用户名: 密码: 验证码:
提高安徽某难选铜钼多金属矿钼品位的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长期以来由于铜钼矿石的工艺矿物学性质因素,造成分离困难,是选矿工艺中的难题。安徽省某铜钼矿浮选厂生产已经近二年了,但由于矿石性质比较复杂,铜钼分离效果不理想,指标不稳定,产品质量不高,造成很大浪费。销售的产品铜精矿和钼精矿难以达到满意的指标。铜精矿的品位通常在14~16%左右;钼精矿经过8道精选,通常在23~26%左右。按照标准规定:11级铜精矿含铜要求20%,而目前的产品含铜量14~18%,只能属于14~12级铜精矿;钼精矿钼含量要求最低达到40%以上,低品位钼精矿钼含量要求最低35%。可见产品未达到合格的要求。
     本试验主要是以安徽某铜钼矿作为试验的对象,论文对以下几个方面进行了研究,包括矿石的工艺矿物学分析,铜钼混合精矿的分离工艺试验,钼精矿精选工艺试验以及结合实验室的结论进行现场条件试验研究。
     对矿石进行了工艺矿物学研究,钼精矿中含有大量的Si, Mg, Ca, Na, K元素,说明含有大量的脉石矿物石榴子石、透辉石、帘石、透闪石、白云石、石英等。矿石中辉钼矿和黄铜矿密切交生,给铜钼分离带来极大困难。辉钼矿天然成为细小鳞片状,与黄铜矿和脉石分离困难;脉石石榴石、透辉石、白云石、闪石和帘石与辉钼矿在药剂的作用下,表面性质很相近,难于将辉钼矿与脉石分离,所以钼精矿提高品位的难度比较大。
     为了改善铜钼混合精矿分离的效果,试验对影响铜钼分离的各种因素进行了条件试验,结论如下:磨矿时间为未磨效果最好,矿浆浓度为20%,抑制剂硫化钠最佳用量为40kg·t-1,水玻璃最佳用量为1kg·t-1,煤油最佳用量为0.5kg·t-1,此后,试验在各个因素的最佳条件下,进行了铜钼分离的综合开路试验,工艺流程为一粗一扫四次精选,最终得到钼的品位和回收率分别达到24.56%和65.01%,铜精矿中Cu的品位和回收率为20.92%和91.46%。两者都达到了试验预期的结果。
     为了提高钼精矿的品位,试验又对钼精矿进行了精选试验,首先对各个因素做条件试验,结论如下:磨矿时间为10min。矿浆浓度为15%,浮选时间为17min,水玻璃最佳用量为10kg·t-1,煤油最佳用量为1kg·t-1,然后是铝精矿的综合开路试验,工艺流程为再磨二次精选,最终得到钼精矿品位和回收率分别达到48.10%和74.18%,其中只有0.22%的铜,效果显著。
     为了将实验室结论能更好的应用于现场,在现场做了三组对比试验,分别是生产中未磨铜钼混合精矿和已磨铜钼混合精矿的对比,生产中未磨钼精矿和再磨钼精矿对比以及生产中回水和清水的对比试验,结论如下:生产中,有无磨矿对铜钼混合精矿的品位和回收率影响不大,在分离浮选前进行磨矿作业效果不显著。钼精矿再磨浮选得到的钼精矿品位和回收率要优于未磨的钼精矿,应用回水浮选得到钼精矿的回收率为76.19%应用清水的得到钼回收率为92.04%。
Copper-molybdenum separation has been a difficult problem in the beneficiation technology for its mineralogy for a long time.A copper-molybdenum flotation plant has been ran for nearly two years.But the complex mineralogy characteristic results in the poor effect of copper-molybdenum separation、the instable result、the low quality of production. The Cu concentrate and Mo concentrate for sale are hard to satisfy the request for grade. The grade of Cu concentrate is usually between 14% and 16%.The grade of Mo concentrate is usually between 23% and 26% after eight cleaning. According to standard criterion. The grade of ll-level Cu concentrate is 20%, but the grade of present production is about between 14% and 18%,which only belongs to between 14-level and 12-levelCu concentrate. The grade of Mo concentrate is at least 40%.The lower Mo concentrate is at least 35%.Obviously, the production doesn't satisfy the request.
