [27) X. M. Qian, S. Nie, Single-molecule and single-nanoparticle SERS:from fundamental mechanisms to biomedical applications [J], Chem. Soc. Rev.,2008, 37,912-920.
    [28]N. L. Rosi, C. A. Mirkin, Nanostructures in biodiagnostics [J], Chem. Rev., 2005,105,1547-1562.
    [29]K. E. Murray, S. M. Thomas, A. A. Bodour, Prioritizing research for trace pollutants and emerging contaminants in the freshwater environment [J], Environ. Pollut,2010,158,3462-3471.
    [30]A. Loren, J. Engelbrektsson, Internal Standard in Surface-enhanced Raman spectroscopy [J], Anal. Chem.,2004,76,7391-7395.
    [31]J. Du, C. Jing, Preparation of Thiol modified Fe3O4@Ag magnetic SERS probe for PAHs detection and identification [J], J. Phys. Chem. C,2011,115, 17829-17835.
    [32]Y. C. Lai, J. C. Cui, X. H. Jiang, S. Zhu, J. H. Zhan, Combination of solid phase extraction and surface-enhanced Raman spectroscopy for rapid analysis [J], Analyst,2013,138,2598-2603.
    [33]J. P. Yuan, Y. C. Lai, J. L. Duan, Q. Q. Zhao, J. H. Zhan, Synthesis of a β-cyclodextrin-modified Ag film by the galvanic displacement on copper foil for SERS detection of PCBs [J], J. Colloid Interface Sci.,2012,365,122-126.
    [34]M. Sanles-Sobrido, L. Rodriguez-Lorenzo, S. Lorenzo-Abalde, A. Gonzalez-Fernandez, M. A. Correa-Duarte, R. A. Alvarez-Puebla, L. M. Liz-Marzan, Label-free SERS detection of relevant bioanalytes on silver-coated carbon nanotubes:the case of cocaine [J],Nanoscale,2009,1,153-158.
    [35]N. H. Kim, S. J. M. Lee, Moskovits, Aptamer-mediated surface-enhanced Raman spectroscopy intensity amplification [J], Nano Lett.,2010,10,4181-4185.
    [36]R.A. Alvarez-Puebla, R. F. Aroca, Synthesis of silver nanoparticles with controllable surface charge and their application to surface-enhanced Raman scattering [J], Anal. Chem.,2009,81,2280-2285
    [37]X. H. Jiang, Y. C. Lai, M. Yang, H. Yang, W. Jiang, J. H. Zhan, Silver nanoparticle aggregates on copper foil for reliable quantitative SERS analysis of poly cyclic aromatic hydrocarbons with a portable Raman spectrometer [J], Analyst,2012,137,3995-4000
    [38]M. Wirde, U. Gelius, L. Nyholm, Self-assembled monolayers of cystamine and cysteamine on gold studied by XPS and voltammetry [J], Langmuir,1999,15, 6370-6378.
    [39]R. K. Shervedani, S. A. Mozaffari, Copper (Ⅱ) nanosensor based on a gold cysteamine self-assembled monolayer functionalized with salicylaldehyde [J], Anal. Chem.,2006,78,4957-4963.
    [40]G. Jie, B. Liu, H. Pan, J. J. Zhu, H. Y. Chen, CdS nanocrystal-based electrochemiluminescence biosensor for the detection of low-density lipoprotein by increasing sensitivity with gold nanoparticle amplification [J], Anal. Chem., 2007,79,5574-5581.
    [41]A. Cerf, G. Molnar, C. Vieu, Novel approach for the assembly of highly efficient SERS substrates [J], ACS Appl. Mater. Interfaces,2009,1,2544-2550.
    [42]Y. Jin, Y. Shao, S. Dong, Direct electrochemistry and surface plasmon resonance characterization of alternate layer-by-layer self-assembled DNA-myoglobin thin films on chemically modified gold surfaces [J], Langmuir,2003,19,4771-4777.
    [43]R. Duan, X. Zhou, D. Xing, Electrochemiluminescence biobarcode method based on cysteamine-gold nanoparticle conjugates [J], Anal. Chem.,2010,82, 3099-3103.
    [44]J. Hao, M-J. Han, J. Li, X. Meng, Surface modification of silver nanofilms for improved perchlorate detection by surface-enhanced Raman scattering [J], J. Colloid Interface Sci.,2012,377,51-57.
