用户名: 密码: 验证码:
银、金纳米团簇的合成及其在生化分析中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
贵金属纳米团簇(Noble metal naonoclusters)是由几个到数百个金属原子堆积而成,尺寸与费米波长相当,呈现有类似半导体的特征,可以产生特定的能级分离并在一定波长光激发下发射荧光。相比有机荧光染料、半导体量子点、聚合物纳米颗粒等荧光纳米探针而言,贵金属纳米簇由于其独特的电子结构和随之产生的不同寻常的物理、化学性质,在纳米材料研究中备受关注,可以作为颇有前景的荧光探针广泛应用于生化传感、生物标记、光学成像及单分子成像研究等领域。但是目前对于贵金属纳米团簇的研究还存在着一定的缺陷和不足,比如荧光量子产率(QY)高、生物相容性好并且简单易重复的贵金属纳米团簇难以合成,基于贵金属纳米簇的高灵敏分析方法有待提高,以及贵金属纳米簇的化学活性很高、在溶液中性能不够稳定等问题。因此,本文以贵金属纳米簇为研究对象,针对银纳米团簇(AgNCs)和金纳米团簇(AuNCs)在合成及荧光分析和成像中存在的问题,进行了以下两个部分的研究:
     1. AgNCs的设计合成及其在生化分子检测中的应用
     首先,我们合理设计了寡聚核苷酸序列并将其作为模板合成了高发光性能的AgNCs。当用寡聚核苷酸作为模板分子来合成AgNCs时,其序列结构对产物的性能影响很大。在所有核苷酸的碱基中胞嘧啶(C碱基)具有与Ag+最强的结合能力,寡聚鸟苷酸(G碱基)大量存在易发生自折叠,在序列中同时存在腺嘌呤(A碱基)、胸腺嘧啶(T碱基)时易发生杂交从而导致自身团聚,并且模板中如果胞嘧啶比例过高易使合成的银纳米簇发生自吸,降低其发光效率。综合考虑以上这些因素,我们采用了胞嘧啶和腺嘌呤各占50%的寡聚核苷酸序列作为模板分子,成功地制备出稳定性好、荧光性能优异的DNA-AgNCs,与对照组的寡聚核苷酸稳定的银纳米簇相比较,验证了我们设计思路的合理性。同时,实验发现含巯基药物可以高选择性地与银簇通过Ag-S共价键发生相互作用,使得DNA-AgNCs的荧光被静态猝灭。基于这一原理,我们建立了一种以抗高血压药物卡托普利为代表的含巯基物质的荧光分析新方法。该方法快速、准确、选择性好、灵敏度高、抗干扰能力强,可成功应用于实际样品卡托普利片的分析。
     其次,在文献合成寡聚核苷酸稳定的银纳米簇的基础上,我们提出了一种具有高信噪比的荧光“开-关-开”式策略,用于高选择性、高灵敏地定量检测细菌严紧激素(ppGpp)。ppGpp是细菌在面临各种极端条件下产生的一种重要生理信号分子,定量分析ppGpp对我们监测细菌的生理活动具有十分重要的意义。在此,我们利用Cu2+作为荧光猝灭剂,当其与DNA-AgNCs接触时会导致DNA-AgNCs的荧光发生猝灭,而Cu2+又可以通过配位作用对ppGpp进行特异性的识别,所以当ppGpp被引入到Cu2+-AgNCs复合物中时,使得DNA-AgNCs的荧光信号得以恢复。DNA-AgNCs的荧光“开-关-开”现象,降低了方法的背景信号,提高了检测方法的信噪比,也实现了高特异性识别。基于此,我们不仅可以实现2-200μmol/L宽线性范围内ppGpp的高选择性测定,而且还加深了我们对DNA-AgNCs, Cu2+和ppGpp之间相互作用的理解。与已报道的检测ppGpp的方法相比较,本方法简单、快速、选择性好、灵敏度高、具有相对较宽的检测范围,而且还避免了用于识别ppGpp的有机配体的复杂合成。该研究为我们选择高识别度、高信噪比的贵金属纳米团簇作为荧光探针用于生化分析检测开拓了新思路。
     2.高荧光量子产率的AuNCs的合成及其在光学成像中的应用
     首先,我们发展了快速、简单、高效的绿色方法制备出性质稳定且具有优异发光性能的BSA-Au20NCs。通过筛选合适的配体、设计合理的合成路线以及调控反应动力学,我们成功地解决了在水溶液中快速合成高荧光量子产率、高稳定性的AuNCs这一技术难题。在这种新型发光BSA-Au20NCs纳米探针的制备过程中,有效地避免了使用有机溶剂或有毒的反应试剂,也不需要复杂的样品制备和纯化过程,并且整个实验过程在1小时内便可完成。通过调控反应体系的酸碱性和适宜的温度等来加速还原动力学,最终制备出小尺寸的BSA-Au20NCs,其荧光量子产率高达15%,生物相容性好,可以在较宽的pH范围内维持荧光性质稳定,长时间光激发下不会发生光漂白现象,而且在各种不同的生物介质中均具有高度稳定性。因此,我们合成的BSA-Au20NCs有望作为优异的荧光探针进一步应用于生化传感、生物标记和生物成像等领域。
     除了发展液相合成,我们还在固相界面上原位合成了AuNCs,即利用天然蚕丝作为模板分子,通过其表面蛋白质与金前驱体的氧化还原反应制备出掺杂了AuNCs的发光蚕丝。AuNCs由于其亚纳米尺寸而具有较高的表面能,使得在液相中的Au原子具有较高的化学活性,容易发生重排或团聚,从而限制了其诸多应用。因此,我们通过在固相界面上原位合成蛋白稳定的AuNCs,较好地解决了这一难题,并很好地保持了AuNCs优异的光学性能。我们的研究将原位固定AuNCs与蚕丝改性同时结合起来,阐释了一种可以通过纳米技术,原位化学制备掺杂AuNCs的发光蚕丝的简单方法。该方法制备得到的发光蚕丝在紫外光照射下呈现出强烈、稳定的红色荧光(绝对量子产率为8%),具有较长的荧光寿命和优良的生物安全性。此外,这种掺杂了AuNCs的发光蚕丝相比天然蚕丝而言,具有更好的机械性能(约提升1.3倍)和抗紫外线能力(约提升1.5倍)。作为一种通用的方法,我们采用类似的技术可以直接得到在天然蚕丝织物上掺杂了AuNCs的发光蚕丝织物。得益于这些优势,我们进一步将这种发光蚕丝和发光蚕丝织物成功地应用于防伪标记的设计和应用。
     最后,我们利用叶酸和透明质酸作为主动靶向识别基团,分别对BSA-Au20NCs进行表面功能化,并将功能化的BSA-Au20NCs成功应用于体内外主动靶向成像的研究中。目前,基于AuNCs探针的荧光成像研究大多依赖于纳米材料自身性质带来的被动靶向作用机制,即利用其亚纳米的尺寸效应,通过细胞内吞和纳米探针的高通量高滞留效应使得AuNCs探针富积到肿瘤部位,因此成像效果不够理想。在此基础上,我们首先将可以与癌细胞表面受体分子进行特异性识别的配体修饰到性能优越的BSA-Au20NCs表面,通过特异性受体介导的主动靶向作用方式将功能化的BSA-Au20NCs探针富积到肿瘤区域,并利用BSA-Au20NCs探针的荧光信号对癌细胞和肿瘤进行鉴别、成像,以实现对癌症的早期检测。相比于被动靶向机制的荧光成像模式,受体介导的主动靶向成像模式可以实现对肿瘤部位更高效、全面地标记和成像效果。因此,本文所制备的功能化BSA-Au20NCs荧光探针及受体介导的主动靶向荧光成像模式将有望在癌症的早期诊断及临床治疗中发挥重要作用。
     总之,本文合成了生物大分子稳定的银和金纳米簇,基于其优异的性能,以荧光光谱法和荧光成像为主要研究手段,进一步将制备的发光贵金属纳米簇应用于生化分析中。一方面,我们通过合理地设计寡核苷酸序列合成了荧光性质优异的AgNCs,探讨了不同寡聚核苷酸稳定AgNCs的荧光性质及其对分析物的响应模式,并成功地将其用于含巯基药物和细菌生理过程中重要信号分子的高选择性、高灵敏度分析检测;另一方面,通过调控反应动力学,我们分别成功地在液相和固相基质中合成了蛋白质稳定的AuNCs。基于AuNCs优异的发光性能和稳定性,我们进一步将功能化AuNCs用于生物体内外肿瘤的主动靶向成像研究。本论文的创新之处主要体现在两个方面:一是拓展了具有优异发光性能的贵金属纳米簇的制备,二是基于贵金属纳米簇优异的荧光性质构建了高灵敏的荧光分析和成像新方法。
Noble metal nanoclusters, especially silver and gold nanoclusters (AgNCs and AuNCs), can exhibit molecule-like electronic transitions between HOMO-LUMO energy level due to their small size. Owning to their unique electronic structure as well as physical and chemical properties, the noble metal nanoclusters have attracted much attention recently and have been widely used in biosensing, biolabeling, optical imaging, single-molecule imaging, and so on. Compared to organic fluorescent dyes, semiconductor quantum dots, and fluorescent polymer nanoparticles, the noble metal nanoclusters have many advantages including non-toxicity, non-photobleaching, and tunable emission. However, there are still some shortcomings related to the synthesis and applications of noble metal nanoclusters such as complicated preparation process, low fluorescent quantum yield, and poor stability. To address the above issues, we have systematically studied the synthesis of AgNCs and AuNCs as well as their applications in fluorescent analysis and imaging. This thesis includes the following two parts:
     Part Ⅰ Synthesis of AgNCs for biological and chemical analysis, including the following two parts:
     Based on the selective recognition of cytosine and Ag+, we designed a specific oligonucleotide as the stabilizer and achieved the synthesis of AgNCs with strong fluorescence and excellent biocompatibility. The used oligonucleotide contains half of cytosine bases and half of adenine bases, which is not easy to be self-folding or hybridization. The as-prepared AgNCs were further used to detect thiol-containing drugs. The results demonstrated that thiol-containing drugs could selectively interact with AgNCs via the strong Ag-S interaction, and effectively quench the fluorescence of AgNCs following a simple static quenching mechanism. A new spectrofluorometry for highly selective and sensitive detection of captopril was proposed, showing that the present method has the advantages of speediness, accuracy, high selectivity and sensitivity for the assay. In order to confirm the practicality of this method, it has been used for the determination of captopril in tablets.
