用户名: 密码: 验证码:
单靶磁控溅射制备CIGS太阳能电池材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文从光伏行业发展概况、CIGS薄膜电池的国内外研究现状和产业化发展现状分析入手,介绍了相关的检测设备及其工作原理,对各层材料特性、制备方法作了一定的对比分析,选择用磁控溅射CuIn0.7Gao.3Se2四元合金靶材法制备CIGS薄膜的吸收层材料和后硒化工艺,探索了一步法制备CIGS吸收层薄膜的可行性,制备的glass/Mo/CIGS/CdS/i-ZnO/AZO薄膜电池的光电转化效率为2.08%。论文获得了以下主要结果:
     1、磁控溅射法制备底电极Mo薄膜的工艺研究。本文采用两步法(高气压(2pa)高功率(130W)溅射约100nm,再用低气压(0.5pa)高功率(130W)溅射沉积约900-1000纳米)制备的Mo层具有良好的电阻率,鱼鳞状的结构,附着力较好,方块电阻为0.26Ω2/o,膜厚1080nm,电阻率达到9.8×10-5Ω·cm。
     2、详细研究了用磁控溅射四元合金CIGS靶制备吸收层时,衬底温度、工作气压、快速退火硒化等工艺改变对吸收层薄膜的晶体结构、禁带宽度和表面形貌的影响。实验证明:(1)随着衬底温度的升高,(112)峰的强度变强,半高宽变窄,薄膜的结晶质量有所改善,样品的化学计量比接近靶材的固有成分,贫铜与贫硒的温度效应不明显。(2)随着工作气压的增加,出现贫铜现象;与Sigmund提出的Cu元素的溅射产率比In和Ga的低的理论一致,但是薄膜的结晶质量随着压力的增加变差,XRD衍射峰的半高宽变宽;AFM和SEM图表明薄膜的表面晶粒逐渐减小,平均粗糙度从11.36nm降至5.12nm,表面较为平整,逐渐致密。由于小晶粒中存在更多的晶界,会增加载流子的复合,使短路电流变小,从而影响电池的效率。禁带宽度随着压力的增加,从1.0eV增加到1.32eV,实现了带隙的调节。(3)一步法制备CIGS吸收层薄膜容易出现贫硒现象,可以采用快速退火炉硒化来增加薄膜中硒含量,研究发现:硒化后的薄膜结晶性更好,表面平整,单晶纯相结构。Raman谱中发现位于约176cm-1处的最强峰为Al模式,峰形较弱且有点宽化的特征峰在215-220cm-1处,对应于黄铜矿的B2模式。综合各方面的条件,0.9Pa下常温溅射,再用10mg Se粉硒化所获得的薄膜组分均一,结晶质量较高,表面较为平整,适合制备CIGS薄膜电池。
     3、磁控溅射制备透明导电膜AZO窗口层的研究。分析了氧分压、衬底温度、工作气压和溅射功率变化对窗口层的方块电阻、电阻率、膜厚、透过率等的影响。结果表明:工作压力0.8Pa,溅射功率225W,衬底温度为225℃,AZO薄膜具有最低电阻率9.8×10-4Ω·cm,方块电阻为14欧姆,可见光区域(305-800nm)平均透过率达到85%,禁带宽度3.32eV。
     4、磁控溅射与化学水浴法制备CdS层的对比研究。通过SEM、透射光谱手段作了表面形貌、光学透过率和电学禁带宽度的对比研究。发现70℃时化学水浴法生长的CdS薄膜可见光范围内的平均透过率达到80%以上,禁带宽度为2.3eV左右,薄膜晶粒较大,表面光滑平整。磁控溅射制备CdS薄膜的平均透过率略低于80%,禁带宽度为2.3eV左右,晶粒较小。虽然磁控溅射制备CdS的电性能基本满足制备CIGS电池的需求,具备一定的可行性,但是可能污染真空室,在多层膜制备中引起交叉反应。而水浴法生长CdS薄膜所用设备简单、环境友好,还可以避免溅射法导致的膜面的损伤和不平整,性能稳定,更容易实现工业化生产。本论文选择化学水浴法制备CdS薄膜。
     5、制备了glass/Mo/CIGS/CdS/i-ZnO/AZO薄膜电池,通过I-V曲线测试,得到的电学性能为:25℃、AM1.5的条件下,制备的电池的单元面积是0.07cm2,电池的效率是2.08%,开路电压是294mV,短路电流是21.6mA/cm2,填充因子是32%。结合SEM截面图和量子效率曲线,分析了电池的效率损失和量子效率损失原因。主要有四点原因:(1)吸收层晶粒太小。从电池截面来看晶粒不清晰,没有明显的纵向晶界,其次吸收层的厚度仅为750nm,而高效电池的吸收层厚度约2微米。(2)缓冲层CdS的厚度太厚。高效率的CIGS电池的缓冲层的厚度是40-50nm,本文制备的缓冲层厚度约为80nm,导致电池的开路电压变小。(3)窗口层太薄,常见的窗口层厚度是750nm左右,我们所制备的窗口层的厚度大约350nm。(4)CIGS为单晶纯相结构。研究表明多晶结构的CIGS吸收层制备的电池转换效率明显优于单晶结构的电池性能。一方面是因为多晶的结构晶界清晰,整体是近2微米厚的晶粒,晶界可以吸杂,从而减少少数载流子在界面附近的湮灭现象,提升其导电性能;另一方面是多晶的CIGS薄膜的表面因为贫铜结构而生成某种缺陷层ODC,这种缺陷层导致价带偏移而形成大量的空穴势垒,可阻止CIGS晶粒内的空穴扩散,减少界面复合,提升吸收层电性能。(5)没有制作减反层MgF2。减反层可以增加光的入射率,提升转换效率。
This paper is focused on the preparation and optical&electrical properties of CuInGaSe2(CIGS) solar cells. The quaternary CIGS target is used to prepare the absorbed layer by RF sputtering process from the ananlysis of photovoltaic industry overview, CIGS solar cells research stutation and status of industrial development. The structure of CIGS solar cells is glass/Mo/CIGS/CdS/i-ZnO/AZO, and the efficiency of solae cells is up to2.08%. In addition, the working principle of testing equipment and properties of each layers are discussed.
