用户名: 密码: 验证码:
铝电解槽电流强化与电热场仿真研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电流强化是提高铝电解槽产量和经济效益的有效手段。我国现有的大部分铝电解槽阳极电流密度较低,有较大的电流强化潜力,因此研究电流强化方法及相应的配套技术措施对我国现阶段铝电解企业的增产、增效是有很重要的现实意义。
     铝电解过程是一个多场耦合的复杂的物理化学过程,研究电流强化必须研究电流强化对三场的影响。本文采用工程测试手段利计算机仿真计算手段重点研究了电解槽电流强化后的热场变化情况及电流强化配套技术措施。
     本文以龙祥铝业公司电解槽为电流强化研究对象,应用我院开发完善的铝电解槽热场仿真专用软件研究了阳极尺寸加大和加大阳极电流密度两种电流强化方案的优劣及工艺参数调整、槽结构材料改变对电流强化的影响。此外还研究了阳极电流分配不均匀性对槽膛内形的影响,并对阳极电流分配不均匀的原因进行了深入的分析,提出了改善阳极电流分配均匀性的技术途径。本文通过仿真计算和测试验证得出了如下结论:
     1、现有的技术条件下,通过采用适当的配套技术措施,龙祥铝业公司154kA电解槽系列电流强化到160 kA是完全可行的,且增加阳极电流密度的强化方案比加大阳极的电流强化方案更经济。
     2、槽底部使用防渗料代替耐火砖,有利于槽底部保温利延长电解槽的寿命。
     3、槽侧部使用碳化硅砖代替普通碳砖,加强了侧部散热和抵抗电解质侵蚀的能力,有利于规整槽帮的形成、电解槽的电流强化和电解槽寿命的延长。
     4、电解质的过热度影响着电解槽槽膛内形的的形成。研究得出:在龙样铝业公司现有技术条件下,电解质的过热度控制在12~15℃最为合适。
     5、降低分子比,能有效地提高电解槽的电流效率,但同时带来了槽帮厚度的减薄和初晶温度线下移的不利影响。适当降低电解质过热度,能弥补降低分子比带来的不利影响。
     6、阳极电流分配的均匀性对电解槽槽膛内形有决定性的影响,阳极电流分配的不均匀性增大对电流效率的提高和直流电耗的降低是不利的。本文研究认为极距的不同、各阳极碳块消耗的程度不同是影响阳极电流分配均匀性的主要因素。预热新更换的阳极碳块、在检测电流的基础上调节极距、加强磷生铁浇注质量检验,能有效地提高阳极电流分配的均匀性。
     7、提出了与电流强化配套技术措施:增长阳极和阴极:适当降低极距和调低分子比等。经工业现场应用,取得了良好的成效。
Increasing current is one of the effective measures to increase products of aluminum reduction cells and economic profit in aluminum reduction plant. As the current density of the anode in most aluminum reduction cells is low comparatively in our country, improving current has great potential. It is significance to study ways of increasing current and relative technologies for increasing product and profit of aluminum electrolyte plants in China.
    Aluminum electrolysis is a process of complicated physical chemistry reaction with multi-field coupled. It is indispensable to study increasing current influence on" three field " The variation of thermal field in the Based on and relative technologies after intensifying current are mainly studied in this paper by means of practical measure and computer simulation.
    Aiming at the current increasing of the aluminum reduction cell of Longxiang Aluminum Ltd, based on the special simulation software of the thermal field of aluminum reduction cells, which is developed and perfected by school of Energy and Power Engineering, Central South University. The author studied excellence and disadvantage of two designs of enhancing current, optimization of technical parameters and variety of cell material in the cell, which are enhancing current density of anode and enlarging size of anode. Furthermore, asymmetry of current distribution influence on shape of profile ledge in the cell is studied and the reason is analyzed. The technical approach is put forward to improve the uniform distribution of anode current. The following conclusion has been achieved by means of simulation calculation and project test.
    1. Under existing technical conditions, it is feasible to intensify current of the aluminum reduction cell of Longxiang Aluminum Ltd. from 154 kA to 160kA by means of appropriate technology measures. Furthermore, the current intensifying design of increasing current density of anode is superior to the one of enlarging anode in economy.