     Then, a facile strategy for highly selective and sensitive detection of bacterial alarmone, ppGpp, which is generated when bacteria face stress circumstances such as nutritional deprivation, has been established. Herein, based on the strong fluorescent quenching effect of Cu2+on DNA-AgNCs as well as the specific recognition between Cu2+and ppGpp, we report a "turn-on" fluorescent method for the detection of ppGpp.This work not only achieved highly selective detection of ppGpp in a broad range concentration of2-200μmol/L, but also improved our understanding of the specific recognitions among DNA-AgNCs, Cu2+, and ppGpp. This strategy has also identified that AgNCs functionalized with a specific molecule on their surfaces can be engineered as a novel fluorescent probe for a wide range of applications such as biosensing and bioimaging.
     Part Ⅱ Synthesis of AuNCs for optical imaging, including the following three parts:
     Firstly, we rapidly synthetized bovine serum albumin (BSA) stabilized Au20nanoclusters (BSA-Au20NCs) with high fluorescence quantum yield (QY) up to15%. The success of this synthesis relied on the rational manipulation of reaction kinetics and screening of an appropriate ligand to stabilize the formed AuNCs. This new protocol for the synthesis avoided complex treatment, long-time preparation process, and the use of toxic solvents. More importantly, the as-obtained Au20NCs have a lot of advantages including small sizes, high fluorescence QY, excellent photostability, non-toxicity, and good stability in biological systems, which make them ideal candidates for optical imaging in vitro and in vivo.
     Except for solution phase, the AuNCs can also be synhesized on the surfaces of solid substrates. We demonstrated that luminescent silk and fabric could be produced through nanotechnology-in situ chemically coating with luminescent AuNCs on the surface of natural silk fiber. This syntheis relied on a redox reaction between protein-based silk and Au salt precursor. The luminescent silk coated with AuNCs (we call it as golden silk) possesses good optical properties including relatively long wavelength emission, high quantum yield, long fluorescent lifetime, and photostability. Moreover, the as-prepared golden silk showed better mechanical property (1.3times) and performance to interdict UV light (1.5times) than pristine silk, together with good biosafety. Benefiting from these advantages, as a concept of proof, we further demonstrated that such photoluminescent silk was an excellent candidate for anti-counterfeiting. This work not only provided an effective strategy for in situ preparation of luminescent metal nanoclusters on solid substrate, but also paved the way for large-scale fabrication of novel silk-based materials or fabrics through nanotechnology.
     Finally, we prepared a functionalized Au20NCs probe for the recoginition of tumor sites via active-targeted mode. The previous studies on the uptake of nanoprobes for imaging are usually based on the passive mode (e.g., endocytosis). In this case, the efficiency for the uptake would be relatively low, and the probes were also not able to selectively accumulate at tumor sites. To solve the above issues, our work indicated that the uptake of Au20NCs by both cancer cells and tumor-bearing nude mice could be improved by receptor-mediated internalization, compared with that by passive targeting. The results demonstrated that the functionalized-Au20NCs were excellent probes for active tumor-targeted imaging in vitro and in vivo. We believe this general strategy of active tumor-targeted optical imaging based on the functionalized Au20NCs is promising can be applied in clinical cancer diagnosis and therapy in the future.
     In summary, we have synthesized biomolecule-stabilized AgNCs and AuNCs with excellent fluorescenct properties and further used them for a variety of purposes. On the one hand, we have designed oligonucleotide-stabilized AgNCs and successfully applied them in drug assay and the detection of important signaling molecule in bacteria. On the other hand, we have prepared BSA-stabilized AuNCs in solution phase and on solid substrate, respectively. By manipulating the reaction kinetics, AuNCs with high fluorescent QYs and stability can be obtained. Then, we employed the functionalized-AuNCs as optical nanoprobes for active tumor-targeted imaging in vitro and in vivo. The established methods for the synthesis and applications of noble metal nanoclusters were simple and effective, and thus could be expanded to other ordinary laboratories. The innovation of this thesis is mainly in the following two aspects:firstly, we developed simple approaches for the synthesis of noble metal nanoclusters with good properties; secondly, we developed effective platforms for biosensing and bioimaging based on the excellent fluorescent properties of noble metal nanoclusters.
引文
[1]Diez, I.; Ras, R. H. A. Fluorescent Silver Nanoclusters. Nanoscale 2011,3,1963-1970.
    [2]Shang, L.; Dong, S.; Nienhaus, G. U. Ultra-Small Fluorescent Metal Nanoclusters:Synthesis and Biological Applications. Nano Today 2011,6,401-418.
    [3]Guo, S.; Wang, E. Noble Metal Nanomaterials:Controllable Synthesis and Application in Fuel Cells and Analytical Sensors. Nano Today 2011,6,240-264.
    [4]Yau, S. H.; Varnavski, O.; Goodson, T. An Ultrafast Look at Au Nanoclusters. Acc. Chem. Res.2013,46,1506-1516.
    [5]Zheng, J.; Zhang, C.; Dickson, R. M. Highly Fluorescent, Water-Soluble, Size-Tunable Gold Quantum Dots. Phys. Rev. Lett.2004,93,077402.
    [6]Wilcoxon, J. P.; Abrams, B. L. Synthesis, Structure and Properties of Metal Nanoclusters. Chem. Soc. Rev.2006,35,1162-1194.
    [7]Shang, L.; Nienhaus, G. U. Gold Nanoclusters as Novel Optical Probes for in Vitro and in Vivo Fluorescence Imaging. Biophys Rev 2012,4,313-322.
    [8]Jin, R.; Egusa, S.; Scherer, N. F. Thermally-Induced Formation of Atomic Au Clusters and Conversion into Nanocubes. J. Am. Chem. Soc.2004,126,9900-9901.
    [9]Goswami, N.; Baksi, A.; Giri, A.; Xavier, P. L.; Basu, G.; Pradeep, T.; Pal, S. K. Luminescent Iron Clusters in Solution. Nanoscale 2014,6,1848-1854.
    [10]Lu, Y.; Chen, W. Sub-Nanometre Sized Metal Clusters:From Synthetic Challenges to the Unique Property Discoveries. Chem. Soc. Rev.2012,41,3594-3623.
    [11]Muhammed, M. A. H.; Ramesh, S.; Sinha, S. S.; Pal, S. K.; Pradeep, T. Two Distinct Fluorescent Quantum Clusters of Gold Starting from Metallic Nanoparticles by pH-Dependent Ligand Etching. Nano Res.2008,1,333-340.
    [12]Yuan, X.; Luo, Z.; Yu, Y.; Yao, Q.; Xie, J. Luminescent Noble Metal Nanoclusters as an Emerging Optical Probe for Sensor Development. Chem. Asian J.2013,8,858-871.
    [13]Xie, J.; Zheng, Y.; Ying, J. Y. Protein-Directed Synthesis of Highly Fluorescent Gold Nanoclusters. J. Am. Chem. Soc.2009,131,888-889.
    [14]Shang, L.; Dong, S. Silver Nanocluster-Based Fluorescent Sensors for Sensitive Detection of Cu(II). J. Mater. Chem.2008,18,4636-4640.
    [15]Lee, T.-H.; Gonzalez, J. I.; Zheng, J.; Dickson, R. M. Single-Molecule Optoelectronics. Acc. Chem. Res.2005,38,534-541.
    [16]Gonzalez, B. S.; Blanco-Varela, M. d. C.; Lopez-Quintela, M. A. Single Step Electrochemical Synthesis of Hydrophilic/Hydrophobic Ag5 and Ag6 Blue Luminescent Clusters. Nanoscale 2012,4,7632-7635.
