用户名: 密码: 验证码:
磁性掺杂氧化物半导体薄膜的光学性质
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
过渡金属掺杂宽禁带半导体具有半导体材料和磁性材料的双重特性,在同一种材料中可以实现对电子和自旋的调控。宽禁带半导体把他们的导电性、透明性、和铁磁性结合起来,开启了一个崭新的应用领域。宽禁带半导体的二氧化锡(Sn02)和二氧化钛(Ti02)在光电子和自旋电子器件上有潜在的应用,已经成为了国内外研究的热点。此外,光伏半导体薄膜材料也是当前研究的热点,特别是黄锡矿结构的铜锌锡硫(Cu2ZnSnS4)但由于其具有近乎完美的禁带宽度(~1.5eV),较高的吸收系数(>104cm-1),元素含量丰富以及价格低廉等优点,被认为是最适合做太阳能电池吸收层的材料之一。吸收层是太阳能电池的核心,吸收层材料的光学性质对光伏转换效率起关键作用。研究半导体材料的光学性质,不仅有重要的理论价值而且有利于这些材料在器件方面的应用。虽然有人报道过以上几类半导体薄膜材料的光学性质,但关于这些材料的光学性质研究仍然是有局限和不足的,特别是它们的光学常数和禁带宽度的温度依赖关系还未完全澄清。因此,本论文通过变温透射光谱和光致发光光谱详细地研究了Sn1-xMnxO2(SMO)、Ti1-xFexO2和Cu2ZnSnS4(CZTS)半导体薄膜的光学性质:
     (1)研究了SMO薄膜的光学性质,获得了SMO薄膜的光学禁带宽度(OBG)随掺杂浓度以及温度变化的规律,获得了乌尔巴赫带尾能量随温度变化的关系。通过变温透射光谱研究了SMO薄膜的光学性质。用Adachi色散方程拟合透射光谱,得到了SMO薄膜的光学常数。吸收边随着Mn组分的增加而红移,OBG从4.22eV减小到3.44eV。带隙的缩小值[Eg(5.3K)-Eg(300K)]从98meV线性下降到3meV。乌尔巴赫带尾能量有两种不同的温度区域,在低温和高温下可以用两个不同的经验公式来描述。
     (2)研究了Ti1-xFeXO2薄膜的光学性质,获得了薄膜的紫外-近红外的光学常数和禁带宽度,研究了Fe掺杂对光致发光光谱的影响。通过透射光谱和变温光致发光光谱研究了用溶胶凝胶法在石英上长的Ti1-xFexO2薄膜的光学性质。Ti1-xFexO2薄膜的禁带宽度约为3.60eV。Fe的掺杂使TiO2中氧空位浓度增加,导致光致发光谱的强度急剧下降。未掺杂的Ti02薄膜在低温下包括五个激发带,分别来源于氧空位,表面态和色心中心的激发发光。
     (3)从实验上获得了CZTS薄膜的紫外-近红外介电函数,指认3个带间电子跃迁,获得了温度和声子模式、介电函数、带间电子跃迁能量以及吸收系数的变化关系。通过变温拉曼研究了CZTS薄膜的晶格振动和声子模式,随着温度从86K升高到300K, CZTS薄膜的Al声子模式线性地从340cm-1减小到331cm-1。通过变温透射光谱系统地研究了CZTS薄膜的光学性质。用Tauce-Lorentz模型拟合透射实验谱,成功地提取了CZTS薄膜的紫外-近红外的介电函数。CZTS薄膜的基本带隙和高阶电子跃迁点分别位于1.5,3.6和4.2eV位置。由于声子电子相互作用和晶格热膨胀,这三个带间电子跃迁能量值都随着温度的升高出现了红移的现象。
The transition metal doped wide band gap semiconductors with the dual characteristics of semiconductor materials and magnetic materials, and regulation of electronic and spin in the same kind of material can be achieved. Wide band gap diluted magnetic semiconductors (DMSs) combine their ferromagnetism with electrical conductivity and optical transparency, thereby opening up the possibility of other devices with unprecedented capabilities. Tin dioxide (SnO2) and titanium dioxide (TiO2) films have attracted considerable attention for its potential technological applications in the fields of spintronics, optoelectronics, and magnetoelectronics. Recently, kesterite compound Cu2ZnSnS4(CZTS) become research focus for its technological applications in photovoltaic devices. With the advantages of a near-optimal band gap (~1.5eV), high absorption coefficient (>104cm-1), earth-abundant elements, and low cost, CZTS has been considered as one of the most promising photovoltaic absorber materials. The absorber materials play an important role in determining the efficiency of photovoltaic devices. A detailed knowledge of the optical properties for semiconductor material is both of scientific interest and of important for devices applications. The electronic and optical properties of these semiconductor films have investigated. However, the optical properties of these semiconductor films are still limited and deficient. Especially, the temperature dependent optical properties of these materials have not been clarified. In this paper, the optical properties of Sn1-xMnxO2(SMO)、Ti1-xFeO2and Cu2ZnSnS4(CZTS)semiconductor films have been investigated by transmittance spectra and photoluminescence spectra.