     Firstly the preparation of Mo electrode by magnetron sputtering is investigated. The Mo layer exhibits scaly structure, good adhesion, sheet resistance about0.26Ω/□, thickness of layer1080nm, and electrical resistivity about9.8×10-5Ω·cm by two-steps method, which contains the working pressure of2pa in the first step and0.5pa in the second step. Both of the power in two steps is130w.
     Secondly the effect of substrate tempreture, sputtering pressure and post-selenization process on the films'structure, optical properties and surface of the CIGS obsorbed layer fabricating by sputtering quaternary CIGS target was investigated. The XRD patterns shows that the intensity of (112) peak becomes stronger and the FWMA of (112) peak tend to be smanller with increasing the substrate tempreture, which indicate the crystallization quality become better. Besides the composition of films is closed to the composition of target, which shows temperature effect of poor Cu and poor Se is not obvious. The poor Cu state occurs as the increasing of working pressure, which is accordance with the report by Sigmund. The yield of Cu is lower than that of In and Ga. The patterns of AFM and SEM indicated that the grain size become smaller and average roughness decreases from11.36nm to5.12nm. The surface of small grain size exhibit smooth and dense, while the more grain boundaries in small grain-size films will enchance the carrier recombination, lower short-circuit current and drop the efficiency of cells. The optical bandgap of CIGS films shifts from1.0eV to1.32eV with the increasing working pressure. In general, the CIGS film prepared at1.0pa shows good properties and satisfy requirement of solar cell. The poor Se state in CIGS films prepared by one step method can be eliminated by post-selenization process. The results show that post-selenization films possess better crystalline, smoother suaface and pure phases. The peak located at176cm-1in Raman spectra is vertified as Al mode, while the broaded peak located at215-220cm-1is identified as B2mode of chalcopyrite structure. In conclusion, the CIGS films prepared by sputtering at0.9pa and post-selenization with10mg Se exhibit near stoichiometric ratio and smooth surface, which is suitable to fabricate the CIGS solae cell.
     The AZO windows layer prepared by magnetron sputter is studied. The effect of power, working pressure and substrate temperature on optical and electrical properties of AZO transparent conductive thin films has been studied. The result shows that the AZO thin films prepared at working pressure of0.8pa, sputtering power of225w, the substrate temperature of225℃possess lowest electrical resistivity about9.8×10-4Ω·2cm, and the average transmittance of AZO thin films in the visible region is up to85%with bandgap of3.32eV.
     Comparative analysis of CdS layer prepared by magnetron sputtering and chemical bath method. The test result of CdS thin films obtained by the chemical bath method in surface morphology, transmission spectrum and band gaps show that a smooth surface, a larger grain and an average transmittance reaches above80%in visible light range, which band gap is about2.3eV. However, the thin films deposited by magnetron sputtering indicate that a small grain, an average transmittance slightly less than80%and a similar band gap. Although the later films show certain feasibility, which can basically meets the requirement of the electrical properties in the CIGS solar cells. The previous method can make the absorption layers avoid the injury from sputtering method, clean the absorber layer surface, low cost, more stable performance and easily realize industrial production. Because of sputtering can bring pollution to vacuum chamber and cross reaction in the multilayer film preparation, the chemical bath method is preferred.
     The solar cells with the structure glass/Mo/CIGS/CdS/i-ZnO/AZO were obtained, the result indicate an efficiency of2.08%, an open circuit voltage of294mV, the short circuit current of21.6mA/cm2and the fill factor is32%on a solar cell unit area about0.07cm2, which were characterized by current-voltage measurement under AM1.5illumination at25℃. The reasons for the loss of solar cell efficiency and quantum efficiency have been analyzed though the combined with the SEM section and the quantum efficiency curve. There are four main reasons:(1) the smaller grain in the absorber layer, no obvious longitudinal grain boundary and the grain cannot clear observe form the section of thin films. Then, the thin film thickness is too thin to the higher efficiency, which only about750nm, the high efficiency of CIGS solar cells would need a1500nm thickness.(2) the CdS thin film is too thick for the cells. Buffer layer CIGS cell is generally high efficiency of the thickness is40-50nm, from the battery of the section, we prepared buffer layer thickness is about80nm, the buffer layer is too thick to affect the rate of cellvoltage.(3) The thickness of window layer also affects the conversion efficiency of the battery, the thickness of window layer was about350nm.(4) The study found photoelectric conversion efficiency of CIGS polycrystalline thin film solar cells is higher than that of CIS single crystal solar cell. The reason is:CIGS polycrystalline film crystal andcolumnar section, thin film is single grain, reducing carrier transmission boundary composite;and the formation of lean CIGS thin film on the surface of the ordered defect compounds layer (ODC), in each grain surface of polycrystalline CIGS also have ODClayer, internal the ODC and CIGS VB offset between grains by forming a hole barrier, prevent grain tograin boundary diffusion inside the hole, so that theinterface recombination is reduced; grain gettering effect on grain, the grain internal purity is higher thansingle crystal material.(5) Without antireflection layer MgF2.