    [17]Zhang, J.; Xu, S.; Kumacheva, E. Photogeneration of Fluorescent Silver Nanoclusters in Polymer Microgels. Adv. Mater.2005,17,2336-2340.
    [18]Yuan, X.; Luo, Z.; Zhang, Q.; Zhang, X.; Zheng, Y.; Lee, J. Y.; Xie, J. Synthesis of Highly Fluorescent Metal (Ag, Au, Pt, and Cu) Nanoclusters by Electrostatically Induced Reversible Phase Transfer. ACS Nano 2011,5,8800-8808.
    [19]Ledo-Suarez, A.; Rivas, J.; Rodriguez-Abreu, C. F.; Rodriguez, M. J.; Pastor, E.; Hernandez-Creus, A.; Oseroff, S. B.; Lopez-Quintela, M. A. Facile Synthesis of Stable Subnanosized Silver Clusters in Microemulsions. Angew. Chem. Int. Ed.2007,46, 8823-8827.
    [20]Ozin, G. A.; Huber, H. Cryophotoclustering Techniques for Synthesizing Very Small, Naked Silver Clusters Agn of Known Size (Where N=2-5). The Molecular Metal Cluster-Bulk Metal Particle Interface. Inorg. Chem.1978,17,155-163.
    [21]Shichibu, Y.; Negishi, Y.; Tsunoyama, H.; Kanehara, M.; Teranishi, T.; Tsukuda, T. Extremely High Stability of Glutathionate-Protected Au25 Clusters against Coreetching. Small 2007,5,835-839.
    [22]Choi, S.; Dickson, R. M.; Yu, J. Developing Luminescent Silver Nanodots for Biological Applications. Chem. Soc. Rev.2012,41,1867-1891.
    [23]Goel, S.; Wu, Z.; Zones, S. I.; Iglesia, E. Synthesis and Catalytic Properties of Metal Clusters Encapsulated within Small-Pore (Sod, Gis, Ana) Zeolites. J. Am. Chem. Soc. 2012,134,17688-17695.
    [24]Kawasaki, H.; Yamamoto, H.; Fujimori, H.; Arakawa, R.; Iwasaki, Y.; Inada, M. Stability of the DMF-Protected Au Nanoclusters:Photochemical, Dispersion, and Thermal Properties. Langmuir 2010,26,5926-5933.
    [25]Li, J. K.-J.; Ke, C.-J.; Lin, C.-A. J.; Cai, Z.-H.; Chen, C.-Y; Chang, W. H. Facile Method for Gold Nanocluster Synthesis and Fluorescence Control Using Toluene and Ultrasound J. Med. Biol. Eng.2013,33,23-28.
    [26]Huang, C.-C.; Yang, Z.; Lee, K.-H.; Chang, H.-T. Synthesis of Highly Fluorescent Gold Nanoparticles for Sensing Mercury(II). Angew. Chem. Int. Ed.2007,46,6824-6828.
    [27]Qian, H.; Zhu, M.; Wu, Z.; Jin, R. Quantum Sized Gold Nanoclusters with Atomic Precision. Acc. Chem. Res.2012,45,1470-1479.
    [28]Tseng, Y.-T.; Chang, H.-T.; Chen, C.-T.; Chen, C.-H.; Huang, C.-C. Preparation of Highly Luminescent Mannose-Gold Nanodots for Detection Andinhibition of Growth of Escherichia Coli. Biosens. Bioelectron.2011,27,95-100.
    [29]Negishi, Y; Tsukuda, T. One-Pot Preparation of Subnanometer-Sized Gold Clusters Via Reduction and Stabilization by Meso-2,3-Dimercaptosuccinic Acid. J. Am. Chem. Soc. 2003,125,4046-4047.
    [30]Yao, H.; Miki, K.; Nishida, N.; Sasaki, A.; Kimura, K. Large Optical Activity of Gold Nanocluster Enantiomers Induced by a Pair of Optically Active Penicillamines. J. Am. Chem. Soc.2005,127,15536-15543.
    [31]Annie Ho, J.-a.; Chang, H.-C.; Su, W.-T. Dopa-Mediated Reduction Allows the Facile Synthesis of Fluorescent Gold Nanoclusters for Use as Sensing Probes for Ferric Ions. Anal. Chem.2012,84,3246-3253.
    [32]Lauren, W.; Wei, A.; Turner, H. C.; Bao, Y. Synthesis and Modeling of Fluorescent Gold Nanoclusters. JOSHUA 2010,7,24-27.
    [33]Zheng, J.; Dickson, R. M. Individual Water-Soluble Dendrimer-Encapsulated Silver Nanodot Fluorescence. J. Am. Chem. Soc.2002,124,13982-13983.
    [34]Santiago Gonzalez, B.; Rodriguez, M. a. J.; Blanco, C.; Rivas, J.; Lopez-Quintela, M. A.; Martinho, J. M. G One Step Synthesis of the Smallest Photoluminescent and Paramagnetic PVP-Protected Gold Atomic Clusters. Nano Lett.2010,10,4217-4221.
    [35]Muhammed, M. A. H.; Aldeek, F.; Palui, G.; Trapiella-Alfonso, L.; Mattoussi, H. Growth of in Situ Functionalized Luminescent Silver Nanoclusters by Direct Reduction and Size Focusing. ACS Nano 2012,6,8950-8961.
    [36]Duan, H.; Nie, S. Etching Colloidal Gold Nanocrystals with Hyperbranched and Multivalent Polymers:A New Route to Fluorescent and Water-Soluble Atomic Clusters. J. Am. Chem. Soc.2007,129,2412-2413.
    [37]Chevrier, D. M.; Chatt, A.; Zhang, P. Properties and Applications of Protein-Stabilized Fluorescent Gold Nanoclusters:Short Review. J. Nanophoton.2013,6,064504.
    [38]Petty, J. T.; Story, S. P.; Hsiang, J.-C.; Dickson, R. M. DNA-Templated Molecular Silver Fluorophores. J. Phys. Chem. Lett.2013,4,1148-1155.
    [39]Latorre, A.; Somoza,1. DNA-Mediated Silver Nanoclusters:Synthesis, Properties and Applications. Chem. Bio. Chem.2012,13,951-958.
    [40]Le Guevel, X.; Hotzer, B.; Jung, G.; Hollemeyer, K.; Trouillet, V.; Schneider, M. Formation of Fluorescent Metal (Au, Ag) Nanoclusters Capped in Bovine Serum Albumin Followed by Fluorescence and Spectroscopy. J. Phys. Chem. C 2011,115,10955-10963.
    [41]Chaudhari, K.; Xavier, P. L.; Pradeep, T. Understanding the Evolution of Luminescent Gold Quantum Clusters in Protein Templates. ACS Nano 2011,5,8816-8827.
    [42]Peyser-Capadona, L.; Zheng, J.; Gonzalez, J. I.; Lee, T.-H.; Patel, S. A.; Dickson, R. M. Nanoparticle-Free Single Molecule Anti-Stokes Raman Spectroscopy. Phys. Rev. Lett. 2005,94,058301.
    [43]Dhanya, S.; Saumya, V.; Rao, T. P. Synthesis of Silver Nanoclusters, Characterization and Application to Trace Level Sensing of Nitrate in Aqueous Media. Electrochim. Acta 2013, 102,299-305.
    [44]Gross, E.; Liu, J. H.; Alayoglu, S.; Marcus, M. A.; Fakra, S. C.; Toste, F. D.; Somorjai, G. A. Asymmetric Catalysis at the Mesoscale:Gold Nanoclusters Embedded in Chiral Self-Assembled Monolayer as Heterogeneous Catalyst for Asymmetric Reactions. J. Am. Chem. Soc.2013,135,3881-3886.
    [45]Aldeek, F.; Ji, X.; Mattoussi, H. Quenching of Quantum Dot Emission by Fluorescent Gold Clusters:What It Does and Does Not Share with the Forster Formalism. J. Phys. Chem. C 2013,117 15429-15437.
    [46]Vosch, T.; Antoku, Y.; Hsiang, J.-C.; Richards, C. I.; Gonzalez, J. I.; Dickson, R. M. Strongly Emissive Individual DNA-Encapsulated Ag Nanoclusters as Single-Molecule Fluorophores. Proc. Natl. Acad. Sci. USA 2007,104,12616-12621.
    [47]Le Guevel, X.; Hotzer, B.; Jung, G; Schneider, M. Nir-Emitting Fluorescent Gold Nanoclusters Doped in Silica Nanoparticles. J. Mater. Chem.2011,21,2974-2981.
    [48]Liu, J.; Yu, M.; Zhou, C.; Yang, S.; Ning, X.; Zheng, J. Passive Tumor Targeting of Renal-Clearable Luminescent Gold Nanoparticles:Long Tumor Retention and Fast Normal Tissue Clearance. J. Am. Chem. Soc.2013,135,4978-4981.
    [49]Tian, H.; Guo, Z.; Chen, J.; Lin, L.; Xia, J.; Dong, X.; Chen, X. PEI Conjugated Gold Nanoparticles:Efficient Gene Carriers with Visible Fluorescence. Adv. Healthcare Mater. 2012,1,337-341.
