用户名: 密码: 验证码:
CO_2催化加氢合成甲醇催化剂CuO-ZnO-Al_2O_3改性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
C02排放不仅造成巨大的碳资源浪费,而且严重污染环境,其所造成的“温室效应”和“臭氧空洞”日益影响人类与大自然的和谐相处。C02催化加氢合成甲醇是C1化学研究的热点之一,但是由于CO2本身的惰性和热力学限制,其转化率一直很低,很难突破30%。本研究采用草酸作沉淀剂,用共沉淀法,制备了铜基催化剂CuO-ZnO-Al2O3,并用剂量为2~8wt.%的MgO、TiO2、CaO等单组分助剂和MgO-TiO2、 MgO-SiO2、TiO2-SiO2等复合助剂对其改性。采用固定床反应装置对改性前后催化剂的性能进行评价。发现改性后的催化剂使CO2转化率和甲醇选择性明显提高。对于催化剂CuO-ZnO-Al2O3,在P=2.6MPa、t=260℃、SV=3600h-1和H2:C02=3:1(体积比)条件下,性能评价结果为:XCO2=15.81%、SCH3OH=23.31%、YCH3OH=3.69%,经过改性后的催化剂,在同等反应条件下,CO2转化率和甲醇选择性均有提高,在催化剂2wt.%TiO2-SiO2/CuO-ZnO-Al2O3上,CO2转化率达到40.70%、甲醇选择性达到41.17%,但是助剂存在最佳加入量,过量反而降低CO2转化率和甲醇选择性。并采用XRD、FT-IR、 H2-TPR、H2-TPD、NH3-TPD、CO2-TPD、BET和SEM等表征手段对改性前后的催化剂进行表征分析,发现大部分助剂提高了催化剂中CuO的分散度,调变了催化剂表面的酸性,且复合助剂间产生了协同作用,这些改性提高了催化剂对CO2或H2的吸附量和吸附强度。
     本研究继而考察了预处理条件(焙烧温度)对催化剂性能的影响,以及工艺条件如温度、压力、空速和H2/CO2比等对CO2催化加氢合成甲醇反应的影响。以2wt.%MgO/CuO-ZnO-Al2O3为例,发现焙烧温度对催化剂中CuO和ZnO的晶型有较大影响,进而影响催化剂在反应中的性能,研究发现,在P=2.6MPa、t=260℃、SV=3600h-1和H2:CO2=3:1(体积比)条件下,焙烧温度为550℃时催化剂的性能最佳,C02转化率和甲醇选择性分别为29.80%和34.52%,焙烧温度过低或过高均不利于催化剂性能的发挥。反应温度过低达不到反应所需的最佳温度,过高反而抑制甲醇的生成,在P=2.6MPa、SV=3600h-1和H2:CO2=3:1(体积比)条件下最佳反应温度为260℃。CO2转化率随压力和H2/CO2的升高而升高,随流量的升高而降低。
CO2emission causes the huge waste of carbon resource and environmental problem, leading to the greenhouse effect and ozone depletion, and result in the worse harmonious relationship between nature and human being. As a branch of C1chemistry, methanol synthesis from CO2hydrogenation has been considered an issue, while CO2conversion was found to be too poor to exceed30%because of both intrinsic inertia of CO2and thermodynamics. In this present work, the Cu-based catalyst CuO-ZnO-Al2O3was prepared by co-precipitation method, using oxalate as precipitant, and CuO-ZnO-Al2O3was promoted with the single component promoter such as MgO, TiO2, CaO, etc. and the multicomponent promoter such as MgO-TiO2, MgO-SiO2, TiO2-SiO2, etc. in dosages range of2-8wt.%. The catalytic evaluation was performed using a fixed-bed reactor, results showed that most of the CO2conversions on the promoted catalysts were higher than that on the one unpromoted. For catalyst CuO-ZnO-Al2O3, the catalytic evaluation results showed that XCO2=15.81%, SCH3OH=23.31%and YCH3OH=3.69%under the conditions of P=2.6MPa, t=260℃, SV=3600h-1and H2:CO2=3:1(volume ratio), however it showed the higher CO2conversion and the higher methanol selectivity on the promoted catalysts than that on the one without promoter under the same conditions. Especially, the CO2conversion and methanol selectivity could reach40.70%and41.17%on the catalyst2wt.%TiO2-SiO2/CuO-ZnO-Al2O3, respectively. But the addition should be at the optimal dosage, however the excessive promoter would decrease the CO2conversion and methanol selectivity. In this present work, XRD, FT-IR, H2-TPR, H2-TPD, NH3-TPD, CO2-TPD, BET and SEM characterizations were performed, it was found that most of the promoters enhanced the dispersion of CuO in the catalyst body, modulated the acidity of the surface of the catalyst, meanwhile synergistic effect produced between the promoters, and most of these modifications improved the adsorption capacity/strength of CO2or H2on the surface of the catalyst.