引文
[1]《中国新能源和可再生能源》1999年白皮书.北京:中国计划出版社,(2000).
    [2]杨德仁.太阳电池材料.北京:化学工业出版社,(2008).
    [3]《中国可再生能源“十二五”规划概览》,国家可再生能源中心,2012.08.29
    [4]施敏主编,现代半导体器件物理.科学出版社,2001年第一版370.
    [5]邓志杰,郑安生.半导体材料[M].北京:化学工业出版社,2004:232.
    [6]邹红叶,硅薄膜太阳电池的原理及其应用[J],物理通报,2009,5:56—57
    [7]钟迪生,硅薄膜太阳电池研究的进展[J],应用光学,2001,22(3):34—37
    [8]Darren M.Bagnall, Matt Boreland. Photovoltaic technologies, Energy Policy 36 (2008) 4390-4396.
    [9]朱洁.迅速发展的CIGS薄膜太阳电池.电源技术2008.1 Vo1.32 No.19-12
    [10]Shaha V, Thin-film silicon solar cell technology [J]. Prog Photovolt Res Appl, 2004,12(2/3):113-139.
    [11]Durisch W, Bitnar B, Mayor J, Kiess H, Lam K, Close J. Efficiency model for Photo voltaic modules and demonstration of its application to energy yield estimation. Solar Energy Materials & Solar Cells 2007;91:79-84.
    [12]Yoshihiro,Hamakawa, Recent advances in amorphous silicon technologies and its application to solar cells[J]. Renewable Energy,1996,8:10-16.
    [13]K.v. Maydell, L. Korte, A. Laades, et al.Characterization and optimization of the interface quality in amorphous/crystalline silicon heterojunction solar cells[J]. Journal of Non-Crystalline Solids,2006,352:1958-1961.
    [14]T.Toyama,T.Yamanoto,H.Okamaoto, Interfacial mixed-crystal layer in CdS/CdTe heterostructure elucidated by electro-reflectance pectroscopy[J]. Solar Energy Material& Solar Cells,1997,49:213-218.
    [15]Green M A, et al. Solar cell efficiency tables (version 37) [J].ProgPhotovolt: Res Appl,2011,19(1):84-92
    [16]孙云,王俊清,杜兆峰等.薄膜太阳能电池的研究[J].太阳能学报,2001.
    [17]薄膜太阳能电池发展前景展望,第五届中国电池技术创新(上海)论坛,2013.8.21
    [18]张忠卫等,砷化镓太阳电池技术的进展与前景[J].上海航天,2003(3):33-38
    [19]KingRR, Law D C, etal.40% efifcient metamorphicGalnP/GalnAs/emulti junction solar cells [J]. Appl Phys Lett,2007,90:183516
    [20]赵丽凤,李盛彪,苏津津,等.聚合物光伏薄膜电池活性材料研究进展[J]化工新型材料,2010,38(6):9-11.
    [21]李长健;乔在祥;张力;;Cu(In,Ga)Se_2薄膜太阳电池研究进展(Ⅰ)[J];电源术;2009年02期,http://wenku.baidu.com/view/c0c3110103d8ce2f00662348.html
    [22]Ryu M S, Improvement of operation lifetime for conjugated polymer:fullerene organic solar cells by introduceing UV absorbing film [J]. Solar Energy Mater Solar Cells,2010,94(2):152-156.
    [23]黎立桂,鲁广昊,杨小牛,化合物太阳电池研究进展[J]科学通报,2006,51(21):2457-2468
    [24]Kubo W, etal. Quasi-solid-state dye-sensitized TiO2 solar cells:Effective charge transport in mesoporous space filled witygel electrolytes containing iodide and iodine [J]. JPhys Chem:B,2001,105 (51):12809-12815.
    [25]Bach U, etal. Solid-statedyesensitized mesoporous TiO2 solar cells with high photonto-electron conversion efficiencies [J]. Nature,1998,395:583-585
    [26]Martin A. Green, Keith Emery, Yoshihiro Hishikawa and Wilhelm Warta, Solar Cell Efficiency Tables (Version 32), Prog. Photovolt:Res. Appl.2008;
    [27]Yakushev M.V, Mudryi A V, Gremenok V F, et al. Influence of growth conditions on the structural quality of Cu(InGa) Se2 and CuInSe2 thin films[J]. Thin Solid Films,2004,452:133
    [28]刘芳芳,何清,李凤岩等.Cu(In,Ga)Se2材料对其电池性能的影响[J].半导体学报,2005,26(10):1954-1958。
    [29]何青,孙国忠,孙云,周志强,李凤岩,敖建平,刘芳芳,李伟,刘维一,薛玉明,朴英美,汲明亮,郑贵波,李长健.效率为12.1%的Cu(In, Ga)Se2薄膜太阳电池太阳能学报.Vol.25. No.6 Dec.2004
    [30]M.Topic,,Examination of blocking current-voltage behaviour through defect chalcopyrite layer in ZnO/CdS/Cu(In,Ga)Se2/Mo solar cell[J]. Solar Energy Material& Solar Cells,1997,49:311-317.