    [50]Chen, D.; Luo, Z.; Li, N.; Lee, J. Y; Xie, J.; Lu, J. Amphiphilic Polymeric Nanocarriers with Luminescent Gold Nanoclusters for Concurrent Bioimaging and Controlled Drug Release. Adv. Funct. Mater.2013,23,4324-4331.
    [51]Su, S.; Wang, H.; Liu, X.; Wu, Y; Nie, G. iRGD-Coupled Responsive Fluorescent Nanogel for Targeted Drug Delivery. Biomaterials 2013,34,3523-3533.
    [52]Chen, J.; Liu, J.; Fang, Z.; Zeng, L. Random dsDNA-Templated Formation of Copper Nanoparticles as Novel Fluorescence Probes for Label-Free Lead Ions Detection. Chem. Commun.2012,48,1057-1059.
    [53]Liu, S.; Lu, F.; Zhu, J.-J. Highly Fluorescent Ag Nanoclusters:Microwave-Assisted Green Synthesis and Cr3+Sensing. Chem. Commun.2011,47,2661-2663.
    [54]Sharma, J.; Yeh, H.-C.; Yoo, H.; Werner, J. H.; Martinez, J. S. Silver Nanocluster Aptamers:In Situ Generation of Intrinsically Fluorescent Recognition Ligands for Protein Detection. Chem. Commun.2011,47,2294-2296.
    [55]Lan, G.-Y.; Chen, W.-Y; Chang, H.-T. One-Pot Synthesis of Fluorescent Oligonucleotide Ag Nanoclusters for Specific and Sensitive Detection of DNA. Biosens. Bioelectron.2011, 26,2431-2435.
    [56]Yang, S. W.; Vosch, T. Rapid Detection of Microrna by a Silver Nanocluster DNA Probe. Anal. Chem.2011,83,6935-6939.
    [57]Huang, H.; Zhao, Q.; Chen, S.; Zhang, L.; Wang, L.; Liu, F.; Chen, J.; Zeng, Y; Chu, P. K. Colorimetric and Ultra-Sensitive Fluorescence Resonance Energy Transfer Determination of H2O2 and Glucose by Multi-Functional Au Nanoclusters. Analyst 2013,139, 1498-1503.
    [58]Wen, F.; Dong, Y; Feng, L.; Wang, S.; Zhang, S.; Zhang, X. Horseradish Peroxidase Functionalized Fluorescent Gold Nanoclusters for Hydrogen Peroxide Sensing. Anal. Chem.2011,83,1193-1196.
    [59]Hu, Y.; Wu, Y.; Chen, T.; Chu, X.; Yu, R. Double-Strand DNA-Templated Synthesis of Copper Nanoclusters as Novel Fluorescence Probe for Label-Free Detection of Biothiols. Anal. Methods 2013.
    [60]Li, P.-H.; Lin, J.-Y.; Chen, C.-T.; Ciou, W.-R.; Chan, P.-H.; Luo, L.; Hsu, H.-Y.; Diau, E. W.-G.; Chen, Y.-C. Using Gold Nanoclusters as Selective Luminescent Probes for Phosphate-Containing Metabolites. Anal. Chem.2012,84,5484-5488.
    [61]Liu, H.; Yang, G.; Abdel-Halim, E. S.; Zhu, J.-J. Highly Selective and Ultrasensitive Detection of Nitrite Based on Fluorescent Gold Nanoclusters. Talanta 2013,104, 135-139.
    [62]Wang, X.; Wu, P.; Lv, Y.; Hou, X. Ultrasensitive Fluorescence Detection of Glutaraldehyde in Water Samples with Bovine Serum Albumin-Au Nanoclusters. Microchem. J.2011,99,327-331.
    [63]Chang, Y.; Zhang, P.; Yu, Y.; Du, Y Q.; Wang, W.; Huang, C. Z. DNA-Templated Silver Nanoclusters as Label-Free Fluorescent Probes for Detection of Bleomycin. Anal. Methods 2013,5,6200-6204.
    [64]Chen, Z.; Qian, S.; Chen, X.; Gao, W.; Lin, Y. Protein-Templated Gold Nanoclusters as Fluorescence Probes for the Detection of Methotrexate. Analyst 2012,137,4356-4361.
    [65]Han, S.; Zhu, S.; Liu, Z.; Hu, L.; Parveen, S.; Xu, G. Oligonucleotide-Stabilized Fluorescent Silver Nanoclusters for Turn-on Detection of Melamine. Biosens. Bioelectron. 2012,36,267-270.
    [66]Tao, Y.; Lin, Y.; Ren, J.; Qu, X. A Dual Fluorometric and Colorimetric Sensor for Dopamine Based on BSA-Stabilized Aunanoclusters. Biosens. Bioelectron.2013,42, 41-46.
    [67]Liu, Y.; Ai, K.; Cheng, X.; Huo, L.; Lu, L. Gold-Nanocluster-Based Fluorescent Sensors for Highly Sensitive and Selective Detection of Cyanide in Water. Adv. Funct. Mater. 2010,20,951-956.
    [68]Chan, P.-H.; Ghosh, B.; Lai, H.-Z.; Peng, H.-L.; Mong, K. K. T.; Chen, Y.-C. Photoluminescent Gold Nanoclusters as Sensing Probes for Uropathogenic Escherichia Coli. PLoS ONE 2013,8, e58064.
    [69]Triulzi, R. C.; Micic, M.; Giordani, S.; Serry, M.; Chiou, W.-A.; Leblanc, R. M. Immunoasssay Based on the Antibody-Conjugated Pamam-Dendrimer-Gold Quantum Dot Complex. Chem. Commun.2006,5068-5070.
    [70]Zhang, M.; Liu, Y.-Q.; Yu, C.-Y.; Yin, B.-C.; Ye, B.-C. Multiplexed Detection of Nucleic Acids by Tuning DNA-Scaffolded Silver Nanoclusters. Analyst 2013,138,4812-4817.
    [71]Xie, J.; Zheng, Y.; Ying, J. Y. Highly Selective and Ultrasensitive Detection of Hg2+Based on Fluorescence Quenching of Au Nanoclusters by Hg2+-Au+ Interactions. Chem. Commun.2010,46,961-963.
    [72]Zhou, T.; Huang, Y.; Cai, Z.; Luo, F.; Yang, C. J.; Chen, X. Facile Synthesis of Red-Emitting Lysozyme-Stabilized Ag Nanoclusters. Nanoscale 2012,4,5312-5315.
    [73]Chen, Y.; Wang, Y.; Wang, C.; Li, W.; Zhou, H.; Jiao, H.; Lin, Q.; Yu, C. Papain-Directed Synthesis of Luminescent Gold Nanoclusters and the Sensitive Detection of Cu2+. J. Colloid. Interface. Sci.2013,396,63-68.
    [74]Lu, D.; Liu, L.; Li, F.; Shuang, S.; Li, Y.; Choi, M. M. F.; Dong, C. Lysozyme-Stabilized Gold Nanoclusters as a Novel Fluorescence Probe for Cyanide Recognition. Spectrochim. Acta, Part A 2014,121,77-80.
    [75]Yue, Y; Liu, T.-Y; Li, H.-W.; Liu, Z.; Wu, Y Microwave-Assisted Synthesis of BSA-Protected Small Gold Nanoclusters and Their Fluorescence-Enhanced Sensing of Silver(I) Ions. Nanoscale 2012,4,2251-2254.
    [76]Chen, L.-Y; Huang, C.-C.; Chen, W.-Y.; Lin, H.-J.; Chang, H.-T. Using Photoluminescent Gold Nanodots to Detect Hemoglobin in Diluted Blood Samples. Biosens. Bioelectron. 2013,43,38-44.
    [77]Wang, X.-X.; Wu, Q.; Shan, Z.; Huang, Q.-M. BSA-Stabilized Au Clusters as Peroxidase Mimetics for Use in Xanthine Detection. Biosens. Bioelectron.2011,26,3614-3619.
    [78]Qian, Y; Zhang, Y; Lu, L.; Cai, Y. A Label-Free DNA-Templated Silver Nanocluster Probe for Fluorescence on-Off Detection of Endonuclease Activity and Inhibition. Biosens. Bioelectron.2014,15,408-412.
    [79]Tian, D.; Qian, Z.; Xia, Y.; Zhu, C. Gold Nanocluster-Based Fluorescent Probes for Near-Infrared and Turn-on Sensing of Glutathione in Living Cells. Langmuir 2012,28, 3946-3951.
    [80]Jin, L.; Shang, L.; Guo, S.; Fang, Y.; Wen, D.; Wang, L.; Yin, J.; Dong, S. Biomolecule-Stabilized Au Nanoclusters as a fluorescence Probe for Sensitive Detection of Glucose. Biosens. Bioelectron.2011,26,1965-1969.
    [81]Li, H.; Guo, Y; Xiao, L; Chen, B. Selective and Sensitive Detection of Acetylcholinesterase Activity Using Denatured Protein-Protected Gold Nanoclusters as a Label-Free Probe. Analyst 2014,139 285-289.