     In this work, the effect of pre-treatment condition (calcination temperature) on the catalytic performance, and the effect of reaction conditions such as temperature, pressure, space velocity and the ratio of H2/CO2on the reaction were investigated either. Take the catalyst2wt.%MgO/CuO-ZnO-Al2O3as example, testing results showed that the calcination temperature played an important role on the crystals of CuO and ZnO in the catalyst body, hence the performance of the catalyst in the reaction, it was found also that the catalyst calcined at550℃showed the higher catalytic performance with CO2conversion of29.80%and methanol selectivity of34.52%under the conditions of P=2.6MPa, t=260℃, SV=3600h-1and H2:CO2=3:1(volume ratio). The catalyst which was pre-treated at too high or too low temperature can not exhibit the well performance. Too low temperature can not run the catalyst, while too high would inhibit the formation of methanol, the optimal temperature was found to be at260℃under the conditions of P=2.6MPa, SV=3600h-1, H2:CO2=3:1(volume ratio). CO2conversion increased with the increase in H2/CO2while decreased with the increase in flow rate.
引文
[1]Rahimpour M R. A two-stage catalyst bed concept for conversion of carbon dioxide into methanol [J]. Fuel Process. Technol.,2008,89:556-566.
    [2]Arena F, Barbera K, Italiano G, et al. Synthesis, characterization and activity pattern of Cu-ZnO/ZrO2 catalysts in the hydrogenation of carbon dioxide to methanol [J]. J. Catal.,2007,249:185-194.
    [3]Song C S. Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing [J]. Catal. Today,2006, 115:2-32.
    [4]赵钦铭.二氧化碳变害为利回收利用造福人类[J].能源与环境,2010(4):25-27.
    [5]朱益飞.低碳经济为新能源产业提供发展机遇[J].变频器世界,2011(1):53-55.
    [6]http://down.pinggu.org/html/20100409/10392.html.
    [7]郑杰峰,戚昌厚.发达国家二氧化碳减排经验及启示——基于政策工具的视角[J].法制与社会,2010(6):184-188.
    [8]沈建中,徐美楠.二氧化碳减排与回收利用[J].氮肥技术,2010,31(6):34-38.
    [9]http://image.baidu.com/i?tn=baiduimage&ct=201326592&lm=-1&cl=2&fr=ala0&word=%CE%C2%C A%D2%D0%A7%D3%A6%CD%BC%C6%AC#pn= 12.
    []0]http://image.baidu.com/i?tn=baiduimage&ct=20]326592&lm=-1&cl=2&fr=ala0&word=%B3%F4%D 1%F5%BF%D5%B6%B4%CD%BC%C6%AC.
    [11]Brooks K P, Hu J L, Zhu H Y, et al. Methanation of carbon dioxide by hydrogen reduction using the Sabatier process in microchannel reactors [J]. Chem. Eng. Sci.,2007 (62):1161-1170.
    [12]Gallucci F, Basile A. A theoretical analysis of methanol synthesis from CO2 and H2 in a ceramic membrane reactor [J]. Int. J. Hydrogen Energy,2007 (32):5050-5058.
    [13]Tijm P J A, Waller F J, Brown DM. Methanol technology developments for the new millennium [J]. Appl. Catal., A,2001 (221):275-282.
    [14]Denise B, Sneeden R P A. Oxide-supported copper catalysts prepared from copper formate: Differences in behavior in methanol synthesis from CO/H2 and CO2/H2 mixtures [J]. Appl.Catal., 1986 (28):235-239.