    [31]Kushiya K, etal. Improved stability of CIGS-based thin film PV modules[C]. Waikoloa, Hawaii,Proc IEEE PVSC,2006:348-351
    [32]Tokio Nakada, Hiroki Ohbo, etal.Improved Cu(In,Ga)(S,Se)2 thin film solar cells by surface sulfurization[J]. Solar Energy Material& Solar Cells,1997,49:285-290
    [33]Kazmerski L L, Thin-film CuInSe2/CdS heterojunction solar cells[J]. Appl Phys Lett,1976,29:268-270
    [34]Mitchell R A, Single and tandem junction CuInSe2 cell and module technology[C]//Proceedings of the 20th IEEE Photovoltaic Specialists Conference. Las Vegas:IEEE,1988:1384-1389
    [35]Marsilac S, etal. High-efficiency solar cells based on Cu(InAl)Se2 thin films[J]. Appl Phys Lett,2002,81:1350-1352.
    [36]Nakada T, et al. Chalcopyrite thin-film tandem solar cells with 1.5 V open-circuit-voltage[C]//Proceedings of the 4th World Conference on Photovoltaic Energy Conversion Conference. Hawaii:The 4th World Conference on Photovoltaic Energy 16 Conversion Conference,2006:400-403
    [37]Tuttle J R,15.2% AMO/1433 W/kg thin-film Cu(In.Ga)Se2 solar cell for space application[C]//Proceedings of the 28th IEEE Photovoltaic Specialists Conference. Anchorage:IEEE,2000:1042-1045.
    [38]Bremaud D, et al. Towards the development of flexible CIGS solar cells on polymer films with efficiency exceeding 15%[C]//Proceedings of the 31 st IEEE Photovoltaic Specialists Conference. Orlando:IEEE,2005:223
    [39]Jackson P, Hariskos D, I. otter E, et al. New world record efficiency for Cu(In, Ga)Se thin-film solar cells beyond 20%[J]. Progress in Photovohaics:Research and Appli-cations,2011,19:894 897.
    [40]Shigeru N, Contreras M, Repins 1, et al. CIGS absorbers and process [J]. Progress in Photovoltaics,2010,18:453-466.
    [41]Seike S, Shiosaki K. Kuramoto M, et al. Development ofhigh-efficiency CIGS integrated submodules using in-line deposition technology EJ]. Solar Energy Materials & Solar Cells,2011,95:254-256.
    [42]焦飞,廖成,周震,韩俊峰,谢华木,赵夔。以溅射为主的叠层硒化法制备大面积铜铟镓硒薄膜,Vacuum, Vol.45, No.4, Jul.2008
    [43]孙云;李长健;;CIGS薄膜太阳电池在中国的研究进展[A];第八届全国光伏会议暨中日光伏论坛论文集[C];2004年2
    [44]Hegedus S S, Thin-film solar cells:Device Measurements and Analysis [J]. Prog Photovolt:Res Appl,2004,12:155-176
    [45]Virtuani A, High resistive Cu(In,Ga)Se2 absorbers for improved low-irradiance performance of thin-film solar cells[J]. Thin Solid Films,2004,451-452:
    [46]Pudov A O. Impact of secondary barriers on cuinl-xgaxse2 solar-cell operation[D].Colorado:In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Colorado State University Fort Collins,2005.
    [47]徐传明,许小亮,许军等.周期顺序蒸发工艺生长的Cu(In,Ga)Se2薄膜结构[J].半导体学报,2003,24(10):1057-1062.15
    [48]李长健;乔在祥;张力;;Cu(In,Ga)Se_2薄膜太阳电池研究进展(Ⅰ)[J];电源技术;2009年02期
    [49]熊林,铜铟镓硒(CIGS)薄膜电池行业研究,http://www.docin.com/p-56308448.html,中投证券,
    [50]光伏发电太阳跟踪装置的设计,百度文库http://wenku.baidu.com/view/e71421718e9951 e79b89276b.html
    [51]2008-2010光伏年度太阳能行业报告,百度文库http://wenku.baidu.com/view/7915cc4c2e3f5727a5e96221.html
    [52]付媛媛,光伏并网模拟装置的研制,《长江大学硕士论文》[D],2012
    [53]石建华,合金靶材溅射法制备Cu (In, Ga) Se2薄膜与其性能研究,《华东师范大学硕士论文》[D],2011
    [54]CIGS薄膜太阳能电池简要介绍和发展现状,百度文库,(http://wenku.baidu.com/view/bc766b56caaedd3382c4d320.html)》-2013
    [55]褚家宝,铜铟镓硒(CIGS)薄膜太阳能电池研究,《华东师范大学博士论文》[D],2009
    [1]郭杏元;许生;曾鹏举;CIGS薄膜太阳能电池吸收层制备工艺综述[J];真空与低温;2008年03期
    [2]钱群;张丛春;杨春生;丁桂甫;侯捷;;玻璃衬底上RF磁控溅射CIGS薄膜的研究[J].微纳电子技术;2010年11期
    [3]庄大明,张弓.CIGS薄膜太阳能电池研究现状及发展前景[J].新材料产业,2005,(4):43-44
    [4]Zhang S B, WEI Su-huai, Defect physics of the CuInSe2 chalcopyrite semiconductor[J]. Physical Review B,1998,57(6):9642-9656.
    [5]Iammer M, Kniese R, Powalla M. In-line deposited Cu(In, Ga)Se2 solar ceils: influence of deposition tempera-ture and Na co-evaporation on carrier collection J I. Thin Solid Films.2004.4jl:17j-178.