     (1) Optical properties of Sn1-xMnxO2films have been investigated; the effects of temperature and Mn composition on the optical band gap have been obtained. On the other hand, the relations between temperature and Urbach energy have been reported. The temperature dependence of electronic structures and optical constants in the SMO films have been investigated by transmittance spectra. Optical response functions have been extracted by fitting the transmittance spectra with the Adachi's model. It was found that the absorption edge presents a redshift trend with increasing Mn composition, and the optical band gap is varied between4.22and3.44eV. The band gap narrowing value [Eg(5.3K)-(300K)]has been reduced from98to3meV and linearly decreases with the Mn composition. Moreover, there are two temperature regimes for the Urbach energy, which could be explained by two empirical formulas in different temperature regimes.
     (2) Optical properties of Ti1-xFexO2films have been investigated; the UV-NIR dielectric functions have extracted by fitting the transmittance spectra; the effects of Fe composition on the photoluminescence have been obtained. The optical properties of Ti1-xFexO2films of have been studied by transmittance spectra and temperature dependent photoluminescence. The optical band gap is about3.60eV. Fe-doped samples exhibit a very weak luminescence due to the increase of oxygen vacancy concentration in TiO2. The PL spectra of undoped sample show the spectral lines at about1.78,1.94,2.13,2.25and2.37eV, which are attributed to oxygen vacancies, surface states and F+center.
     (3) The UV-NIR dielectric functions of CZTS films have determined by the temperature dependent transmittance spectra. The three higher-order interband electronic transitions can be observed and uniquely distinguished. The temperature dependence of phonon modes, dielectric functions, interband electronic transitions and absorption coefficient have been investigated. The A1phonon frequency of the kesterite CZTS film linearly decreases from about340to331cm-1with increasing the temperature from86to323K. The optical properties of CZTS films have been studied by temperature dependent transmittance spectra. Optical response functions have been extracted by fitting the transmittance spectra with the Tauc-Lorentz model. The fundamental band gap Eo, and higher energy critical points E1and E2are located at1.5,3.6, and4.2eV, respectively. Owing to the influences of electron-phonon interaction and the lattice expansion, the three interband transitions present a redshift trend with increasing the temperature.
引文
[1]夏建白,半导体自旋电子学,科学出版社,2008年。
    [2]史同飞,中国科学技术大学博士研究生学位论文,2007年。
    [3]郭力力,上海交通大学硕士研究生学位论文,2007年。
    [4]Y. Matsumoto, M. Murakami, T. Shono, H. Hasegawa, T. Fukumura, M. Kawasaki, P. Ahmet, T. Chikyow, S. Koshihara, and H. Koinuma, Science 291, 854(2001).
    [5]W. W. Li, J. J. Zhu, J. D. Wu, J. Sun, M. Zhu, Z. G. Hu, and J. H. Chu, ACS Appl. Mater. Interfaces 2,2325 (2010).
    [6]H. Kimura, T. Fukumura, M. Kawasaki, K. Inaba, T. Hasegawa, and H. Koinuma, Appl. Phys. Lett.80,94 (2002).
    [7]J. Zhang, M. Li, Z. Feng, J. Chen, and C. Li, J. Phys. Chem. B 110,927 (2006).
    [8]车孝轩,太阳能光伏系统概论,武汉大学出版社,2006年。
    [9]S. Y. Chen, A.Walsh, J. H. Yang, X. G. Gong, L. Sun, P. X. Yang, J. H. Chu, and S. H.Wei, Phys. Rev. B 83,125201 (2011).