    [82]Wang, Y; Wang, Y.; Zhou, F.; Kim, P.; Xia, Y Protein-Protected Au Clusters as a New Class of Nanoscale Biosensor for Label-Free Fluorescence Detection of Proteases. Small 2012,8,3769-3773.
    [83]Yu, J.; Patel, S. A.; Dickson, R. M. In Vitro and Intracellular Production of Peptide-Encapsulated Fluorescent Silver Nanoclusters. Angew. Chem. Int. Ed.2007,46, 2028-2030.
    [84]Lin, S.-Y; Chen, N.-T.; Sum, S.-P.; Lo, L.-W; Yang, C.-S. Ligand Exchanged Photoluminescent Gold Quantum Dots Functionalized with Leading Peptides for Nuclear Targeting and Intracellular Imaging. Chem. Commun.2008,4762-4764.
    [85]Wu, X.; He, X. X.; Wang, K. M.; Xie, C.; Zhou, B.; Qing, Z. H. Ultrasmall Near-Infrared Gold Nanoclusters for Tumor Fluorescence Imaging in Vivo. Nanoscale 2010,2, 2244-2249.
    [86]Chen, H.; Li, S.; Li, B.; Ren, X.; Li, S.; Mahounga, D. M.; Cui, S.; Gu, Y; Achilefu, S. Folate-Modified Gold Nanoclusters as Near-Infrared Fluorescent Probes for Tumor Imaging and Therapy. Nanoscale 2012,4,6050-6064.
    [87]Sun, C.; Yang, H.; Yuan, Y.; Tian, X.; Wang, L.; Guo, Y.; Xu, L.; Lei, J.; Gao, N.; Anderson, G. J.; Liang, X.; Chen, C.; Zhao, Y.; Nie, G. Controlling Assembly of Paired Gold Clusters within Apoferritin Nanoreactor for in Vivo Kidney Targeting and Biomedical Imaging. J. Am. Chem. Soc.2011,133,8617-8624.
    [88]Wang, Y.; Chen, J.-T.; Yan, X.-P. Fabrication of Transferrin Functionalized Gold Nanoclusters/Graphene Oxide Nanocomposite for Turn-on Near-Infrared Fluorescent Bioimaging of Cancer Cells and Small Animals. Anal. Chem.2013,85,2529-2535.
    [89]Sun, S.-K.; Dong, L.-X.; Cao, Y.; Sun, H.-R.; Yan, X.-P. Fabrication of Multifunctional Gd2O3/Au Hybrid Nanoprobe Via a One-Step Approach for Near-Infrared Fluorescence and Magnetic Resonance Multimodal Imaging in Vivo. Anal. Chem.2013,85,8436-8441.
    [90]Sun, G.; Zhou, L.; Liu, Y.; Zhao, Z. Biocompatible GdⅢ-Functionalized Fluorescent Gold Nanoclusters for Optical and Magnetic Resonance Imaging. New J. Chem.2013,37, 1028-1035.
    [91]Kawasaki, H.; Hamaguchi, K.; Osaka, I.; Arakawa, R. pH-Dependent Synthesis of Pepsin-Mediated Gold Nanoclusters with Blue Green and Red Fluorescent Emission. Adv. Funct. Mater.2011,21,3508-3515.
    [92]Chen, T.-H.; Tseng, W.-L. (Lysozyme Type Vl)-Stabilized Au8 Clusters:Synthesis Mechanism and Application for Sensing of Glutathione in a Single Drop of Blood. Small 2012,8,1912-1919.
    [93]Anand, U.; Ghosh, S.; Mukherjee, S. Toggling between Blue-and Red-Emitting Fluorescent Silver Nanoclusters. J. Phys. Chem. Lett.2012,3,3605-3609.
    [94]Hu, D.; Sheng, Z.; Gong, P.; Zhang, P.; Cai, L. Highly Selective Fluorescent Sensors for Hg2+ Based on Bovine Serum Albumin-Capped Gold Nanoclusters. Analyst 2010,135, 1411-1416.
    [95]Lin, C.-A. J.; Chuang, W.-K.; Huang, Z.-Y.; Kang, S.-T.; Chang, C.-Y.; Chen, C.-T.; Li, J.-L.; Li, J. K.; Wang, H.-H.; Kung, F.-C.; Shen, J.-L.; Chan, W.-H.; Yeh, C.-K.; Yeh, H.-I.; Lai, W.-F. T.; Chang, W. H. Rapid Transformation of Protein-Caged Nanomaterials into Microbubbles as Bimodal Imaging Agents. ACS Nano 2012,6,5111-5121.
    [96]Shang, L.; Dorlich, R. M.; Brandholt, S.; Schneider, R.; Trouillet, V.; Bruns, M.; Gerthsen, D.; Nienhaus, G. U. Facile Preparation of Water-Soluble Fluorescent Gold Nanoclusters for Cellular Imaging Applications. Nanoscale 2011,3,2009-2014.
    [97]Liu, C.-L.; Liu, T.-M.; Hsieh, T.-Y.; Liu, H.-W.; Chen, Y.-S.; Tsai, C.-K.; Chen, H.-C; Lin, J.-W.; Hsu, R.-B.; Wang, T.-D.; Chen, C.-C.; Sun, C.-K.; Chou, P.-T. In Vivo Metabolic Imaging of Insulin with Multiphoton Fluorescence of Human Insulin-Au Nanodots. Small 2012,9,2103-2110.
    [98]Xu, H.; Suslick, K. S. Water-Soluble Fluorescent Silver Nanoclusters. Adv. Mater.2010, 22,1078-1082.
    [99]Shiang, Y.-C.; Huang, C.-C.; Chen, W.-Y.; Chen, P.-C.; Chang, H.-T. Fluorescent Gold and Silver Nanoclusters for the Analysis of Biopolymers and Cell Imaging. J. Mater. Chem.2012,22,12972-12982.
    [100]Lan, G; Huang, C.; Chang, H. Silver Nanoclusters as Fluorescent Probes for Selective and Sensitive Detection of Copper Ions. Chem. Commun.2010,46,1257-1259.
    [101]Tao, Y.; Lin, Y.; Huang, Z.; Ren, J.; Qu, X. DNA-Templated Silver Nanoclusters-Graphene Oxide Nanohybrid Materials:A Platform for Label-Free and Sensitive fluorescence Turn-on Detection of Multiple Nucleic Acid Targets. Analyst 2012, 137,2588-2592.
    [102]Wen, Q.; Gu, Y.; Tang, L.-J.; Yu, R.-Q.; Jiang, J.-H. Peptide-Templated Gold Nanocluster Beacon as a Sensitive, Label-Free Sensor for Protein Post-Translational Modification Enzymes. Anal. Chem.2013,85,11681-11685.
    [103]Xia, X.; Long, Y.; Wang, J. Glucose Oxidase-Functionalized Fluorescent Gold Nanoclusters as Probes for Glucose. Anal. Chim. Acta.2013,772,81-86.
    [104]Hansson, L.; Lindholm, L. H.; Niskanen, L.; Lanke, J.; Hedner, T.; Niklason, A.; Luomanmaki, K.; Dahlof, B.; de Faire, U.; Morlin, C.; Karlberg, B. E.; Wester, P. O.; Bjorck, J.-E. Effect of Angiotensin-Converting-Enzyme Inhibition Compared with Conventional Therapy on Cardiovascular Morbidity and Mortality in Hypertension:The Captopril Prevention Project (CAPPP) Randomised Trial. The Lancet 1999,353,611-616.
    [105]Mullane, K. M.; Moncada, S. Prostacyclin Mediates the Potentiated Hypotensive Effect of Bradykinin Following Captopril Treatment. Eur. J. Pharmacol 1980,66,355-365.
    [106]Suarez, W. T.; Madi, A. A.; Figueiredo-Filho, L. C. S. d.; Fatibello-Filho, O. Flow-Injection Spectrophotometric System for Captopril Determination in Pharmaceuticals. J. Brazil. CHEM. SOC 2007,18,1215-1219.
    [107]El-Didamony, A. M.; Erfan, E. A. H. Utilization of Oxidation Reactions for the Spectrophotometric Determination of Captopril Using Brominating Agents. Spectrochim. Acta A 2010,75,1138-1145.
    [108]Wang, L.; Yang, X.-F.; Zhao, M. A 4-Methylumbelliferone-Based Fluorescent Probe for the Sensitive Detection of Captopril. J. Fluoresc.2009,19,593-599.
    [109]El-Didamony, A. M. Spectrofluorimetric Determination of the Hypertensive Drug Captopril Based on Its Oxidation with Cerium(IV). J. Chin. Chem. Soc.2009,56, 755-762.
    [110]Tache, F.; Farca, A.; Medvedovici, A.; David, V. Validation of a LC-Fluorescence Method for Determination of Free Captopril in Human Plasma, Using a Pre-Column Derivatization Reaction with Monobromobimane. J. Pharmaceut. Biomed.2002,28, 549-557.
    [111]Huang, T.; He, Z.; Yang, B.; Shao, L.; Zheng, X.; Duan, G. Simultaneous Determination of Captopril and Hydrochlorothiazide in Human Plasma by Reverse-Phase HPLC from Linear Gradient Elution. J. Pharmaceut. Biomed.2006,41,644-648.