    [45]A. Pawlukojc, I. Natkaniec, I. Majerz, L. Sobczyk, Inelastic neutron scattering studies on low frequency vibrations of pentachlorophenol [J], Spectrochim. Acta, Part A,2001,57,2775-2779.
    [46]R. Contreras-Caceres, S. Abalde-Cela, P. Guardia-Giros, R. A. Alvarez-Puebla, M. Liz-Marzan, Luis. Multifunctional microgel magnetic/optical traps for SERS ultradetection [J], Langmuir,2011,27,4520-4525.
    [47]H. F. Wang, Y. He, T. R. Ji, X. P. Yan, Surface molecular imprinting on Mn-doped ZnS quantum dots for room-temperature phosphorescence optosensing of pentachlorophenol in water [J], Anal. Chem.,2009,81, 1615-1621.
    [48]R. Tu, B. Liu, Z. Wang, Z. Zhang, Amine-capped ZnS-Mn2+ nanocrystals for fluorescence detection of trace TNT explosive [J], Anal. Chem.,2008,80, 3458-3465.
    [49]M. Yang, A. Han, J. Duan, Z. Li, Y. Lai, J. Zhan, Magnetic nanoparticles and quantum dots co-loaded imprinted matrix for pentachlorophenol [J], J. Hazard. Mater.,2012,237-238,63-70.
    [50]Y. Xie, S. Li, K. Wu, J. Wang, G. Liu, A hybrid adsorption/ultrafiltration process for perchlorate removal [J], J. Membr. Sci.,2011,366,237-244.
    [51]A. Michota, A. Kudelski, J. Bukowska, Contact-angle titrations of mixed.omega.-mercaptoalkanoic acid/alkanethiol monolayers on gold, reactive vs nonreactive spreading, and chain length effects on surface pKa Values [J], Langmuir,1994,10,3675-3683.
    [52]H. Z. Yu, J. W. Zhao, Y. Q. Wang, S. M. Cai, Z. F. Liu, Fabricating an azobenzene self-assembled monolayer via step-by-step surface modification of a cysteamine monolayer on gold [J], J. Electroanal. Chem.,1997,438,221-224.
    [53]A. Kudelski, Hill, W. Raman study on the structure of cysteamine monolayers on silver [J], Langmuir,1999,15,3162-3168.
    [54]C. Li, Q. Kang, Y. Chen, Q. Cai, S. Yao, Electrochemiluminescence of luminol on Ti/TiO2 NT electrode and its application for pentachlorophenol detection [J], Analyst,2010,135,2806-2810.
    [55]E. Gremaud, R. J. Turesky, Rapid analytical methods to measure pentachlorophenol in wood [J], J. Agric. Food Chem.,1997,45,1229-1233.
    [56]Wu, Y. H. Nano-TiO2/dihexadecylphosphate based electrochemical sensor for sensitive determination of pentachlorophenol [J], Sens. Actuators, B,2009,137, 180-184.
    [57]S. M. Ansar, X. Li, S. Zou, D. Zhang, Quantitative comparison of Raman activities, SERS activities, and SERS enhancement factors of organothiols: implication to chemical enhancement [J], J. Phys. Chem. Le,tt.,2012,3, 560-565.
    [58]L. Guerrini, J. V. Garcia-Ramos, C. Domingo, S. Sanchez-Cortes, Sensing polycyclic aromatic hydrocarbons with dithiocarbamate-functionalized Ag nanoparticles by surface-enhanced Raman scattering [J], Anal. Chem.,2009,81, 953-960.
    [59]I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum [J], J. Am. Chem. Soc.,1918,40,1361-1402.
    [60]J. Kneipp, H. Kneipp, K. Kneipp, SERS-a single-molecule and nanoscale tool for bioanalytics [J], Chem. Soc. Rev.,2008,37,1052-1060.
    [61]Q. Feng, L. Zhao, J. Lin, Molecularly imprinted polymer as micro-solid phase extraction combined with high performance liquid chromatography to determine phenolic compounds in environmental water samples [J], Anal. Chim. Acta, 2009,650,70-76.
    [62]M. C. S. Pierre, A. J. Haes, Purification implications on SERS activity of silica coated gold nanospheres [J], Anal. Chem.,2012,84,7906-7911.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700