    [6]Chang Jen Chuan, Chuang Chia-Chih, et al. An investigation of CuInGaSe, thin film solar cells byusing CulnGa precursor [J]. Nanoscience and Nanotechnology I. etters.2011,3:200203.
    [7]Bhattacharya R N, Oh M K, Kim Y. CIGS-based solar cells prepared from electrodeposited precursor films[J]. Solar Energy Materials 8. Solar Cells,2012.98: 198-202.
    [8]Uhl A R, Romanyuk Y E, Tiwari A N. Thin film Cu(In. Ga)Se, solar cells processed from solution pastes with polymethyl methacrylate binder [J]. Thin Solid Films,2011,519(21):7259-7263.
    [9]Kim S Y, Kim J H. Fabrication of CIGS thin films by using spray pyrolysis and post selenization[J]. Journal of the Korean Physical Society,2012,12(60):2018-2024.
    [10]Repins I, Contreras M A, Egaas B, et al.19.9%-efficient ZnO/CdS/ CulnGaSe, solar cell with 81.2% fill factor [J]. Progress in Photovohaics:Research and Applictions,2008,16(3):235239.
    [11]GABOR A M, TUTTLE J R, ALBIN D S, et al. High-efficiency CuInxGal-xSe2 solar cells made from (InxGal-x)2Se3 precursor film[J]. Appl Phys Lett,1994, 62:198-200.
    [12]Zheng Guangfu, Yang Hongxing, A novel semiconductor CIGS photovoltaic
    material and thin film ED technology[J].Chinese J Semiconductors,2001,22:1357 [13] N. Tokio, M. Kazuo, K. Akio, Jpn. J. Appl. Phys.Vol.32 (1993) pp.1169-1172.
    [14]王正安,铜锢稼硒薄膜太阳能电池CIGS吸收层的研究与制备,华东师范大学硕士学位论文(2010)
    [15]A.W. Rachmat, S.K. Woo, S.L. Eun, M. Badrul, H.K. Kyoo, J. Phys. Chem. Solids 68 (2007) 1908-1913.
    [16]Y.B. He, A. Polity, R. Gregor, D. Pfisterer, I. O. sterreicher, D. Hasselkamp, B.K.Meyer, Physica B 308-310 (2001) 1074-1077.
    [17]石建华,合金靶材溅射法制备Cu (In, Ga) Se2薄膜与其性能研究,华师大硕士论文,2011
    [18]Dhere N G. Scaleup issues of CIGS thin film PV roodules EJ]. Solar Energy Materials&Solar Cells.2011,95:277-280.
    [19]Kushiya K, Tanaka Y, Hakuma H, et al. Interface control to enhance the fill factor over 0.70 in a large-area CIGS based thin-film PV technology[J]. Thin Solid Films,2009,517:2108-2110.
    [20]王波;刘平;李伟;马凤仓;刘新宽;陈小红,铜铟镓硒(CIGS)薄膜太阳能电池的研究进展,《材料导报》(2011)
    [21]李长健;乔在祥;张力;Cu(In,Ga)Se_2薄膜太阳电池研究进展(Ⅰ)[J];电源技术;2009年02期
    [22]李长健;乔在祥;张力;Cu(In,Ga)Se_2薄膜太阳电池研究进展(Ⅰ)[J];电源技术;2009年03期
    [23]Chen G S, Yang J C, Chan Y C, et al. Another route to fabricate single-phase chalcogenides by post-selenization of Cu-In-Ga precursors sputter deposited from a single ternary target[J]. Solar Energy Materials&Solar Cells,2009.93:1351-1355.
    [24]Shi J H, Li Z Q, Zhang D W, et al. Fabrication of Cu(In, Ga)Se2 thin films by sputtering from a single quaternary chalcogenide target[J]. Progress in Photovoltaics: Research and Applications,2011,19:160-164.
    [25]栾和新,庄大明,曹明杰,等.磁控溅射法制备CIGS薄膜太阳能电池的工艺及性能研究[J].真空科学与技术学报,2012,32(8):661668.
    [26]Frantz J A, Bekele R Y, Nguyen V Q, et al. Cu(In, Ga)Se2 thin films and devices sputtered from a single targetwithout additional selenization [J]. Thin Solid Films,2011,519:7763-7765.
    [27]Chia-Hslang Chen, Wen Chieh Shih, Chih-Yu Chien, etal. A promising sputtering route for one-step fabrication of chalcopyrite phase Cu(In.Ga)Se2 absorbers without extra Se supply[J]. Solar Energy Materials & Solar Cells,2012, 103:2529.
    [28]蔺旭鹏;强颖怀;肖裕鹏;徐明磊;薄膜太阳电池研究综述[J];半导体技术;2012年02期
    [29]新型薄膜电池光伏组件设计技术,中国新能源网,www.china-nengyuan.com/tech/23626.html http://wenku.baidu.com/view/8d26ac5b3b3567ec102d8a76.html
    [30]纳米Ti02染料敏化太阳能电池研究进展,百度文库,http://wenku.baidu.com/view/0ebb3f087cdl84254b3535b7.html
    [31]舒业强,从X射线技术的应用研究近代物理实验改革,《湖南师范大学硕士论文》[D]2005-11-15
    [32]石建华,合金靶材溅射法制备Cu (In, Ga) Se2薄膜与其性能研究,《华东师范大学硕士论文》[D]2011
    [33]任钦琪(导师:傅正文)-磁控溅射制备锡基化合物负极材料及其性能研究《复旦大学硕士论文》[D]-2013-02-27
    [34]李凤岩;李长健;熊绍珍;薄膜太阳电池系列讲座(8)CIGS薄膜太阳电池(下)《太阳能》[J]-2012-01-14
    [35]刘玉萍;陈枫;郭爱波;李斌;但敏;刘明海;胡希伟;薄膜太阳能电池的发展动态[J];节能与环保;2006年11期
    [36]张松;肖可娴;紫外/可见/近红外分光光度计测量玻璃可见光透射比的不确定度分析与表示《深圳土木与建筑》[J]-2010-03-15
    [37]段国平,本征非晶硅薄膜的激光晶化研究《河南大学硕士论文》[D],2012
    [38]葛杰,铜锌锡硫薄膜太阳电池相关材料与器件的研究,《华东师范大学博士论文》[D]-2013
    [1]Repins I, Contreras M A, Egaas B, et al.19.9%-efficient ZnO/CdS/ CulnGaSe, solar cell with 81.2% fill factor [J]. Progress in Photovohaics:Research and Applictions,2008,16(3):235239.