    [112]Economou, A.; Themelis, D. G.; Theodoridis, G.; Tzanavaras, P. D. Sensitive Determination of Captopril by Flow Injection Analysis with Chemiluminescence Detection Based on the Enhancement of the Luminol Reaction. Anal. Chim. Acta 2002, 463,249-255.
    [113]Murillo Pulgarin, J. A.; Garcia Bermejo, L. F.; Lopez, P. F. Sensitive Determination of Captopril by Time-Resolved Chemiluminescence Using the Stopped-Flow Analysis Based on Potassium Permanganate Oxidation. Anal. Chim. Acta 2005,546,60-67.
    [114]Richards, C. I.; Choi, S.; Hsiang, J.-C.; Antoku, Y.; Vosch, T.; Bongiorno, A.; Tzeng, Y.-L.; Dickson, R. M. Oligonucleotide-Stabilized Ag Nanocluster Fluorophores. J. Am. Chem. Soc.2008,130,5038-5039.
    [115]Petty, J. T.; Zheng, J.; Hud, N. V.; Dickson, R. M. DNA-Templated Ag Nanocluster Formation. J. Am. Chem. Soc.2004,126,5207-5212.
    [116]Ma, K.; Shao, Y.; Cui, Q.; Wu, F.; Xu, S.; Liu, G. Base-Stacking-Determined Fluorescence Emission of DNA Abasic Site-Templated Silver Nanoclusters. Langmuir 2012,28, 15313-15322.
    [117]Neidig, M. L.; Sharma, J.; Yeh, H.-C.; Martinez, J. S.; Conradson, S. D.; Shreve, A. P. Ag K-Edge EXAFS Analysis of DNA-Templated Fluorescent Silver Nanoclusters:Insight into the Structural Origins of Emission Tuning by DNA Sequence Variations. J. Am. Chem. Soc.2011,133,11837-11839.
    [118]Ono, A.; Cao, S.; Togashi, H.; Tashiro, M.; Fujimoto, T; Machinami, T.; Oda, S.; Miyake, Y.; Okamoto, I.; Tanaka, Y. Specific Interactions between Silver(I) Ions and Cytosine-Cytosine Pairs in DNA Duplexes. Chem. Commun.2008,4825-4827.
    [119]李景梅;金丽虹;翁占坤;申炳俊;陈倩;向阳;田坚.鸟嘌呤、腺嘌呤、胸腺嘧啶和胞嘧啶的紫外吸收谱研究.长春理工大学学报(自然科学版)2008,31,74-76.
    [120]Han, B.; Wang, E. Oligonucleotide-Stabilized Fluorescent Silver Nanoclusters for Sensitive Detection of Biothiols in Biological fluids. Biosens. Bioelectron.2011,26, 2585-2589.
    [121]张楠;张丽娟;吕超.基于含氟表面活性剂修饰的金纳米粒子测定卡托普利.中国科学:化学2010,40,744-749.
    [122]Liu, Z. D.; Huang, C. Z.; Li, Y. F.; Long, Y. F. Enhanced Plasmon Resonance Light Scattering Signals of Colloidal Gold Resulted from Its Interactions with Organic Small Molecules Using Captopril as an Example. Anal. Chim. Acta 2006,577,244-249.
    [123]Guo, W.; Yuan, J.; Wang, E. Oligonucleotide-Stabilized Ag Nanoclusters as Novel Fluorescence Probes for the Highly Selective and Sensitive Detection of the Hg2+ Ion. Chem. Commun.2009,45,3395-3397.
    [124]Vuorimaa, E.; Urtti, A.; Seppanen, R.; Lemmetyinen, H.; Yliperttula, M. Time-Resolved Fluorescence Spectroscopy Reveals Functional Differences of Cationic Polymer-DNA Complexes. J. Am. Chem. Soc.2008,130,11695-11700.
    [125]杨曼曼;席小莉;杨频.荧光猝灭和荧光加强理论公式的等效性论证.科学通报2005,50,2199-2201.
    [126]Ferullo, D. J.; Lovett, S. T. The Stringent Response and Cell Cycle Arrest in Escherichia Coli. PLoS Genet.2008,4, e1000300.
    [127]Kalia, D.; Merey, G.; Nakayama, S.; Zheng, Y.; Zhou, J.; Luo, Y.; Guo, M.; Roembke, B. T.; Sintim, H. O. Nucleotide, c-di-GMP, c-di-AMP, cGMP, cAMP, (p)ppGpp Signaling in Bacteria and Implications in Pathogenesis. Chem. Soc. Rev.2013,42,305-341.
    [128]Zhao, X. J.; Huang, C. Z. Small Organic Molecules as Fluorescent Probes for Nucleotides and Their Derivatives. TrAC-Trends Anal. Chem.2010,29,354-367.
    [129]Jain, V.; Kumar, M.; Chatterji, D. ppGpp:Stringent Response and Survival. J. Microbiol. 2006,44,1-10.
    [130]Fischer, M.; Zimmerman, T. P.; Short, S. A. A Rapid Method for the Determination of Guanosine 5'-Diphosphate-3'-Diphosphate and Guanosine 5'-Triphosphate-3'-Diphosphate by High-Performance Liquid Chromatography. Anal. Biochem.1982,121, 135-139.
    [131]Takahashi, K.; Kasai, K.; Ochi, K. Identification of the Bacterial Alarmone Guanosine 5'-Diphosphate 3'-Diphosphate (ppGpp) in Plants. Proc. Natl. Acad. Sci. U.S.A.2004, 101,4320-4324.
    [132]Saito, N.; Xu, J.; Hosaka, T.; Okamoto, S.; Aoki, H.; Bibb, M. J.; Ochi, K. EshA Accentuates ppGpp Accumulation and Is Conditionally Required for Antibiotic Production in Streptomyces Coelicolor A3(2). Bacteriol.2006,188,4952-4961.
    [133]Rhee, H.-W.; Lee, C.-R.; Cho, S.-H.; Song, M.-R.; Cashel, M.; Choy, H. E.; Seok, Y.-J.; Hong, J.-I. Selective Fluorescent Chemosensor for the Bacterial Alarmone (p)ppGpp. J. Am. Chem. Soc.2008,130,784-785.
    [134]Zhao, X. J.; Huang, C. Z. Selective Fluorometric Detection of Pyrophosphate and Stringent Alarmone with Copper(II)-2,6-Bis(2-Benzimidazolyl)Pyridine Complex. Biosens.Bioelectron.2011,30,282-286.
    [135]Zhang, P.; Wang, Y.; Liu, Z. D.; Huang, C. Z. Sci. China Chem.2011,41,1037-1043.
    [136]Sharma, J.; Yeh, H.-C.; Yoo, H.; Werner, J. H.; Martinez, J. S. A Complementary Palette of Fluorescent Silver Nanoclusters. Chem. Commun.2010,46,3280-3282.
    [137]Gwinn, E. G.; O'Neill, P.; Guerrero, A. J.; Bouwmeester, D.; Fygenson, D. K. Sequence-Dependent Fluorescence of DNA-Hosted Silver Nanoclusters. Adv. Mater.2008, 20,279-283.
    [138]Berti, L.; Burley, G A. Nucleic Acid and Nucleotide-Mediated Synthesis of Inorganic Nanoparticles. Nat. Nano.2008,3,81-87.
    [139]Fu, Y.; Zhang, J.; Chen, X.; Huang, T.; Duan, X.; Li, W.; Wang, J. Silver Nanomaterials Regulated by Structural Competition of G-/C-Rich Oligonucleotides. J. Phys. Chem. C 2011,115,10370-10379.
    [140]Obliosca, J.; Liu, C.; Yeh, H.-C. Fluorescent Silver Nanoclusters as DNA Probes. Nanoscale 2013,5,8443-8461.
    [141]Zhang, M.; Ye, B.-C. Label-Free Fluorescent Detection of Copper(II) Using DNA-Templated Highly Luminescent Silver Nanoclusters. Analyst 2011,136,5139-5142.
    [142]Liu, H.; Zhang, X.; Wu, X.; Jiang, L.; Burda, C.; Zhu, J.-J. Rapid Sonochemical Synthesis of Highly Luminescent non-Toxic AuNCs and Au@AgNCs and Cu (Ⅱ) Sensing. Chem. Commun.2011,47,4237-4239.
    [143]Ota, N.; Warashina, M.; Hirano, K. i.; Hatanaka, K.; Taira, K. Effects of Helical Structures Formed by the Binding Arms of DNAzymes and Their Substrates on Catalytic Activity. Nucleic Acids Res.1998,26,3385-3391.
    [144]Zhang, L.-P.; Zhang, X.-X.; Hu, B.; Shen, L.-M.; Chen, X.-W.; Wang, J.-H. Fenton's Reagent-Tuned DNA-Templated Fluorescent Silver Nanoclusters as a Versatile Fluorescence Probe and Logic Device. Analyst 2012,137,4974-4980.