    [10]O. Gunawan, T. K. Todorov, and D. B. Mitzi, Appl. Phys. Lett.97,233506 (2010).
    [11]沈学础,半导体光谱和光学性质(第二版),科学出版社,2002年。
    [12]T. K. Todorov, K. B. Reuter, and D. B. Mitzi, Adv. Mater.22, E156 (2010).
    [1]沈学础,半导体光谱和光学性质(第二版),科学出版社,2002年。
    [2]方荣川,固体光谱学,中国科技大学出版社,2001年。
    [3]D. Davazoglou, Appl. Phys. Lett.70,246 (1997).
    [4]Z. G. Hu. Y. W. Li, M. Zhu, Z. Q. Zhu, and J. H. Chu. Appl. Phys. Lett.92. 081904(2008).
    [5]胡志高,中国科学院上海技术物理研究所博士研究生学位论文,2003年。
    [6]程光煦,拉曼布里渊散射(第二版),科学出版社,2008年。
    [7]张树霖,拉曼光谱学与低维纳米半导体,科学出版社,2008年。
    [8]郝惠莲,上海交通大学博士研究生学位论文,2009年。
    [9]郭力力,上海交通大学硕士研究生学位论文,2007年。
    [10]G. E. Jellison, Jr. and F. A. Modine, Appl. Phys. Lett.69,371 (1996).
    [11]G. E. Jellison, Jr. and F. A. Modine, Appl. Phys. Lett.69,2137 (1996).
    [12]S. Adachi, Phys. Rev. B 35,7454 (1987).
    [13]S. Adachi, Phys. Rev. B 38,12345 (1988).
    [1]Y. Matsumoto, M. Murakami, T. Shono, H. Hasegawa, T. Fukumura, M. Kawasaki, P. Ahmet, T. Chikyow, S. Koshihara, and H. Koinuma, Science 291, 854(2001).
    [2]T. Jungwirth, Jairo Sinova, J. Masek, J. Kucera, and A. H. MacDonald, Rev. Mod. Phys.78,809 (2006).
    [3]O. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S.-J. Cho, and H. Morkoc,, J. Appl. Phys.98,041301 (2005).
    [4]H. Chou, C. P. Lin, H. S. Hsu, and S. J. Sun, Appl. Phys. Lett.96,092503 (2010).
    [5]K. Gopinadhan, S. C. Kashyap, D. K. Pandya, and S. Chaudharya, J. Appl. Phys. 102,113513(2007).
    [6]A. Bouaine, N. Brihi, G. Schmerber, C. Ulhaq-Bouillet, S. Colis, and A. Dinia, J. Phys. Chem. C 111,2924 (2007).
    [7]N. H. Hong, N. Poirot, and J. Sakai, Phys. Rev. B 77,033205 (2008).
    [8]S. B. Ogale, R. J. Choudhary, J. P. Buban, S. E. Lofland, S. R. Shinde, S. N. Kale, V. N. Kulkarni, J. Higgins, C. Lanci, J. R. Simpson, N. D. Browning, S. Das Sarma, H. D. Drew, R. L. Greene, and T. Venkatesan, Phys. Rev. Lett.91, 077205 (2003).
    [9]J. W. Quilty, A. Shibata, J. Y. Son, K. Takubo, T. Mizokawa, H. Toyosaki, T. Fukumura, and M. Kawasaki, Phys. Rev. Lett.96,027202 (2006).
    [10]W. L. Yu, W. W. Li, J. D. Wu, J. Sun, J. J. Zhu, M. Zhu, Z. G. Hu, and J. H. Chu, J. Phys. Chem. C 114,8593 (2010).
    [11]W. W. Li, J. J. Zhu, J. D. Wu, J. Sun, M. Zhu, Z. G. Hu, and J. H. Chu, ACS Appl. Mater. Interfaces 2,2325 (2010).
    [12]H. Kimura, T. Fukumura, M. Kawasaki, K. Inaba, T. Hasegawa, and H. Koinuma, Appl. Phys. Lett.80,94 (2002).
    [13]S. J. Liu, C. Y. Liu, J. Y. Juang, and H. W. Fang, J. Appl. Phys.105,013928 (2009).
    [14]B. Liu, C. W. Cheng, R. Chen, Z. X. Shen, H. J. Fan, and H. D. Sun, J. Phys. Chem. C 114,3407(2010).