    2. To Substitute anti-penetration material for the firebrick is beneficial to the heat
    
    
    preservation in the bottom of aluminum reduction cells and the prolonging of the cells life.
    3. To substitute ordinary brick made of carbon for brick made of Carborundum in the profile of the cells intensifies dispersion of heat in the profile of the cells and the capability of withstanding erosion of electrolyte. It is beneficial to the formation of optimized profile ledge, the increase of current and the prolonging of the cells life.
    4. The super heat of electrolysis influences the shape of profile ledge in the cell.. This paper pointed out that the appropriate super heat of the electrolysis is between 12~15 C under present technology condition in the Longxiang Aluminum Ltd.
    5. The decrease of molecule ratio can enhance current efficiency of aluminum reduction cells effectively, but simultaneously bring out some disadvantageous such as the decrease of profile ledge thickness and the moving down of the isotherm. Decreasing super heat properly can make up negative influences caused by lower molecule ratio.
    6. The uniform distribution of anode current influences the shape of profile ledge in the cells definitively. Increasing asymmetry of anode current distribution is not beneficial to improving current efficiency and decreasing energy consumption The study indicated that the different distance between anode and cathode and the anode carbon consumption influence the uniformity of anode current distribution Heating new anode, regulating the distances between anode and cathode on the basis of measure of on-line of anode current, intensifying quality inspection of cast-material made of phosphor-iron can improve uniformity of anode current distribution effectively.
    7. A serial of relative measures to increasing current have been put forward and applied. Such as to lengthen anode and cathode, to decrease distances between anode and cathode and reduce molecule ratio properly, and so on. Good effects have achieved the Longxiang Aluminum Ltd.
引文
[1] 徐军,陈学森.我国铝工业现状及今后发展建议[J] .轻金属.2001(10):3~6
    [2] C. Vanvoren, P. Homsi, J. L. Basquin. AP50: The Pechiney 500kA Cell[J] . Light Metals. 2001:221~226
    [3] D. Mota, G. E. De Andrade. Magnetic Compensation Project at ALBRAS Smelter[J] . Light Metals. 2001: 413~417
    [4] M. V. Romerio, J. Antille. The Numerical Approach to Analysing Flow Stability in the Aluminum Reduction Cell[J] . Aluminum 76. Jahrgang. 2000(12): 1031~1037
    [5] 梁学民.铝电解槽物理场数学模型及计算机仿真研究[J] .轻金属(增刊).1998:145~149
    [6] E. Skybakmoen. Chemical Resistance of Sidelining Materials Based on SiC and Carbon in Cyrolitic Melts[J] . Light Metals. 1999: 215~222