     The thesis mainly takes the copper-molybdenum concentrate as research object, which focuses on several aspects including ore mineralogy, the test for copper-molybdenum separation, the test for Mo concentrate cleaning and the test applying conclusion in lab into practice.
     With the research on ore mineralogy, it is knowed that Mo concentrate includes a large quantity of Si, Mg, Ca, Na, K, which show that Mo concentrate includes a lot of gangue with garnet, diopside, zoisite, tremolite, dolomite, quartz and so on.
     The molybdenite and chalcopyrite accrete together in the ore, which brings the large difficulty to the copper-molybdenum separation. The molybdenite is hard to be separated from chalcopyrite and gangue for its scalelike. Because molybdenite has the similar surface characteristic with garnet, diopside, dolomite, amphibole and zoisite under the reagent. It is hard to separate molybdenite from gangue. It is hard to upgrade the Mo concentrate grade.
     In order to improve copper-molybdenum separation. The condition tests are done on several factors affecting copper-molybdenum separation.The conclusion as follows:Omin for grinding time,20% for pulp concentrate,40 kg·t-1 for the dosage of Na2S,1 kg·t-1 for the dosage of Na2Si03,0.5 kg·t-1 for the dosage of coal oil.Under the foundation of these the most optimum value, The compositive open circuit test of copper-molybdenum concentrate is done, one roughing, one scavenging and four cleaning is adopted to get Mo flotation concentrate with 24.56% for Mo grade and 65.01% for Mo recovery and to get Cu flotation concentrate with 20.92% for Cu grade and 91.46% for Cu recovery.
     In order to improve Mo concentrate grade,The condition tests are done on several factors affecting Mo concentrate cleaning.The conclusion as follows:10min for grinding time,15% for pulp concentrate,17min for flotation time,10 kg·t-1 for the dosage of Na2SiO3,1 kg·t-1 for the dosage of coal oil. Under the foundation of these the most optimum value,The compositive open circuit test of Mo concentrate is done, regrinding and two cleaning is adopted to get Mo flotation concentrate with 48.10% for Mo grade and 74.18% for Mo recovery and 0.22% for Cu grade.
     In order to put the conclusion into the practice, three comparative test are done in the plant, including no-grinded and grinded copper-molybdenum concentrate, no-grinded and grinded molybdenum concentrate and circle water and water in practice. The conclusion as follows:Whether grinding has little effect on Mo grade and recovery of copper-molybdenum concentrate,before separation flotation,grinding isn t important.the Mo grade and recovery of regrinded Mo concentrate in is better than no-grinded.the Mo recovery of applying circle water is 76.19%, while Mo recovery of applying water is 92.04%.
引文
1.罗振中.铝的应用及其发展[J],中国钼业,2003,27(2):7-9.
    2.吴铭.战争金属-钼[J],金属漫谈,2006,1:42-45.
    3.彭如清.中国钨钼资源现状与对外贸易态势[J],中国钼业,2002,26(4):3-7.
    4.许洁瑜,杨刘晓,王俊龙.中国钼资源利用与可持续发展战略研究[J],中国钼业,2005,29(4):4-5.
    5.张文朴.我国钼资源综合利用与再生研究进展评述[J],中国资源综合利用,2006,124(12):1-3.
    6.付治国,李济营,瓮纪昌,等.东沟特大型钼矿床矿石物质组成及选矿新工艺[J],中国钼业,2006,30(1):15-19.
    7.选矿手册编委会.选矿手册[M],北京:冶金工业出版社,2000,307-308.
    8.查贵嵩.中国有色金属选矿厂概述[M],北京:中国有色金属工业总公司,1990,201-206.
    9.胡熙庚.有色金属硫化矿选矿[M],北京:冶金工业出版社,1987,130-132.
    10. Burke,H.K. San Manuel new process for molybdenite recovery.Min.Eng.,1965,17:145-162.
    11.北京矿冶研究院有色金属编辑部.有色金属选矿部分[M],北京:冶金工业出版社,1999,20-21.