    [15]G. Sanon, R. Rup, and A. Mansingh, Phys. Rev. B 44,5672 (1991).
    [16]L. F. Jiang, W. Z. Shen, and Q. X. Guo, J. Appl. Phys.106,013515 (2009).
    [17]I. Bonalde, E. Medina, S. M. Wasim, G. Marin, C. Rincon, A. Rincon, and C. Torres, Phys. Rev. B 69,195201 (2004).
    [18]L. L. Guo,W. Z. Shen, and Y. H. Zhang, J. Appl. Phys.99,113533 (2006).
    [19]D. Davazoglou, Appl. Phys. Lett.70,246 (1997).
    [20]S. Adachi, Phys. Rev. B 61,4869 (1987); S. Adachi, Phys. Rev. B 38,12345 (1988).
    [21]T. Kawashima, H. Yoshikawa, S. Adachi, S. Fuke, and K. Ohtsuka, J. Appl. Phys. 82,3528(1997).
    [22]J. Z. Zhang, Y. D. Shen, Y. W. Li, Z. G. Hu, and J. H. Chu, J. Phys. Chem. C 97, 15157(2010).
    [23]W. Zhu, X. Qiu, V. Iancu, X. Q. Chen, H. Pan, W. Wang, N. M. Dimitrijevic, T. Rajh, H. M. Meyer, M. P. Paranthaman, G. M. Stocks, H. H. Weitering, B. Gu, G. Eres, and Z. Zhang, Phys. Rev. Lett.103,226401 (2009).
    [24]S. A. Lourenc.on, I. F. L. Dias, J. L. Duarte, E. Laureto, E. A. Meneses, J. R. Leite, and I. Mazzaro, J. Appl. Phys.89,6159 (2001).
    [25]S. Biernacki, U. Scherz, and B. K. Meyer, Phys. Rev. B 49,4501 (1994).
    [26]M. Cardona, Solid State Commun.133,3 (2005).
    [27]B. S. Li, Y. C. Liu, Z. Z. Zhi, D. Z. Shen, Y. M. Liu, J. Y. Zhang, and X. W. Fan, J. Cryst. Growth 240,479 (2002).
    [28]D. Brunner, H. Angerer, E. Bustarret, F. Freudenberg, R. H"opler, R. Dimitrov, O. Ambacher, and M. Stutzmann, J. Appl. Phys.82,5090 (1997).
    [29]K. Uesugi, I. Suemune, T. Hasegawa, T. Akutagawa, and T. Nakamura, Appl. Phys. Lett.76,1285(2000).
    [30]N. Sarkar and S. Ghosh, Solid State Commun.149,1288 (2009).
    [31]Y. R. Park and K. J. Kima, J. Appl. Phys.94,6401 (2003).
    [32]W. Z. Shen, L. F. Jiang, H. F. Yang, and F. Y. Meng, H. Ogawa, and Q. X. Guo, Appl. Phys. Lett.80,2063 (2002).
    [33]G. D. Cody, T. Tiedje, B. Abeles, B. Brooks, and Y. Goldstein, Phys. Rev. Lett. 47,1480(1981).
    [34]B. Bansal, V. K. Dixit, V. Venkataraman, and H. L. Bhat, Appl. Phys. Lett.90, 10195(2007).
    [35]A. Paleari, F. Meinardi, A. Lauria, R. Lorenzi, and N. Chiodini, Appl. Phys. Lett. 91,141913(2007).
    [36]S. M. Wasim, C. Rincon, G. Marin, P. Bocaranda, and E. Hernandez, Phys. Rev. B 64,195101 (2001).
    [1]Y. Taniyasu, M. Kasu, and T. Makimoto, Nature 441,325 (2006).
    [2]J. Simon, V. Protasenko, C. Lian, H. Xing, and D. Jena, Science 327,60 (2009).
    [3]P. Agoston, K. Albe, R. M. Nieminen, and M. J. Puska, Phys. Rev. Lett.103, 245501 (2009).
    [4]J. Zhang, M. Li, Z. Feng, J. Chen, and C. Li, J. Phys. Chem. B 110,927 (2006).
    [5]G. Mattioli, F. Filippone, P. Alippi, and A. A. Bonapasta, Phys. Rev. B 78,1098 (2008).
    [6]S.-D. Mo and W. Y. Ching, Phys. Rev. B 51,13023 (1995).