    [7] 刘业翔.互联网上最新轻金属动态[J] .轻金属.2001(1):3~5
    [8] 李晋宏,冷正旭,席灿明.模型控制和模型专家系统技术在大型预焙铝电解槽中的开发与应用[J] .轻金属.20001(3):44~47
    [9] R. Bernd. Thermal Bake-out of Aluminum Reduction Cells. Technology for the Future[J] . Minerals, Metals and Materials Society. 2002: 343~346
    [10] 中国金属工业“十五”规划(经济论坛)[J] .有色设备.2001(5):20~27
    [11] 冯乃祥,田福泉等.我国铝电解工业现状和与国外先进技术水平的差距[J] .轻金属.2000(7):29~33
    [12] 邱竹贤.世界铝工业与新技术发展趋势[J] .有色冶炼.2000,29(2):1~6
    [13] 冯乃祥,田福泉,徐英林等.我国铝工业现状与国外先进技术水平的差距,轻金属,2000(7):29~33
    [14] G. D. Brown, G. J. Hardie, E. W. Shaw. TiB2 Coated Aluminum Reduction Cells: Status and Future Direction of Coated in Comalco. Proc[J] . 6th Aust. Al Smelting Workshop. 1998: 499~508
    [15] T. Palmer. Changing Trends in Aluminum Production[J] . Proc6th Aust. Al Smelting Workshop. 1998: 1~2
    [16] H. A. Oye, B. J. Weelch. Cathode Performance. The Influence of Design. Operations and Operating Conditions[J] . JOM, Fel. 1998: 18~23
    [17] 周乃君.导流型铝电解槽技术进展与应用基础研究[J] .轻金属.2000(9):29~31
    [18] 邱竹贤.中国铝工业应用新型电极材料的研究与展望[J] .中国工程科学.2001;3(5):50~54
    [19] 邱竹贤,何鸣鸿,范立满.融盐铝电解中若干物理化学问题的研究[J] .东北大学学
    
    报.2001:22(2):119~122
    [20] 王强华,周文田,轻金属155kA预焙槽强化系列电流条件下的生产2001 (1)26~27
    [21] 刘海石,曹玉军.160kA中间下料预焙槽生产技术条件的优化[J] .轻金属.2001(1)36~38 姜玉敬,我国大型预焙槽炼铝工业的现状与展望[J] .世界有色金属,1996(5):4~8
    [22] 于绍鹏 姚世焕.280kA铝电解槽适宜电流强度的探讨[J] .轻金属 2002(6):27~31
    [23] R Dhameja and G S Sachan.POT RETROFIT WITH LARGER ANODES[J] .Light Metals. 1990:459~462
    [24] 李春喜.调整工艺参数,强化电流是提高生产的有效途径[J] .轻金属.2001(1):39~40
    [25] Terje johansen,Hans Petter lange,Rene von Kaenel,PRODUCTIVE INCREASE AT AT SφRAL SMELTER[J] .Light Matals. 1989: 153-157
    [26] R Dhamejea and G S sachan[J] .light metals.1990:459~462
    [27] LL Knapp.PRIDICTION OF POT PERFORMANCE AT NEW OPERATING CONDITIONS Light Metals[J] . 1992, 537—539
    [28] 周铁托,铝电解技术与控制策略,第二届铝电解研讨班讲稿[M] .14~24
    [29] 吕增旭.铝电解的刚极消耗[J] .河南冶金.2000(1):24~26
    [30] 马永国.铝电解阳极综合评述[J] .矿冶工程.20(3)6~80
    [31] 邱金山.铝电解槽阴极内衬改进研究[J] .河南冶金 1999(7):36~40
    [32] 中南大学铝电解槽三场测试系列报告[M] .内部资料
    [33] 吕增旭.铝电解槽阴极内衬新材料的应用[J] .河南冶金 6(41):9~11
    [34] E.Bosshard et al,EPT 18:THE 180-KA-POT OF ALUSSISSE[J] .Light Metals.1983: 595~605
    [35] 游旺.大型预焙铝电解槽槽膛内形在线动态仿真研究[D] .[博士学位论文] .长沙:中南工业大学.1997
    [36] 周萍.铝电解槽槽膛内形的连续监测[M] .[硕士论文] .长沙:中南工业大学.1991
    [37] 姜昌伟.预焙阳极铝电解槽电场、磁场、流场的耦合仿真方法及应用研究[D] .[博士学位论文] .长沙:中南工业大学.2003
    [38] 贺志辉.电解槽槽膛内形对电流分布的影响[J] .轻金属.1987(6):28~30
    [39] 梁芳慧,冯乃祥,孙阳.利用槽膛形状的计算机仿真技术确定160kA预焙槽最佳铝液高度[J] .轻金属,2000(1):33~36
    [40] 李景江,邱竹贤.铝电解槽阴极电场的计算机仿真[J] .东北工学院学
    
    报:198910(6):591~596
    [41] 华中科技大学.铝电解槽电热问题深层研究的可行性报告(内部资料).2000
    [42] 罗海岩,陆继东,吴君棋等.铝电解槽电热场解析技术的发展[J] .轻金属.2002(1):30~32
    [43] 周乃君,李劼,姜昌伟等.预焙阳极铝电解槽物理场的耦合解析方法研究[A] .铝21世纪基础研究与技术发展研讨会论文集(化学冶金),张家界,2002,11:418~425
    [44] 梅炽,王前普等.有色冶金炉窑的仿真与优化[J] .中国有色金属学报,19966(4):19~22