    [2]M.A. Green, K. Emery, Y. Hishikawa, W.Warta, Solar cell efficiency tables, [J].Prog Photovolt Res Appl,18,346 (2010)
    [3]J.H. Shi, Z.Q. Li, D.W. Zhang, Q.Q. Liu, Z. Sun, S.M. Huang, Fabrication of Cu(In, Ga)Se2 thin films by sputtering from a single quaternary chalcogenide target [J].Prog Photovolt Res Appl,19,160 (2011).
    [4]P.Y. Li n, Y.H Fu, Mater Lett.70,65 (2012).
    [5]X. Wanga, S.S. Lia, W.K. Kimb, S. Yoonb, V. Craciunc, J.M. Howardc, et al. Sol EnergyMater&Sol Cells,90,2855 (2006).
    [6]A.M. Gabor, J.R. Tuttle, D.S. Albin, M.A. Contreras, R. Noufi, Band-gap engineering in Cu(In,Ga) Se2 thin films grown from In,Ga)2Se3 precursors, Appl.Phys. Lett.1980 (1994).65,
    [7]S. Shirakawa, Y. Kannnaka, H. Hasegawa, T. Kariya, S. Isomura; Properties of Cu(In,Ga)Se 2 thin films prepared by chemical spray pyrolysis. Jpn. J. Appl. Phys., 38 (1999), pp.4997-5002
    [8]P. Sigmund, Physical Review.Theory of Sputtering. I. Sputtering Yield of Amorphous and Polycrystalline Targets 184,383 (1969).
    [9]V.F. Gremenoka, E.P. Zaretskaya, V.B. Zalesski, K. Bente, Solar Energy Materials & Solar Cells 89 (2005) 129-137
    [10]J. Kesslerl, C. Chityuttakan, J. Lu, J. Scholdstrom, L. Stolt Prog. Cu (In, Ga) Se2 thin films grown with a Cu-poor/rich/poor sequence:growth model and structural considerations Photovolt:Res.Appl. [J],2003; 11:319-331
    [11]F.B. Dejene, The structural and material properties of CuInSe 2 and Cu(In,Ga)Se 2 prepared by selenization of stacks of metal and compound precursors by Se vapor for solar cell applications, Solar Energy Materials & Solar Cells. [J].93 (2009)577-582
    [12]A.J. Zhou, D. Mei, X.G. Kong, X.H. Xu, L.D. Feng, X.Y. Dai, et al. One-step synthesis of Cu (In, Ga) Se< sub> 2 absorber layers by magnetron sputtering from a single quaternary target Thin Solid Films. [J].520, (2012).60-68
    [13]J. He, L. Sun, K. Zhang, W. Wang, J. Jiang, Y. Chen, et al. Stability and lectronic structure of Cu 2 ZnSnS 4 surfaces:first-principles study,Appl.Surf. Sci. [J].264,133 (2013)
    [14]Contreras MA, Tuttle J, Gabor A, Tennant A, RamanathanK, Asher S, Franz A, Keane J, Wang L, Scofield J, Noufi R Proceedings of First WCPEC, Hawaii, 1994;68-75.
    [15]王正安,铜铟镓硒薄膜太阳能电池CIGS吸收层的研究与制备,华东师范大学硕士学位论文(2010)
    [16]Yamanaka S, Tanda M, Horino K, Ito K, Yamada A, Konagai M, Takahashi K Proceedings of the 21st IEEE Photovoltaic Special Conference,1990; 758-763.
    [17]Andrew M. Gabora, John R. Tuttlea, Michael H. Bodea, Band-gap engineering in Cu(In,Ga) Se2 thin films grown from (In,Ga)2Se3 precursors, Volumes 41-42,0 1996,247-260
    [18]R, Gabor AM, Tennant A, Duda A, Noufi R Journal of Applied Physics 1995; 77:153-161
    [19]Ingrid Repins, Miguel A. Contreras, Brian Egaas, Clay DeHart, John Scharf, Craig L. Perkins,Bobby To and Rommel Noufi,19.9%-efficient ZnO/CdS/CuInGaSe2 Solar Cell with 81.2% Fill Factor. Prog. Photovolt:Res. Appl.2008; 16:235-239
    [20]Virtuani A, Performance of Cu(In,Ga)Se2 solar cells under low irradiance [J]. Thin Solid Films,2003,431-432:443-447.
    [21]汤会香,严密,张辉,等.磁控溅射金属预置层后硒化法制备CuInSe2薄膜工艺条件的优化[J].半导体学报,2004,25-741-744.