    [7]Y. Matsumoto, M. Murakami, T. Shono, T. Hasegawa, T. Fukumura, M. Kawasaki, P. Ahmet, T. Chikyow, S. Koshihara, and H. Koinuma, Science 291, 854(2001).
    [8]N. H. Hong, J. Sakai, W. Prellier, A. Hassini, A. Ruyter and F. Gervais, Phys. Rev. B,70,195204(2004).
    [9]L. Sangaletti, M. C. Mozzati, P. Galinetto, C. B. Azzoni, A. Speghini, M. Bettinelli, and G. Calestani, J. Phys.:Condens. Matter 18,7643 (2006).
    [10]Z. Wang, W. Wang, J. Tang, L. D. Tung, L. Spinu and W. Zhou, Appl. Phys. Lett., 83,518(2003).
    [11]J. Zhu., J. Ren, Y. Huo, Z. Bian, and H. Li, J. Phys. Chem. C 111,18965 (2007).
    [12]K. Nagaveni, M. S. Hegde, and G. Madras, J. Phys. Chem. C 108,20204 (2004).
    [13]H. Nakajima, T. Mor, and M. Watanabe, J. Appl. Phys.96,925 (2004).
    [14]J. Z. Zhang, X. G. Chen, Y. D. Shen, Y. W. Li, Z. G. Hu, and J. H. Chu, Phys. Chem. Chem. Phys.13,13096 (2011).
    [15]D. Bersani and P. P. Lottici, Appl. Phys. Lett.72,73 (1998).
    [16]Z. G. Hu, W. W. Li, J. D. Wu, J. Sun,Q. W. Shu, X. X. Zhong, Z. Q. Zhu,and J. H. Chu, Appl. Phys. Lett.93,181910 (2008).
    [17]S. Adachi, Phys. Rev. B 35,7454 (1987).
    [18]J. Shi, J. Chen, Z. Feng, T. Chen, Y. Lian, X. Wang, and C. Li, J. Phys. Chem. C 111,693(2007).
    [19]Y. lei, L. D. Zhang, G. W. Meng, G. H. Li, X. Y. Zhang, C. H. Liang, W. Chen, and S. X. Wang, Appl. Phys. Lett.78,1125 (2001).
    [1]C. Steinhagen, M. G. Panthani, V. Akhavan, B. Goodfellow, B. Koo, and B. A. Korgel, J. Am. Chem. Soc.131,12554 (2009).
    [2]T. K. Todorov, K. B. Reuter, and D. B. Mitzi, Adv. Mater.22, E156 (2010).
    [3]K. Wang, B. Shin, K. B. Reuter, T. Todorov, D. B. Mitzi, and S. Guha, Appl. Phys. Lett.98,051912(2011).
    [4]J. Wang, X. Xin, and Z. Lin, Nanoscale 3,3040 (2011).
    [5]C. Persson, J. Appl. Phys.107,053710 (2010).
    [6]F. Liu, Y. Li, K. Zhang, B. Wang, C. Yan, Y. Lai, Z. Zhang, J. Li, and Y. Liu, Sol. Energy Mater. Sol. Cells 94,2431 (2010).
    [7]L. Sun, J. He, H. Kong, F. Y. Yue, P. X. Yang, and J. H. Chu, Sol. Energy Mater. Sol. Cells 95,2907(2011).
    [8]S. Y. Chen, A.Walsh, J. H. Yang, X. G. Gong, L. Sun, P. X. Yang, J. H. Chu, and S. H.Wei, Phys. Rev. B 83,125201 (2011).
    [9]O. Gunawan, T. K. Todorov, and D. B. Mitzi, Appl. Phys. Lett.97,233506 (2010).
    [10]J. Paier, R. Asahi, A. Nagoya, and G. Kresse, Phys. Rev. B,79,115126 (2009).
    [11]K.Wang, O. Gunawan, T. K. Todorov, B. Shin, S. J. Chey, N. A. Bojarczuk, D. Mitzi, and S. Guha, Appl. Phys. Lett.97,143508 (2010).
    [12]H. Katagiri, K. Jimbo, S. Yamada, T. Kamimura, W. Maw, T. Fukano, T. Ito, and T. Motohiro, Appl. Phys. Express 1,041201 (2008).
    [13]W. Shockley and H. J. Queisser, J. Appl. Phys.32,510 (1961).