    [15]Qi G X, Fei J H, Zheng X M, at al. Study of MnOx-promoted Cu/y-Al2O3 catalyst hydrogenationc carbon monoxide [J]. J.Nat. Gas Chem.,2001,10 (1):34-39.
    [16]Qi G X, Fei J H, Zheng X M, et al. DME Synthesis from Carbon Dioxide and Hydrogen over Cu-Co/ HZSM-5 [J]. Catal. Lett.,2001,72:121-125.
    [17]Qi G X, Zheng X M, Fei J H, et al. Characterization and Activity of Cu-Mn/y-Al2O3 Catalyst for hydrgenation of Carbon Dioxide [J]. Chin. J. Chem.,2001,19 (5):35-38.
    [18]安欣,任飞,李晋鲁,等.用于CO2或CO加氢合成甲醇过程的高活性Cu/ZnO/Al2O3纳米纤维催化剂[J].催化学报,2005,26(9):729-730.
    [19]刘志坚,廖建军,谭经品,等.二氧化碳加氢合成甲醇的CuO-ZnO催化剂的制备方法.石油炼制与化工[J].2000,31(9):58-61.
    [20]丛昱,包信和,张涛,等.超细Cu-ZnO-ZrO2催化剂上甲醇合成的TPSR和TPD研究[J].燃料化学学报,,2000,28(3):238-243.
    [21]Arena F, Italian G, Barbera K, et al. Basic evidences for methanol-synthesis catalyst design [J]. Catal. Today,2009,143:80-85.
    [22]李凯,千载虎.二氧化碳加氢合成甲醇的进展[J].石油化工,1986,15(10):642-646.
    [23]张一平,费金华,郑小明.二氧化碳催化加氢研究进展[J].化学世界,2002(4):214-216.
    [24]朱明乔,吴廷华,谢方友.合成甲醇催化剂的新进展[J].现代化工,2003,23(3):18-21.
    [25]Saito M, Fujitani T, Takeuchi M, et al. Development of copper/zinc oxide-based multicomponent catalysts for methanol synthesis from carbon dioxide and hydrogen [J]. Appl. Catal., A,1996 (138): 311-318.
    [26]查飞,李治霖,陈浩斌,等.二氧化碳加氢合成二甲醚的研究进展[J].应用化工,2009,38(1):116-119.
    [27]Fujitani T, Nakamura I, Uchijima T, et al. The kinetics and mechanism of methanol synthesis by hydrogenation of CO2 over a Zn-deposited Cu (111) surface [J]. Surf. Sci.,1997,383:285-298.
    [28]Chiavassa D L, Barrandeguy J, Bonivardi A L, et al. Methanol synthesis from CO2/H2 using Ga2O3-Pd/silica catalysts:Impact of reaction products [J]. Catal. Today,2008,133:780-786.
    [29]齐共新.CO2催化加氢合成醇、醚等含氧化合物的Cu基催化剂及其机理研究[D].杭州:浙江大学,2001:1-5.
    [30]毛利群,徐征,千载虎,等CuO/ZnO/ZrO2催化剂上CO2加氢反应机理的研究[J].催化学报,1992,13(3):187.
    [31]许勇,汪仁.CO2加H2合成甲醇反应中CuO/ZnAl2O4催化剂性能的研究[J].华东理工大学学报,1994,20(1):127-132.
    [32]解红娟,谭猗生,牛玉琴CuO/SiO2催化剂用于CO2加氢合成甲醇的研究[J].煤炭转化,2000,23(3):92-95.
    [33]高建国,J‘剑秋,杨芳芳,等.二氧化碳催化加氢1甲烷化研究进展[J].贵州化工,2009,34(3):23-29.
    [34]Yu Y M, Fei J H, Zhang Y P, et al. Carbon dioxide hydrogenation catalyzed by ruthenium complexes immobilized on MCM-41[J]. J.Fuel Chem. Technol.,2006,34 (6):700-705.
    [35]赵彦巧,陈吉祥,张建祥,等.二氧化碳加氢直接合成二甲醚催化剂的研究.Ⅱ铜/锌对复合催化剂结构和性能的影响[J].燃料化学学报,2005,33(3):334-337.