    [45] 罗海岩,铝电解槽电热场特样的解析技术的发展[J] .轻金属 2002(1)30~32
    [46] K.A.Palsen et al Variations of Lining Temperature Anode Position and Current/Voltage Load in Aluminum Reduction Cells [J] .Light Metals.1980:325~341
    [47] 梁学民,热场研究资料[A] .(内部资料)1987
    [48] R.M.Merz and D.J.Shannon. Monitoring Of Freeze Porfiles in Operating Cells [J] .Light Metals. 1987:257
    [49] W.E.Haupin.Calculating Thickness of Containing Walls Frozen from Melt[J] . TMS-AIME Annual Meeting Pager.New York. 1971:305~309
    [50] G.Peacy, G.W.Medlin.Cell Sidewall Studies at Noranda Aluminum[J] .Light Metals. 1979: 475~482
    [51] A.EK.,G.E.Flankmark.Simulation of Thermal,Electrical and Chemical Behavior of an Aluminum Cell on a Digital Computer[J] .Light Metals,1973:85~93
    [52] J.N.Bruggeman,D.J Danka.Two-Dimensional Thermal Modeling of the Hall-Heroult Cell[J] . Light Metals. 1990:203~211
    [53] H.A.Ahmed,et al.Development of a Thermal Model for Prebaked Aluminum Reduction at the Aluminum Company of Egypt[J] .Light Metals. 1993:258~266
    [54] 梅炽,汤洪清,孟柏庭.铝电解槽电、热解析数学模型及数值仿真试验[J] .中南矿冶学院学报.1986:52(6):29~37
    [55] Marc Dupuis.Computation of Aluminum Reduction Cell Energy Balance using ANSYS Finite Element Models[J] .Light Metals. 1998:409~417
    [56] J.Clair et al. Computer Calculation of the Thermal and Electrical Phenomena in the Cathodes of Aluminum Electrolytic Cells Trans.of the Metal Soc.of AIME 1967(9)
    [57] Marc Dupuis.Computation of Aluminum Reduction Cell Energy Balance using ANSYS Finite Element Models[J] .Light Metals. 1998:409~417
    [58] M. Dupuis,l. Tabsh.Thermo-electric Coupled Field Analysis of Aluminum Reduction Cells using the ANSYS Parametric Design Language[A] .Proceeding of the ANSYS
    
    Fifth International Conference, 1991 (3): 1780~1792
    [59] I.Tabsh,M.Dupuis,A.Gomes.Process Simulation of Aluminum Reduction Cells [J] .Light Metals, 1996:451~457
    [60] M.Dupuis,I.Tabsh.Thermo-electric Analysis of Aluminum Reduction Cells[A] . Proceeding of the 31st.Conference on Light Metal,CIM,1992:55~62
    [61] M.Dupuis,I.Tabsh.Thermo-electric Analysis of the Grande-Baie Aluminum re--duction cell[J] . Light Metals. 1994:339~342
    [62] 程迎军.预焙阳极铝电解槽阳极电、热场的数值仿真与优化[M] .长沙:中南大学.2003
    [63] A.Solheim and Thonstad Model Experiments of Heat Transfer Coefficients Between Bath and Side Ledge in Aluminum Cells[J] . Journal of Metals Mar. 1984: 51-55
    [64] M.P.Taylor et al. Bath/Freeze Heat Transfer Coefficient: Experimental Determination and Industrial Application [J] .Light Metals. 1985: 781-789,1
    [65] 吴乐谋.铝电解槽热场研究—熔体与槽帮间传热系数的计算及研究[M] .长沙:中南工业大学.1988
    [66] John J.J.et.al. A Study of Cell Ledge Heat Transfer Using an Analogue Ice -Water [J] .Model Light Metals.1994: 285~293,.