    [14]H. Yoo and J. Kim, Sol. Energy Mater. Sol. Cells 95,239 (2011).
    [15]M. Himmrich and H. Haeuseler, Spectrochim. Acta 47A,933 (1991).
    [16]M. I. Aroyo, J. M. Perez-Mato, C. Capillas, E. Kroumova, S. Ivantchev, G. Madariaga, A. Kirov, and H. Wondratschek, Z. Kristallogr.221,15 (2006).
    [17]P. K. Sarswat, M. L. Free, and A. Tiwari, Phys. Status solidi B 248,2170 (2011).
    [18]P. A. Fernandes, P. M. P. Salome, and A. F. da Cunha, J. Alloys Compd.509, 7600(2011).
    [19]M. Altosaar, J. Raudoja, K. Timmo, M. Danilson, M. Grossberg, J. Krustok, and E. Mellikov, Phys. Stat. Sol. (a) 205,167 (2008).
    [20]X. Fontane, L. Calvo-Barrio, V. Izquierdo-Roca, E. Saucedo, A. Perez-Rodriguez, J. R. Morante, D. M. Berg, P. J. Dale, and S. Siebentritt, Appl. Phys. Lett.98, 181905(2011).
    [21]H. Neumann, Helv. Phys. Acta 58,337 (1985)
    [22]H. Tang and I. P. Herman, Phys. Rev. B 43,2299 (1991).
    [23]J. Menendez, and M. Cardona, Phys. Rev. B 29,2051 (1984).
    [24]G. E. Jellison, Jr., and F. A. Modine, Appl. Phys. Lett.69,371 (1996); G. E. Jellison, Jr., and F. A. Modine, Appl. Phys. Lett.69,2137 (1996).
    [25]W. L. Yu, K. Jiang, J. D. Wu, J. Gan, M. Zhu, Z. G. Hu, and J. H. Chu, Phys. Chem. Chem. Phys.13,6211 (2011).
    [26]Y. T. Zhai, S. Y. Chen, J. H. Yang, H. J. Xiang, X. G. Gong, A. Walsh, J. Kang, and S. H. Wei, Phys. Rev. B 84,075213 (2011).
    [27]S. Y. Chen, X. G. Gong, A. Walsh, and S. H. Wei, Appl. Phys. Lett.94,041903 (2009).
    [28]W. W. Li, J. J. Zhu, J. D. Wu, J. Sun, M. Zhu, Z. G. Hu, and J. H. Chu, ACS Appl. Mater. Interfaces 2,2325 (2010).
    [29]L. Shi, C. Pei, Y. Xu, and Q. Li, J. Am. Chem. Soc.133,10328 (2011).
    [30]L. Vina, S. Logothetidis, and M. Cardona, Phys. Rev. B 30,1979 (1984).
    [31]W. W. Li, J. J. Zhu, X. F. Xu, K. Jiang, Z. G. Hu, M. Zhu, and J. H. Chu, J. Appl. Phys.110,013504 (2011).
    [32]S. Biernacki, U. Scherz, and B. Meyer, Phys. Rev. B 49,4501 (1994).
    [33]S. A. Lourenco, I. F. L. Dias, J. L. Duarte, E. Laureto, E. A. Meneses, J. R. Leite, and I. Mazzaro, J. Appl. Phys.89,6159 (2001).
    [34]W. W. Li, J. J. Zhu, J. D. Wu, J. Gan, Z. G. Hu, M. Zhu, and J. H.Chu, Appl. Phys. Lett.97,121102 (2010).
    [35]Y. B. Kumar, G. S. Babu, P. U. Bhaskar, and V. S. Raja, Sol. Energy Mater. Sol. Cells 93,1230(2009).
    [36]D. J. Kim, Y. M. Yu, Y. D. Choi, J. W. Lee, and C. S. Kim, Appl. Phys. Lett.88, 051902(2006).
    [37]S. Ahn, S. Jung, J. Gwak, A. Cho, K. Shin, K. Yoon, D. Park, H. Cheong, and J. H. Yun, Appl. Phys. Lett.97,021905 (2010).
    [38]F. Luckert, D. I. Hamilton, M. V. Yakushev, N. S. Beattie, G. Zoppi, M. Moynihan, I. Forbes, A. V. Karotki, A. V. Mudryi, M. Grossberg, J. Krustok, and R. W. Martin, Appl. Phys. Lett.99,062104 (2011).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700