    [36]Okamoto Y, Fukino K, Manaka T, et el. Surface characterization of copper (11) oxide-zinc oxide methanol-synthesis catalysts by X-ray photoelectron spectropy:2 Reduced catalysts [J]. J. Phys. Chem., 1983,87 (19):3747-3754.
    [37]阴丽华,高志华,黄伟CuCo催化剂催化CO2加氢合成低碳醇[J].煤炭转化,2004,27(2):85-88.
    [38]Arena F, Italiano G, Barbera K, et al. Solid-state interactions, adsorption sites and functionality of Cu-ZnO/ZrO2 catalysts in the CO2 hydrogenation to CH3OH [J]. Appl. Catal., A,2008,350:16-23.
    [39]陈林枫,黄开辉.CuO-ZnO-Al2O3催化剂上的CO2加氢反应.Ⅰ.表面吸附中间态的表征及反应机理的研究[J].1989,10(1):14-20.
    [40]刘志坚,廖建军,谭经品,等.二氧化碳加氢合成甲醇的CuO-ZnO催化剂制备.Ⅱ制备规律.石油炼制与化工,2000,31(12):37-40.
    [41]Yang R Q, Yu X C, Zhang Y, et al. A new method of low-temperature methanol synthesis on Cu/ZnO/Al2O3 catalysts from CO/CO2/H2 [J]. Fuel,2008 (87):443-450.
    [42]Liu X M, Lu G Q, Yan Z F. Nanocrystalline zirconia as catalyst support in methanol synthesis [J]. Appl. Catal., A,2005 (279):241-245.
    [43]Chinchen G C, Denny P J, Parke D G, et al. Mechanism of methanol synthesis from CO2/CO/H2 mixtures over copper/zinc oxide/alumina catalysts:use of 14C-labelled reactants [J].Appl. Catal.,1987, 30 (2):333-338.
    [44]夏勇德,赵维君,张书笈.二氧化碳催化加氢研究进展[J].石油化工,1996,25(7):513-522.
    [45]Yang C, Ma Z Y, Zhao N, et al.. Methanol synthesis from CO2-rich syngas over a ZrO2 doped CuZnO catalyst [J]. Catal. Today,2006 (115):222-227.
    [46]King D S, Nix R M, et al. Thermal Stability and Reducibility of ZnO and Cu/ZnO Catalysts [J]. J. Catal.,1996 (160):76-83.
    [47]Inui T, Takeguchi T. Effective conversion of carbon dioxide and hydrogen to hydrocarbons [J]. Catal. Today,1991 (10):95-106.
    [48]Sloczynski J, Grabowski R, Olszewski P, et al. Effect of metal oxide additives on the activity and stability of Cu/ZnO/ZrO2 catalysts in the synthesis of methanol from CO2 and H2 [J]. Appl. Catal., A, 310(2006) 127-137.
    [49]毛东森,王嵩,卢冠中.CO2直接加氢制二甲醚双功能催化剂的研究进展.石油化工,2007,36(11):1172-1177.
    [50]王继元,曾崇余,吴昌r.助剂Si02对CO2加氢制二甲醚催化剂Cu-ZnO/HZSM-5性能的影响.催化学报,2006,27(10):927-931.
    [51]许勇,吴善良,汪仁.CuO/ZnO/Al2O3催化剂上二氧化碳加H2合成甲醇反应的研究[J].燃料化学学报,1992,20(2):138-145.
    [52]Guo X M, Mao D S, Lu G Z, et al. The influence of La doping on the catalytic behavior of Cu/ZrO2 for methanol synthesis from CO2 hydrogenation [J]. J. Mol. Catal., A:Chem.,2011 (345):60-68.
    [53]侯万国,王果庭.超细材料的制备、表面改性及其应用[J].化工进展,1992(5):21.
    [54]丛昱,田金忠,黄宁表,等.超(?)|CuO-ZnO-ZrO2催化剂的制备及其催化CO2加氢合成甲醇性能[J].催化学报,2000,21(5):247-250.
    [55]张玉龙,王欢,邓景发.制备方法对超细Cu/ZnO/Al2O3催化剂上CO2+H2合成甲醇的影响[J].高等学校化学学报,1994,15(10):15-47.
    [56]Krocher O, Koppel R A, Baiker A. Highly active ruthenium complexes with bidentate phosphine ligands for the solvent-free catalytic synthesis of N, N-dimethylformamide and methyl formate [J]. Chem. Commun.,1997, (5):453-454.