    [145]Sang, Y.; Zhang, L.; Li, Y F.; Chen, L. Q.; Xu, J. L.; Huang, C. Z. A Visual Detection of Hydrogen Peroxide on the Basis of Fenton Reaction with Gold Nanoparticles. Anal. Chim. Acta.2010,659,224-228.
    [146]Han, B.; Wang, E. DNA-Templated Fluorescent Silver Nanoclusters. Anal. Bioanal. Chem. 2012,402,129-138.
    [147]Liu, G.; Feng, D.-Q.; Chen, T.; Li, D.; Zheng, W. DNA-Templated Formation of Silver Nanoclusters as a Novel Light-Scattering Sensor for Label-Free Copper Ions Detection.J. Mater. Chem.2012,22,20885-20888.
    [148]Liu, C.-L.; Wu, H.-T.; Hsiao, Y.-H.; Lai, C.-W.; Shih, C.-W.; Peng, Y.-K.; Tang, K.-C.; Chang, H.-W.; Chien, Y.-C.; Hsiao, J.-K.; Cheng, J.-T.; Chou, P.-T. Insulin-Directed Synthesis of Fluorescent Gold Nanoclusters:Preservation of Insulin Bioactivity and Versatility in Cell Imaging. Angew. Chem.2011,123,7194-7198.
    [149]Shao, C.; Yuan, B.; Wang, H.; Zhou, Q.; Li, Y.; Guan, Y.; Deng, Z. Eggshell Membrane as a Multimodal Solid State Platform for Generating Fluorescent Metal Nanoclusters. J. Mater. Chem.2011,21,2863-2866.
    [150]Wang, C.; Wang, Y.; Xu, L.; Shi, X.; Li, X.; Xu, X.; Sun, H.; Yang, B.; Lin, Q. A Galvanic Replacement Route to Prepare Strongly Fluorescent and Highly Stable Gold Nanodots for Cellular Imaging. Small 2013,9,413-420.
    [151]Kennedy, T. A. C.; MacLean, J. L.; Liu, J. Blue Emitting Gold Nanoclusters Templated by Poly-Cytosine DNA at Low pH and Poly-Adenine DNA at Neutral pH. Chem. Commun. 2012,48,6845-6847.
    [152]Retnakumari, A.; Setua, S.; Menon, D.; Ravindran, P.; Muhammed, H.; Pradeep, T.; Nair, S.; Koyakutty, M. Molecular-Receptor-Specific, non-Toxic, Near-Infrared-Emitting Au Cluster-Protein Nanoconjugates for Targeted Cancer Imaging. Nanotechnology 2010,21, 055103.
    [153]Baksi, A.; Lourdu Xavier, P.; Chaudhari, K.; Goswami, N.; Pal, S. K.; Pradeep, T. Protein-Encapsulated Gold Cluster Aggregates:The Case of Lysozyme. Nanoscale 2013, 5,2009-2016.
    [154]Bao, Y.; Zhong, C.; Vu, D. M.; Temirov, J. P.; Dyer, R. B.; Martinez, J. S. Nanoparticle-Free Synthesis of Fluorescent Gold Nanoclusters at Physiological Temperature. J. Phys. Chem. C 2007,111,12194-12198.
    [155]Xavier, P. L.; Chaudhari, K.; Verma, P. K.; Pal, S. K.; Pradeep, T. Luminescent Quantum Clusters of Gold in Transferrin Family Protein, Lactoferrin Exhibiting FRET. Nanoscale 2010,2,2769-2776.
    [156]Li, J.; Li, X.; Zhai, H.-J.; Wang, L.-S. Au20:A Tetrahedral Cluster. Science 2003,299, 864-867.
    [157]Zhang, H.-F.; Stender, M.; Zhang, R.; Wang, C.; Li, J.; Wang, L.-S. Toward the Solution Synthesis of the Tetrahedral Au20 Cluster. J. Phys. Chem. B 2004,108,12259-12263.
    [158]Kryachko, E. S.; Remacle, F. The Magic Gold Cluster Au20. Int. J. Quantum Chem.2007, 107,2922-2934.
    [159]Zhu, M.; Qian, H.; Jin, R. Thiolate-Protected Au20 Clusters with a Large Energy Gap of 2.1 ev. J. Am. Chem. Soc.2009,131,7220-7221.
    [160]Wang, Z. W.; Palmer, R. E. Direct Atomic Imaging and Dynamical Fluctuations of the Tetrahedral Au20 Cluster. Nanoscale 2012,4,4947-4949.
    [161]Xia, Y.; Xiong, Y; Lim, B.; Skrabalak, S. E. Shape-Controlled Synthesis of Metal Nanocrystals:Simple Chemistry Meets Complex Physics? Angew. Chem. Int. Ed.2009, 48,60-103.
    [162]Tao, A. R.; Habas, S.; Yang, P. Shape Control of Colloidal Metal Nanocrystals. Small 2008,4,310-325.
    [163]Wang, Y; Zheng, Y.; Huang, C. Z.; Xia, Y Synthesis of Ag Nanocubes 18-32 nM in Edge Length:The Effects of Polyol on Reduction Kinetics, Size Control, and Reproducibility. J. Am. Chem. Soc.2013,135,1941-1951.
    [164]Wang, Y; Choi, S.-I.; Zhao, X.; Xie, S.; Peng, H.-C.; Chi, M.; Huang, C. Z.; Xia, Y. Polyol Synthesis of Ultrathin Pd Nanowires Via Attachment-Based Growth and Their Enhanced Activity Towards Formic Acid Oxidation. Adv. Funct. Mater.2014,24, 131-139.
    [165]Xia, Y.; Xia, X.; Wang, Y; Xie, S. Shape-Controlled Synthesis of Metal Nanocrystals. MRS Bull.2013,38,335-344.
    [166]Fabris, L.; Antonello, S.; Armelao, L.; Donkers, R. L.; Polo, F.; Toniolo, C.; Maran, F. Gold Nanoclusters Protected by Conformationally Constrained Peptides. J. Am. Chem. Soc.2005,128,326-336.
    [167]Tang, Z.; Ahuja, T.; Wang, S.; Wang, G. Near Infrared Luminescence of Gold Nanoclusters Affected by the Bonding of 1,4-Dithiolate Durene and Monothiolate Phenylethanethiolate. Nanoscale 2012,4,4119-4124.
    [168]Zhang, H.; Huang, X.; Li, L.; Zhang, G.; Hussain, I.; Li, Z.; Tan, B. Photoreductive Synthesis of Water-Soluble Fluorescent Metal Nanoclusters. Chem. Commun.2012,48, 567-569.
    [169]Shibu, E. S.; Radha, B.; Verma, P. K.; Bhyrappa, P.; Kulkarni, G. U.; Pal, S. K.; Pradeep, T. Functionalized Au22 Clusters:Synthesis, Characterization, and Patterning. ACS Appl. Mater. Interfaces 2009,1,2199-2210.
    [170]Yun, Y. S.; Cho, S. Y.; Shim, J.; Kim, B. H.; Chang, S. J.; Baek, S. J.; Huh, Y. S.; Tak, Y.; Park, Y. W.; Park, S.; Jin, H. J. Microporous Carbon Nanoplates from Regenerated Silk Proteins for Supercapacitors. Adv. Mater.2013,25,1993-1998.
    [171]Shaw, J. T. B.; Smith, S. G. Amino-Acids of Silk Sericin. Nature 1951,168,745-745.
    [172]Jin, H. J.; Park, J.; Karageorgiou, V.; Kim, U. J.; Valluzzi, R.; Cebe, P.; Kaplan, D. L. Water-Stable Silk Films with Reduced β-Sheet Content. Adv. Funct. Mater.2005,15, 1241-1247.
    [173]Zhang, Y.-Q. Natural Silk Fibroin as a Support for Enzyme Immobilization. Biotechnol. Adv.1998,16,961-971.
    [174]Scheibel, T. Protein Fibers as Performance Proteins:New Technologies and Applications. Curr Opin Biotech.2005,16,427-433.
    [175]Altman, G. H.; Diaz, F.; Jakuba, C.; Calabro, T.; Horan, R. L.; Chen, J.; Lu, H.; Richmond, J.; Kaplan, D. L. Silk-Based Biomaterials. Biomaterials 2003,24,401-416.
    [176]Cohen-Karni, T.; Jeong, K. J.; Tsui, J. H.; Reznor, G.; Mustata, M.; Wanunu, M.; Graham, A.; Marks, C.; Bell, D. C.; Langer, R.; Kohane, D. S. Nanocomposite Gold-Silk Nanofibers. Nano Lett.2012,12,5403-5406.
    [177]Numata, K.; Yamazaki, S.; Naga, N. Biocompatible and Biodegradable Dual-Drug Release System Based on Silk Hydrogel Containing Silk Nanoparticles. Biomacromolecules 2012,13,1383-1389.
    [178]Li, W.; Zhang, Z.; Kong, B.; Feng, S.; Wang, J.; Wang, L.; Yang, J.; Zhang, F.; Wu, P.; Zhao, D. Simple and Green Synthesis of Nitrogen-Doped Photoluminescent Carbonaceous Nanospheres for Bioimaging. Angew. Chem. Int. Ed.2013,52,8151-8155.