    [22]石建华,合金靶材溅射法制备Cu (In, Ga) Se2薄膜与其性能研究,《华东师范大学硕士论文》[D],2011
    [23]杨江;邹敏;赖奇;马光强;真空镀膜技术制备钛基复合材料研究现状-《攀枝花学院学报》[J]-2011
    [24]赵志明;丁宇;曹智睿;田亚萍;屈直;张国君;蒋百灵;CIGS薄膜太阳能电池用Mo背电极的制备与结构性能研究,《材料导报》[J]-2011
    [25]王正安,铜铟镓硒薄膜太阳能电池CIGS吸收层的研究与制备,《华东师范大学硕士论文》-[D],2010
    [1]Shina Kuriki, Toshitaka Kawashima. Thin Solid Films, (2007),8594-8597.
    [2]Kyungsoo Jang, Hyeongsik Park, Sungwook Jung, Thin Solid Films, (2010), 2808-2811.
    [3]He Bo, Ma Zhong Quan, Xu Jing, Zhao Lei, Materials Science in Semiconductor Processing, (2009),248-252.
    [4]W.F. Liu, G.T. Du, Y.F. Sun, J.M. Bian, Y. Cheng, T.P. Yang, Y.C. Chang, Y.B. Xu.Applied Surface Science, (2007),2999-3003.
    [5]Kanji Yasui, Akira Asano, Miku Otsuji, Materials Science and Engineering:B, 25(2008),26-29.
    [6]Minami T. Present status of transparent conducting oxide thin-film development for Indium-Tin-Oxide (ITO) substitutes. Thin Solid Films(2008;)516:5822-8.
    [7]Ka Eun Lee, Mingsong Wang, Eui Jung Kim, Sung Hong Hahn. Current Applied Physics, (2009),683-687.
    [8]Sun Yanfeng, Weifeng Liu, He Zhidan, Liu Shaolin, Zou Zhao Yi, Guotong Du. Vacuum (2006),981-985.
    [9]Y.C. Lin, Y.C. Jian, J.H. Jiang. Applied Surface Science, Volume 254, (2008), 2671-2677.
    [10]W.J. Jeong, S.K. Kim, G.C. Park. Thin Solid Films, Volumes 506-507, 2006,180-183.
    [11]Akihiko Kono, Fumiya Shoji. Vacuum,, (2009),625-628.
    [12]杨伟锋,刘著光,吕英,黄火林,Journal of Optoelectronics.laser,2008.36-39
    [13]Yaodong Liu, Lei Zhao, Jianshe Lian. Vacuum, (2006),18-21.
    [14]范志新,孙以材,氧化物半导体透明导电薄膜的最佳掺杂含量理论计算,半导体学报, (2011):1382-1385
    [15]Minami T. Transparent conducting oxide semiconductors for transparent electrodes. Semicond Sci Technol 2005;20:S35-44.
    [16]P. Nunes, E. Fortunato, P. Tonillo, F.B. Fernandes, P. Vilarinho, R. Martins, Effect of different dopant elements on the properties of ZnO thin films, Vacuum 64 (2002)281-285
    [17]Chang JF, Hon MH. The effect of deposition temperature on the properties of Al-doped zinc oxide thin films. Thin Solid Films 2001;386:79-86.
    [18]Haug FJ, Geller Z, Zogg H, Tiwari AN, Vignali C. Influence of deposition conditions on the thermal stability of ZnO:Al films grown by rf magnetron sputtering. J Vac Sci Technol A 2001;19:171-4.
    [19]Li W, Sun Y, Wang Y, Cai H, Liu F, He Q. Effects of substrate temperature on the properties of facing-target sputtered Al-doped ZnO films. Sol Energy Mater Sol Cells 2007;91:659-63.
    [20]刘丹妮,史永胜,马猛飞,杨巍巍,AZO透明导电薄膜的制备,电子元件与材料,[J](2012):71:75
    [21]朱景芝,刘正堂.红外增透膜和保护膜的设计与材料[J]激光与红外,1996,26(4):277.
    [22]Moss T S. The interpretation of the properties of indium antimonide [J]. Proc. Phys. Soc.B,1954,67:7752782
    [23]何炜瑜等:Cu(In, Ga)se2太阳电池窗口层光学常数的测鼍与计算,太阳能学报[J],(2009):141-144
    [24]张凯红,ZnO基透明导电膜的制备及特性研究,《天津大学硕士论文》[D]-2009
    [25]王波;刘平;李伟;马凤仓;刘新宽;陈小红;铜铟镓硒(CIGS)薄膜太阳能电池的研究进展,-《材料导报》-2011
    [26]蔡凤萍,不同衬底条件下制备的薄膜电池用AZO及缓冲层对其性能的影响,《华东师范大学硕士论文》[D]-2010-04-01
    [27]任明放;王华;许积文;杨玲,掺杂及工艺条件对室温制备ZnO:Al性能的影响;-《液晶与显示》-2009-02-15
    [28]殷胜东,ZnO:Al薄膜的制备及其性质的研究,《重庆师范大学硕士论文》[D]2007
    [29]范志新,陈玖琳,孙以材,AZO透明导电薄膜的特性、制备与应用,《真空》2000.09
    [30]孙宜华,AZO透明导电氧化物靶材及其薄膜制备的研究,《华中科技大学博士论文》[D]2009
    [31]邹上荣;王海燕;耿梅艳;穆慧;工艺参数对直流反应磁控溅射ZnO:Al薄膜沉积速率的影响《真空》2009.3
    [32]侯大寅;汤辉;纳米AZO膜的制备及其光电性能,《纺织学报》2009.10
    [33]江洪湖,磁控溅射法制备氮掺杂的Ti02薄膜及其光学性能研究,《西北大学硕士论文》[D]2010
    [34]陆峰,徐成海,曹洪涛,裴志亮,孙超,闻立时,透明导电ZnO:Al(ZAO)纳米薄膜的性能分析,《真空科学与技术》,2003.02
    [1]Repins I, Contreras M A, Egaas B, et al.19.9%-efficient ZnO/CdS/ CulnGaSe, solar cell with 81.2% fill factor [J]. Progress in Photovohaics:Research and Applictions,2008,16(3):235239.