    [57]Wang Z L, Yin J S. Self-assembly of shape-controlled nanocrystals and their in-situ thermodynamic properties [J]. Mater. Sci. Eng., A,2000 (286):39-47.
    [58]王建伟,邵宇,钟顺和.CO2在Cu-Pd/MoO3-SiO2催化剂上的吸附与表面反应[J].催化学报,1998,19(4):305.
    [59]李基涛,区泽棠,陈明旦,等.C02加氢合成甲醇催化剂中Al2O3的作用[J].天然气化工,1997(22):13-16.
    [60]Guo X J, Li L M, Liu S M, et al. Preparation of CuO/ZnO/Al2O3 catalysts for methanol synthesis using parallel-slurry-mixing method [J]. J. Fuel Chem. Technol.2007,35 (3):329-333.
    [61]Fang D R, Liu Z M, Zhang H M, et al. Influence of temperature on the properties of precursors of CuO/ZnO/Al2O3 catalysts [J]. Nat. Gas Chem. Ind.,2004,29 (4):28-32.
    [62]Zhang Y P, Fei J H, Yu Y M, et al. Methanol synthesis from CO2 hydrogenation over Cu based catalyst supported on zirconia modified Y-Al2O3 [J]. Energy Convers. Manage.,2006 (47):3360-3367.
    [63]黄树鹏,张永春,陈绍云,等.助剂对CuO-ZnO-A12O3催化剂在CO2加氢制甲醇反应中性能的影响[J].石油化工,2009,38(5):480-484.
    [64]丛昱,包信和,张涛,等.CO2加氢合成甲醇的超细Cu-ZnO-ZrO2催化剂的表征[J].催化学报,2000,21(4):314-318.
    [65]吴泽彪,朱毅青,林西林,等.二氧化碳加氢合成二甲醚的研究—ZrO2含量对Cu-ZnO-SiO2-ZrO2催化剂的影响[J].催化学报,2000,21(3):129-132.
    [66]Nitta Y, Suwata O, Iked Y a, et al. Copper-zirconia catalysts for methanol synthesis from carbon dioxide:effect of ZnO addition to Cu-ZrO2 catalysts [J]. Catal. Lett.,1994 (26):345-354.
    [67]张建祥,赵彦巧,陈吉祥,等.二氧化碳加氢直接合成二甲醚催化剂的研究.Ⅰ沉淀剂对催化剂结构和性能的影响[J].燃料化学学报,2003,31(5):444-447.
    [68]刘志坚,廖建军,谭经品,等.二氧化碳加氢合成二甲醚CuO-ZnO/HZSM-5型催化剂的研究[J].宁夏大学学报(自然科学版),2001,22(2):134-136.
    [69]吴茨萍,刘姝,穆文俊,等.热分解法Cu基甲醇合成催化剂反应性能的研究[J].抚顺石油学院学报,2000,20(1):7-9.
    [70]赵彦巧,陈吉祥,张继炎,等.二氧化碳加氢直接合成二甲醚的研究—沉淀次序对复合催化剂结构和性能的影响[J].天然气化工,2006,31(3):5-8.
    [71]迟亚武,梁东白,徐长海,等.预处理条件对用于CO2加氢的超细CuO-ZnO-SiO2催化剂性能的影响[J].分子催化,1996,10(6):423-429.
    [72]赵彦巧,陈吉祥,张继炎.焙烧温度对CO2加氢合成二甲醚催化剂的影响[J].天然气化工,2007,33(1):9-12.
    [73]Herranz T, Rojas S, Perez-Alonso F J, et al. Hydrogenation of carbon oxides over promoted Fe-Mn catalysts prepared by the microemulsion methodology [J]. Appl. Catal., A,2006 (311):66-75.
    [74]Shen B S, Wu X M, Zhang H B, et al. Study of highly active Cu-based catalyst promoted by nickel-modified multi-walled carbon nanotubes for methanol synthesis [J]. Acta Chimi. Sinica,2004, 62(18):1721-1728.
    [75]Jensen J R, Johannessen T, Wedel S, et al. A study of Cu/ZnO/Al2O3 methanol catalysts prepared by flame combustion synthesis [J]. J. Catal.,2003,218 (1):67-77.