    [179]Wu, Z. L.; Zhang, P.; Gao, M. X.; Liu, C. F.; Wang, W.; Leng, F.; Huang, C. Z. One-Pot Hydrothermal Synthesis of Highly Luminescent Nitrogen-Doped Amphoteric Carbon Dots for Bioimaging from Bombyx Mori Silk-Natural Proteins. J. Mater. Chem. B 2013, 1,2868-2873.
    [180]Melucci, M.; Durso, M.; Favaretto, L.; Capobianco, M. L.; Benfenati, V.; Sagnella, A.; Ruani, G.; Muccini, M.; Zamboni, R.; Fattori, V.; Camaioni, N. Silk Doped with a Bio-Modified Dye as a Viable Platform for Eco-Friendly Luminescent Solar Concentrators. RSC Adv.2012,2,8610-8613.
    [181]Boonla, K.; Saikrasun, S. Influence of Silk Surface Modification Via Plasma Treatments on Adsorption Kinetics of Lac Dyeing on Silk. Text. Res. J.2012.
    [182]Zhao, A.; Zhao, T.; Zhang, Y; Xia, Q.; Lu, C.; Zhou, Z.; Xiang, Z.; Nakagaki, M. New and Highly Efficient Expression Systems for Expressing Selectively Foreign Protein in the Silk Glands of Transgenic Silkworm. Transgenic Res.2010,19,29-44.
    [183]Tansil, N. C.; Li, Y; Teng, C. P.; Zhang, S.; Win, K. Y; Chen, X.; Liu, X. Y; Han, M.-Y. Intrinsically Colored and Luminescent Silk. Adv. Mater.2011,23,1463-1466.
    [184]Nisal, A.; Trivedy, K.; Mohammad, H.; Panneri, S.; Sen Gupta, S.; Lele, A.; Manchala, R.; Kumar, N. S.; Gadgil, M.; Khandelwal, H.; More, S.; Laxman, R. S. Uptake of Azo Dyes into Silk Glands for Production of Colored Silk Cocoons Using a Green Feeding Approach. ACS Sustainable Chem. Eng.2013,2,312-317.
    [185]Zhang, P.; Yang, X. X.; Wang, Y.; Zhao, N. W.; Xiong, Z. H.; Huang, C. Z. Rapid Synthesis of Highly Luminescent and Stable Au20 Nanoclusters for Active Tumor-Targeted Imaging in Vitro and in Vivo. Nanoscale 2014,6,2261-2269.
    [186]Mohanty, J. S.; Xavier, P. L.; Chaudhari, K.; Bootharaju, M. S.; Goswami, N.; Pa, S. K.; Pradeep, T. Luminescent, Bimetallic AuAg Alloy Quantum Clusters in Protein Templates. Nanoscale 2012,4,4255-4262.
    [187]Skala, M. C.; Riching, K. M.; Gendron-Fitzpatrick, A.; Eickhoff, J.; Eliceiri, K. W.; White, J. G.; Ramanujam, N. In Vivo Multiphoton Microscopy of NADH and FAD Redox States, Fluorescence Lifetimes, and Cellular Morphology in Precancerous Epithelia. Proc. Natl. Acad. Sci. USA.2007,104,19494-19499.
    [188]Raut, S.; Fudala, R.; Rich, R. M.; Kokate, R.; Chib, R.; Gryczynski, Z.; Gryzcynski, I. Long Lived BSA Au Clusters as a Time Gated Intensity Imaging Probe. Nanoscale 2014, 6,2594-2597.
    [189]He, H.; Nunnally, B. K.; Li, L.-C.; McGown, L. B. On-the-Fly Fluorescence Lifetime Detection of Dye-Labeled DNA Primers for Multiplex Analysis. Anal. Chem.1998,70, 3413-3418.
    [190]Zhang, C.-Y; Yeh, H.-C.; Kuroki, M. T.; Wang, T.-H. Single-Quantum-Dot-Based DNA Nanosensor. Nat. Mater.2005,4,826-831.
    [191]Yang, Y.; Zhao, Q.; Feng, W.; Li, F. Luminescent Chemodosimeters for Bioimaging. Chem. Rev.2012,113,192-270.
    [192]Quek, C.-H.; Leong, K. W. Near-Infrared Fluorescent Nanoprobes for in Vivo Optical Imaging. Nanomaterials 2012,2,92-112.
    [193]Bang, J. H.; Suslick, K. S. Applications of Ultrasound to the Synthesis of Nanostructured Materials. Adv. Mater.2010,22,1039-1059.
    [194]Kunjachan, S.; Gremse, F.; Theek, B.; Koczera, P.; Pola, R.; Pechar, M.; Etrych, T.; Ulbrich, K.; Storm, G.; Kiessling, F.; Lammers, T. Noninvasive Optical Imaging of Nanomedicine Biodistribution. ACS Nano 2012,7,252-262.
    [195]Lovell, J. F.; Liu, T. W. B.; Chen, J.; Zheng, G. Activatable Photosensitizers for Imaging and Therapy. Chem. Rev.2010,110,2839-2857.
    [196]Shcherbakova, D. M.; Subach, O. M.; Verkhusha, V. V. Red Fluorescent Proteins: Advanced Imaging Applications and Future Design. Angew. Chem. Int. Ed.2012,51, 10724-10738.
    [197]Wang, K.; Tang, Z.; Yang, C. J.; Kim, Y.; Fang, X.; Li, W.; Wu, Y.; Medley, C. D.; Cao, Z.; Li, J.; Colon, P.; Lin, H.; Tan, W. Molecular Engineering of DNA:Molecular Beacons. Angew. Chem. Int. Ed.2009,48,856-870.
    [198]Shi, H.; He, X.; Wang, K.; Wu, X.; Ye, X.; Guo, Q.; Tan, W.; Qing, Z.; Yang, X.; Zhou, B. Activatable Aptamer Probe for Contrast-Enhanced in Vivo Cancer Imaging Based on Cell Membrane Protein-Triggered Conformation Alteration. Proc. Natl. Acad. Sci. USA 2011, 108,3900-3905.
    [199]Kim, H. M.; Lee, H.; Hong, K. S.; Cho, M. Y.; Sung, M.-H.; Poo, H.; Lim, Y. T. Synthesis and High Performance of Magnetofluorescent Polyelectrolyte Nanocomposites as MR/Near-Infrared Multimodal Cellular Imaging Nanoprobes. ACS Nano 2011,5, 8230-8240.
    [200]Hong, G.; Robinson, J. T.; Zhang, Y.; Diao, S.; Antaris, A. L.; Wang, Q.; Dai, H. In Vivo Fluorescence Imaging with Ag2S Quantum Dots in the Second Near-Infrared Region. Angew. Chem. Int. Ed.2012,51,9818-9821.
    [201]Martinez, J. O.; Boada, C.; Yazdi, I. K.; Evangelopoulos, M.; Brown, B. S.; Liu, X.; Ferrari, M.; Tasciotti, E. Mesoporous Silicon:Short and Long Term, in Vitro and in Vivo Correlations of Cellular and Tissue Responses to Mesoporous Silicon Nanovectors. Small 2013,9,1721-1721.
    [202]Huang, X.; Zhang, F.; Zhu, L.; Choi, K. Y.; Guo, N.; Guo, J.; Tackett, K.; Anilkumar, P.; Liu, G.; Quan, Q.; Choi, H. S.; Niu, G.; Sun, Y.-P.; Lee, S.; Chen, X. Effect of Injection Routes on the Biodistribution, Clearance, and Tumor Uptake of Carbon Dots. ACS Nano 2013,7,5684-5693.
    [203]Peyser, L. A.; Vinson, A. E.; Bartko, A. P.; Dickson, R. M. Photoactivated Fluorescence from Individual Silver Nanoclusters. Science 2001,291,103-106.
    [204]Goh, E. J.; Kim, K. S.; Kim, Y R.; Jung, H. S.; Beack, S.; Kong, W. H.; Scarcelli, G; Yun, S. H.; Hahn, S. K. Bioimaging of Hyaluronic Acid Derivatives Using Nanosized Carbon Dots. Biomacromolecules 2012,13,2554-2561.
    [205]Parker, N.; Turk, M. J.; Westrick, E.; Lewis, J. D.; Low, P. S.; Leamon, C. P. Folate Receptor Expression in Carcinomas and Normal Tissues Determined by a Quantitative Radioligand Binding Assay. Anal. Biochem.2005,338,284-293.
    [206]Gui, R.; Wan, A.; Liu, X.; Jin, H. Intracellular Fluorescent Thermometry and Photothermal-Triggered Drug Release Developed from Gold Nanoclusters and Doxorubicin Dual-Loaded Liposomes. Chem. Commun.2014,50,1546-1548.
    [207]Huang, P.; Lin, J.; Wang, S.; Zhou, Z.; Li, Z.; Wang, Z.; Zhang, C.; Yue, X.; Niu, G.; Yang, M.; Cui, D.; Chen, X. Photosensitizer-Conjugated Silica-Coated Gold Nanoclusters for Fluorescence Imaging-Guided Photodynamic Therapy. Biomaterials 2013,34, 4643-4654.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700