    [67] 李德祥,郭大立.铝电解槽内熔体与槽帮换热系数的计算[J] .有色金属.1993(1) 45~52
    [68] T.Hashimoto, h.Ikeuchi.Computer Simulation of Dynamic Behavior of an Aluminum Reduction Cell[J] .Light Metals. 1980:273~280
    [69] Mark P.Talor et al. The Dynamics and Performance of Reduction Cell Electrolyte[J] . Light Metals1990: 259-266
    [70] K.A Paulsen et al. Variations of Side Lining Temperature,Anode Position and Current /Voltage Load in Aluminum Reduction Cells[J] .Light Metals.1980: 25~34
    [71] D.W. Dow, W.H. Goodnow.Influence of Operating Variables on Reduction Cell Bath Temperature[J] .Light Metals. 1972:246~251
    [72] Zhao Hengxian,Zhang Mingjie.Influence of Environmental Temperature on Energy Balance of Electrolysis Cells[J] .Light Metals, 1992:246-255
    [73] 张明杰,赵恒先等.45Ka自焙阳极电解槽动态热平衡[J] .轻金属.1991(6):36~40
    [74] W.Schmidt-Hatting. Heat Losses of different Pots[J] .Light Metals.1985: 120~126
    [75] 梅炽,游旺等.铝电解槽槽膛内形在线显示仿真软件的研究与开发[J] .中南工业大学学报.1997:28(2):138~141
    [76] 游旺,王前普.铝电解槽槽膛内形在线仿真理论研究[J] .中国有色金属学报.1998;
    
    8(4):695~699
    [77] K. J. Fraser, et al. Some Applications of Mathematical Modelling of Electric Current Distributions in Hall Heroult Cells[J] . Light Metals. 1989: 219~226
    [78] S. Kaseb, H. A. Ahmed, et al. Thermal Behavior of Prebaked Aluminum Reduction Cells:Modeling and Experimental Analysis[J] .Light Metals, 1997: 395~401
    [79] 周萍,梅炽.铝电解槽槽膛内形的连续监测[J] .轻金属.1992(4):19~22
    [80] J. Zoric, I. Rousar, J. Thonstad. Mathematical Modelling of Current Distribution an Anode Shape in Industrial Aluminum Cells with Prebaked Anodes[J] . Light Metals. 1997: 449~456
    [81] 韦涵光,等译.铝电解槽阳极的温度及其应力[J] .轻金属.1985(12):26~30
    [82] 梅炽,王前普.锅电解槽热场研究[J] .轻金属.1992(1):29~32
    [83] 蔡祺风,沈洪远,梅炽等.铁棒法测定铝液流速的标定实验怀工业槽测试[J] .轻金.1993(9)29~32
    [84] A.Furman and F.Femenia.Temperature-Time Relationship in an Aluminum Reduction Cell[J] . Light Metals.1976: 245~273
    [85] D.Dderneded [J] . Light Metals.1975: 111
    [86] Fillmonov S.S.Thermal Phisics of High Temoerature[M] .1964; 2(6): 901
    [87] 日本轻金属株式会社 铝电解下部槽热解析报告(内部资料) 1980:5
    [88] A.Rostum,A.Solheim,A.Stterten[J] .LightMetals. 1990: 311
    [89] E.Skybakmoen,A. Solheim, A.Stterten. Light Metals.1990: 317
    [90] 汤洪青,铝电解槽热电解析数学模型[M] .长沙:中南工业大学.1987
    [91] 王国献.190kA大型预焙电解槽“四低一高”工艺研究与实践[J] .轻金属.2002(3):29~31
    [92] 罗德政.60kA自焙槽槽温、分子比对电流效率的影响[J] .云南冶金.2000年增刊:43~44
    [93] 周铁托,洪建中,李勇等.铝电解槽低电解温度稳定控制技术的综合研究(上)—低电解温度选择及其稳定性研究[J] .轻金属.1999(10):28~32
    [94] 邱竹贤.铝电解[M] .北京:冶金工业出版社.1995
    [95] 马柏祥.NaF.AlF_3—Al_2O_3—MgF_2系熔点初晶温度的数学模型的建立[J] .铝镁通讯.2000(1):49~53
    [96] 李德祥.铝电解质初晶温度和电导率数学模型的研究.北京矿冶研究总院学报[J] .1993:2(4):59~64
    [97] 高子忠,田宝君,叶绍龙.轻金属冶金学[M] .北京:冶金工业出版社.1990
    [98] 曾水平,蔡祺风.NaF.AlF_3—NaCl—MgF_2熔盐体系初晶点及电导率的研究[J] .轻金
    
    属.1994(8):30~32
    [99] T.Sele.Instabilities of the Metal Surface in Electrolytic Aluminum reduction Cells.Metallurgical Transactions [J] .SB. 1977. 12:613~618
    [100] 邱竹贤,铝冶金物理化学[M] .上海:上海科学技术出版社.1985:68
    [101] 黄永忠,王化章,王平甫,王益人,李劼.铝电解生产[M] .长沙:中南工业大学出版社.1994:180

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700