    [76]于凤文,计建炳,郑遗凡,等.复频超声法制备合成甲醇铜基催化剂[J].石油化工,2004,33(9):824-827.
    [77]Bowker M, Hadden R A, Houghton H, et al. The mechanism of methanol synthesis on copper/zinc oxide/alumina catalysts [J]. J. Catal.,1988 (109):263-273.
    [78]Fujita S, Moribe S, Kanamori Y, et al. Preparation of a coprecipitated Cu/ZnO catalyst for the methanol synthesis from CO2-effects of the calcination and reduction conditions on the catalytic performance [J]. Appl. Catal., A,2001 (207):121-128.
    [79]Roberts D L, Griffin G L. Temperature-programmed desorption and infrared study of CO and H2 adsorption on CuZnO catalysts [J]. J. Catal.,1988 (110):117-126.
    [80]黄树鹏.二氧化碳加氢合成甲醇反应的研究[D].大连:大连理工大学,2009.
    [81]刘志坚,廖建军,谭经品,等.CO2加氢合成甲醇催化剂活性评价方法的建立.石油与天然气化工,2000,29(5):268-270.
    [82]王继元,曾崇余.焙烧温度对Cu-ZnO-Al2O3-SiO2催化剂性能的影响[J].现代化工,2005,25(7):209-212.
    [83]Rezaei M, Alavi S M, Sahebdelfar S, et al. Syngas Production by Methane Reforming with Carbon Dioxide on Noble Metal Catalysts [J]. J. Nat. Gas Chemi.,2006 (15):327-334.
    [84]Perez-Lopez O W, Senger A, Marcilio SN, et al. Effect of composition and thermal pretreatment on properties of Ni-Mg-Al catalysts for CO2 reforming of methane [J]. Appl. Catal., A,2006 (303): 234-244.
    [85]Vaccari A. Preparation and catalytic properties of cationic and anionic clays [J]. Catal. Today,1998 (41):53-71.
    [86]Figueiredo R T, Arias A M, Fierro J L G, et al. Spectroscopic Evidence of Cu-Al Interactions in Cu-Zn-Al Mixed Oxide Catalysts Used in CO Hydrogenation [J]. J. Catal.,1998 (178):146-152.
    [87]Dong X., Zhang H B, Lin G D, et al. Highly active CNT-promoted Cu-ZnO-Al2O3 catalyst for methanol synthesis from H2/CO/CO2. Catal. Lett.,2003,85:237-246.
    [88]Jia L S, Gao J, Fang W P, et al. Carbon dioxide hydrogenation to methanol over the pre-reduced LaCr0.5Cu0.5O3 catalyst. Catal. Commun.,2009 (10):2000-2003.
    [89]Tsubaki N, Zeng J Q, Yoneyama Y, et al. Continuous synthesis process of methanol at low temperature from syngas using alcohol promoters [J]. Catal. Commun.,2001 (2):213-217.
    [90]Yang R Q, Zhang Y, Iwama Y, et al. Mechanistic study of a new low-temperature methanol synthesis on Cu/MgO catalysts [J]. Appl. Catal., A,2005 (288):126-133.
    [91]Tsubaki N, Ito M, Fujimoto K. A new method of low-temperature methanol synthesis [J]. J.Catal., 2001 (197):224-227.
    [92]Zeng J Q, Fujimoto K, Tsubaki N. A new low-temperature synthesis route of methanol:Catalytic effect of the alcoholic solvent [J]. Energy & Fuels,2002 (16):83-86.
    [93]Reubroycharoen P, Yamagami T, Tharapong V, et al. Continuous low-temperature methanol synthesis from syngas using alcohol promoters [J]. Energy Fuels,2003 (17):817-821.
    [94]Yang R Q, Fu Y L, Zhang Y, et al. In situ DRIFT study of low-temperature methanol synthesis mechanism on Cu/ZnO catalysts from CO2-containing syngas using ethanol promoter [J]. J. Catal., 2004 (228):23-35.
    [95]张娜,马涛,宋丽娟,等.CO2加氢合成二甲醚的催化剂制备[J].化学研究,2008,19(4):78-80.