    12.北京有色冶金设计研究总院.美国选钼工业概况[M],北京:冶金工业出版社,1977,65-66.
    13.A.M.Flotation[M],Gaudin Memorial Volume,1976.
    14.马骁.金堆城钼业集团公司铜精矿中难选钼的综合回收试验研究[D],西安建筑科技大学,2007
    15.郑昕,卢毅屏,冯其明.从铜钼矿石选钼的理论与实践[J],国外金属矿选矿,1995,28-29.
    16.陈家模.多金属硫化矿浮选分离[M],贵阳:贵阳科技出版社,2001,130-135.
    17.北京矿冶研究院国外金属矿选矿编辑部.国外金属选矿[M],北京:科学技术文献出版社,1997,121-129.
    18.胡熙庚等.浮选理论与工艺[M],长沙:中南工业大学出版社,1991,212-215.
    19.王淀佐.浮选剂作用原理及应用[M],北京:冶金工业出版社,1982.
    20.M.A.爱格列斯.浮选调整剂[M],北京:冶金工艺出版社,1982,147-151.
    21.刘广沁.美、加大型铜选厂某些新技术[J],有色矿山,1985,9:85-92.
    22.北京有色冶金设计研究总院.国外选钼工业概况[M],北京:冶金工业出版社,1979,89-90
    23.中国有色金属工业协会.美国钼企业考察技术报告[M],1980.
    24. D.W.Clark,A.J.H.Newell.G.F.and P.G.Capps.Improving flotation recovery of copper sulphides by nitrogen gas and sulphidisation conditioning[J],Mineral Engineering,2000,13(12),1197-1206.
    25.M.Poorkani,S.Banisi.Industrial use of nitrogen in flotation of molybdenite at the sarcheshmeh copper complex[J],Minerals Engineering,18(2005):735-738.
    26.蒋玉仁,周立辉,薛玉兰.提高某难选钼矿回收率的途径[J],矿产综合利用,1999,6:26-29
    27.选矿手册编委会.选矿手册二[M],北京:冶金工业出版社,2000,351-355.
    28.M.C富尔斯特.浮选[M],北京:冶金工业出版社,1982,55-59.
    29.雷国元.铜钼分离新型高效抑制剂的研究[J],矿产保护与利用,1997,1:26-27.
    30.见百熙.浮选药剂[M],北京:冶金工业出版社,1981,80-82.
    31.朱玉霜,朱建光.浮选药剂的化学原理[M],长沙:中南大学出版社,1996,301-304.
    32.鲁军,孔晓薇.某钼铜硫化矿优先分选分离试验研究[J],矿产综合利用,2006,4:20-23.
    33.杜新路,程景峰,张攀,等.提高金堆城钼矿选铜回收率的试验研究[J],中国钼业,2006,30(1):20-22.
    34.宁振茹,董允杰.国内外钼矿综合利用概况及对我国钼矿综合利用的建议[J],中国钼业,1998,22(4):26-28.
    35.崔延遂.栾川钼钨业的现状与可持续发展[J],中国金属通报,2003(特刊):32-39.
    36.阮仁满.分步优先浮选法处理低品位硫化铜矿[J],矿产综合利用,1996,6:27-31.
    37. R.J.Use of Lingin sulphonate as moly depressant Boot Recovery at Twin Buttes[J],E/Mj,1975.
    38.雷贵春.提高德兴铜矿选钼技经指标的主要途径[J],1997,21(2):70-72.
    39. Noranda.Mines limited-Boss mountain division:Milling practice[J], Minerals Engineering,1981.
    40. S.Chander.A brief review of pulp potentials in sulfide flotation[J],Mineral Processing, 2003,72:141-150.
    41.J.Rubio,F.Capponi.Enhanced floatation of sulfide fines using the emulsified oil extender technique[J],Mineral Processing,2007,84:41-50.
    42.朱一民.辉钼矿浮选药剂[J],国外金属选矿,1998,7-11.
    43.李崇德.汤家坪钼矿浮选工艺流程研究[J],有色金属(选矿部分),2006,6:6-7.
    44.陈德明.钼矿石浮选工艺试验研究[J],四川有色金属,2006,2:15-17.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700