    [2]M.A. Green, K. Emery, Y. Hishikawa, W.Warta, Solar cell efficiency tables, [J].Prog Photovolt Res Appl,18,346(2010)
    [3]K. Matsunaga, T. Komaru, Y. Nakayama, T. Kume, Y. Suzuki, Sol. Energy Mater. Sol. Cells 93 (2009) 1134-1138.
    [4]A.M. Gabor, J.R. Tuttle, D.S.Albin, M.A. Contreras, R.Noufi, Band-gap engineering in Cu(In, Ga) Se2 thin films grown from In, Ga)2Se3 precursors, Appl.Phys. Lett.1980 (1994).65,
    [5]J.H. Shi, Z.Q.Li, D.W.Zhang, Q.Q.Liu, Z. Sun, S.M.Huang, Fabrication of Cu(In, Ga)Se2 thin films by sputtering from a single quaternary chalcogenide target [J].Prog Photovolt Res Appl,19,160(2011).
    [6]He Bo, Ma Zhong Quan, Xu Jing, Zhao Lei, Zhang Nan Sheng, Materials Science in Semiconductor Processing, (2009), Pages 248-252.
    [7]W.F.Liu, G.T.Du, Y.F. Sun, J.M.Bian, Y.Cheng, T.P. Yang, Y.C. Chang, Y.B. Xu.Applied Surface Science, (2007), Pages 2999-3003.
    [8]J. Hiie, T. Dedova, V. Valdna, K. Muska Thin Solid Films,511-512 (2006):443-447
    [9]G. Sasikala, P. Thilakan, C. Subramanian Solar Energy Materials & Solar Cells 62(2000) 275-293
    [10]Masaya Ichimura, Fumitaka Goto, Structural and optical characterization of CdS films grown by photochemical deposition, Journal of Applied Physics Volume
    [11]Saiah O. Oladeji and Lee Chow, J. Electrochem. Soc.144,2432 (1997).
    [12]M.A. Martinez, C.Guillen, J.Herrero:Appl. Surf. Sci.136,8(1998) Martinez M A, Guillen C, Herrero J. Applied Surface Science,1998, 136:8-16.
    [13]R.L. Penn, G. Oskam, T.J. Strathmann, P.C. Searson, A.T. Stone, D.R. Veblen, J. Phys. Chem. B 105 (2001)2177-2182
    [14]J.N. Ximello-Quiebras, Physical properties of chemical bath deposited CdS thin films, Solar Energy Materials and Solar Cells,2004,:263-268
    [15]王胜利、,王学进,化学水浴法和磁控溅射法制备硫化镉薄膜的性能研究,光谱学与光谱分析(2012)32:1094-1097
    [16]X.Li, W.Liu, G.Jiang, D.Wang, C.Zhu, Mater. Lett.70 (2012) 116-118.
    [17]S. Shirakawa, Y. Kannnaka, H. Hasegawa, T. Kariya, S. Isomura, Jpn. J. Appl. Phys.38 (1999) 4997-5002.
    [18]P. Y.Lin, Y.H.Fu, Mater.Lett.70 (2012) 65-67.
    [19]J.He, L. Sun, K.Zhang, W.Wang, J.Jiang, Y.Chen, et al. Stability and lectronic structure of Cu 2 ZnSnS 4 surfaces:first-principles study, Appl.Surf. Sci. [J].264,133(2013)
    [20]X.Wanga, S. S. Lia, W. K.Kimb, S. Yoonb, V. Craciunc, J. M. Howardc, S. Easwarand, O. Manasrehd, O. D. Crisalleb, T. J. Anderson, Sol. Energy Mater. Sol. Cells 90 (2006) 2855-2866.
    [21]BOSIO A, ROMEO N, PODESTA A, et al. Why CuInGaSe2 and CdTe polycrystalline thinfilm solar cells are more efficient than the corresponding single crystal[J]. Cryst Res Technol,2005,40:1040-1053.
    [22]PERSSONA C, ZUNGERB A. Compositionally induced valence-band offset at the grainboundary of polycrystalline chalcopyrites creates a hole barrier[J]. Appl Phys Lett,2005,87:211904.
    [23]J. H. Moon, H.W.Choi, K.H.Kim, J.H.Kim, S. J. Park, J.Nanosci. Nanotechnol.12 (2012) 656-661.[24] G. Zoppi, I. Forbes, R. W. Miles, P. J. Dale, J. J. Scragg, L. M. Peter, Prog. Photovolt. Res. Appl.17 (2009) 315-319.
    [25]I. Repins, C. Beall, N. Vora, C. DeHart, D. Kuciauskas, P. Dippo, B. To, J.Mann, W.C.Hsu, A. Goodrich, R.Noufi, Sol. Energy Mater. Sol. Cells 101 (2012)154-159.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700