    [96]李基涛,张伟德,陈明口.,等.铜基催化剂上CO2吸附的TPD和TPSR研究[J].天然气化工,1998,23(5):14-17.
    [97]Xu L Y, Wang Q X, Liang D B, et al. The promotions of MnO and K2O to Fe/silicalite-2 catalyst for the production of light alkenes from CO2 hydrogenation [J]. Appl. Catal., A,1998 (173):19-25.
    [98]Mao D S, Yang W M, Xia J C, et al. The direct synthesis of dimethyl ether from syngas over hybrid catalysts with sulfate-modified y-alumina as methanol dehydration components [J]. J. Mol. Catal. A: Chem.,2006 (250):138-144.
    [99]王继元,曾崇余.Cu-ZnO/HZSM-5催化剂的制备、表征及催化性能[J].天然气化工,2004,29(4):38-41.
    [100]Zhou R X, Yu T M, Jiang X Y. Temperature-programmed reduction and temperature-programmed desorption studies of CuOrZrO2 catalysts [J]. Appl. Surf. Sci.,1999 (148):263-270.
    [101]苏彩丽,邹云帆,潘伟雄,等.中孔分子筛的合成及作为FT合成催化剂载体的应用[J].燃料化学学报,1998,26(4):297-302.
    [102]Chinchen G C, Denny P J, Jennings J R, et al. Synthesis of Methanol:Part 1. Catalysts and Kinetics [J]. Appl. Catal., A,1988 (36):1-65.
    [103]洪中山,曹勇,孙琦,等.焙烧条件对Cu/ZnO/Al2O3甲醇催化剂的影响[J].复旦大学学报(自然科学版),2002,41(3):330-334.
    [104]杨海贤,贾立山,方维平,等Cu-Mn/HZSM-5合成二甲醚催化活性的研究[J].天然气化工,2008,33(1):1-4.
    [105]江琦Ru/ZrO2作用下的二氧化碳甲烷化催化反应机理[J].燃料化学学报,2001,29(1):87-90.
    [106]Chiavassa D L, Collins S E, Bonivardi A L, et al. Methanol synthesis from CO2/H2 using Ga2O3-Pd/silica catalysts:Kinetic modeling [J]. Chem.Eng. J.,2009 (150):204-212.
    [107]Niemela M, Nokkosmaki M. Activation of carbon dioxide on Fe-catalysts [J]. Catal. Today,2005 (100):269-274.
    [108]Pepe F, Polini R. Catalytic Behavior and Surface Chemistry of Copper/ZnO/Al2O3 Catalysts for the Decomposition of 2-Propanol [J]. J. Catal.,1992,136 (1):86-95.
    [109]Fujitani T, Nakamura J. The chemical modification seen in the Cu/ZnO methanol synthesis catalysts [J]. Appl. Catal., A.,2000 (191):111-129.
    [110]Choi Y, Futagami K, Fujitani T, et al. The role of ZnO in Cu/ZnO methanol synthesis catalysts -morphology effect or active site model [J]. Appl. Catal., A.,2001 (208):163-167.
    [111]Nakamur I a, Fujitani T, Uchijima T, et al. The synthesis of methanol and the reverse water-gas shift reaction over Zn-deposited Cu (100) and Cu (110) surfaces:comparison with Zn/Cu (111) [J]. Surf. Sci.,1998 (400):387-400.
    [112]Perez-Alonso F J, Ojeda M, Herranz T, et al. Carbon dioxide hydrogenation over Fe-Ce catalysts [J]. Catal. Commun.,2008 (9):1945-1948.
    [113]Hilarie S, Wang X, Luo T, et al. A comparative study of water-gas-shift reaction over ceria supported metallic catalysts [J]. Appl. Catal., A,2001 (215):271-278.
    [114]Tao Z C, Yang Y, Zhang C H, et al. Effect of calcium promoter on a precipitated iron-manganese catalyst for Fischer-Tropsch synthesis [J]. Catal. Commun.,2006 (7):1061-1066.
    [115]Deng J F, Sun Q, Zhang Y L, et al. A novel process for preparation of a Cu/ZnO/Al2O3 ultrafine catalyst for methanol synthesis from CO2+ H2:comparison of various preparation methods [J]. Appl. Catal., A,1996(139):75-85.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700