用户名: 密码: 验证码:
Cu_2ZnSnS_4纳米颗粒可控制备及其薄膜太阳能电池器件的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前化石燃料仍然是当今人类社会能源的主要来源。但是化石燃料的使用同时会释放有害气体造成环境污染,并且这些能源是不可再生能源,随着时间的推移,化石能源将完全消耗,因此寻找一种环保的可再生能源是亟待解决的问题。太阳能是一种储存丰富的可再生能源,其中光伏电池提供了全新的使用太阳能资源的方法,但是生产成本较大一直制约着太阳能电池的大规模应用。如果可以利用更加成熟的制备手段,那么利用太阳能电池产生能量的方式将更加低成本,效率高。Ⅰ2-Ⅱ-Ⅳ-Ⅵ4半导体材料,包括铜锌锡硫,铜锌锡硒以及铜锌锡硫硒,以其元素含量丰富,材料体系稳定的特点在过去的一段时间里在薄膜太阳能电池器件领域内得到了广泛的关注。相比于真空法制备含有五种元素的多元化合物材料中所面临的制备工艺复杂,生产成本较高的缺点和不足,基于纳米颗粒的溶液法可以很好地改善并解决真空法所面临的问题。
     本论文将阐述基于纳米颗粒的溶液法制备高效率铜锌锡硫硒薄膜太阳能电池器件的过程及研究影响光电转化效率的原因。论文将按照时间顺序论述制备铜锌锡硫纳米颗粒的原理和过程以及铜锌锡硫硒薄膜太阳能电池光电转化效率从零到7.5%的过程,具体地论文将包括以下三个内容:
     首先,研究了采用热注入法制备形貌和组分可控的铜锌锡硫纳米颗粒。系统研究了前驱体浓度,前驱体种类以及前驱体中金属比例对合成的铜锌锡硫纳米颗粒结构,形貌和组分的影响。采用硫脲为硫源时可以制备出形貌均匀,尺寸分布窄,且具有锌黄锡矿(kesterite)结构的铜锌锡硫纳米颗粒;同时合成的铜锌锡硫纳米颗粒中Cu/Zn+Sn以及Zn/Sn的比例可以分别在0.8到1之间和1.0到1.3之间调控。分析表明硫脲对形成形貌均匀,尺寸分布窄的铜锌锡硫纳米颗粒起着至关重要的作用,在反应过程中硫脲逐渐分解出硫源是其中最主要的原因。而且通过对于不同时间下铜锌锡硫纳米颗粒形貌的表征,表明由于硫脲分子对称结构的影响,铜锌锡硫纳米颗粒只能在一个方向上生长,最终形成均匀的纺锤形状。紫外可见光光谱测试表明在可见光范围内,铜锌锡硫纳米颗粒具有较高的吸收,其光学带隙为1.52eV,是一种适合做太阳能电池器件的吸收材料。
     其次,论文研究了使用简单的旋涂方法和滴注方法制备铜锌锡硫前驱体薄膜,探索了墨水浓度,旋涂速度对于薄膜厚度的影响,最终采用200mg/ml的墨水通过4次旋涂制备出厚度大约1μm的铜锌锡硫薄膜。为了得到结晶质量较好的吸收层,论文还研究了不同气氛下和不同硒化温度对铜锌锡硫前驱体薄膜结构,组分,光学性质的影响。总结了硒气氛下结晶质量较好的铜锌锡硫硒吸收层是通过最初形成Cu2-xSe而后又完全消失的自发过程形成的。在硒化过程中锡的损失造成了铜锌锡硫硒吸收层中金属比例失配,同时也严重影响铜锌锡硫硒薄膜太阳能电池器件的光电转化效率,只有3.81%;而通过在硒化过程中添加锡粉,可以有效的减少吸收层中金属比例偏离,薄膜电池的光电转化效率得到了显著的提高,达到了7.50%。Mott-Schottky测试方法进一步揭示了较少的缺陷浓度对于高效率薄膜太阳能电池的重要性。
     最后,论文还阐述了使用热注入法制备出一种新的元素含量丰富的四元化合物材料,铜镁锡硫。XRD, Raman以及TEM结果表明合成的铜镁锡硫纳米颗粒是一种具有锌黄锡矿结构的材料,同时热注入法制备的铜镁锡硫纳米颗粒中没有其它二元或三元化合物杂相。扫描透射电子显微镜中的能量色散光谱仪面扫描方式(STEM-EDS)测试表明合成的纳米颗粒中包含有铜,镁,锡,硫四种元素。紫外可见光光谱测试表明这种新材料的光学带隙为1.63eV,为进一步研究这种材料作为太阳能电池吸收层奠定了基础。
The majority of the world's energy consumption is derived from fossil fuels. However, due to the environmental issues associated with burning fossil fuels and the diminishing availability of these resources, it is necessary for mankind to develop an alternative source of energy that is more sustainable in the long-term. Solar energy resources are vast:more energy hits the earth in one hour than humankind consumes in entire year. Solar cells offer the potential to change the landscape of how we produce and use energy. However, solar cells technologies have only been used to a limited degree in energy production thus far because of high costs. If developed into a mature technology, they present the opportunity of significantly reduce solar energy costs through earth abundant materials, efficient installation, and roll-to-roll production. Ⅰ2-Ⅱ-Ⅳ-Ⅵ4semiconductors, including Cu2ZnSnS4(CZTS), Cu2ZnSnSe4(CZTSe) and the sulfo-selenide Cu2ZnSn(S,Se)4(CZTSSe), have attracted increased attention for the production of low cost thin film solar cells since they mainly consist of earth abundant or readily available elements in recent years. Owing to the processing complexity associated with the vacuum-based fabrication of CZTS(e) thin film photovoltaic cells, non-vacuum solution-processing can overcome these issues due to the inherent processing advantages over conventional vacuum-based processes.
     The focus of this study is to demonstrate a viable route of fabricating highly efficient thin-film solar cells by ways of nanoparticles based solution-processing. This dissertation is organized in the order of annals describing the synthesis of CZTS nanoparticles, and the means to improve the CZTSSe solar cells efficiency from zero to about7.5%.
     Firstly, hot-injection method was used for synthesizing a uniformed and composition controllable CZTS nanoparticle. The effects of the precursor concentrations, the kind of precursors, the metal precursor ratio on the morphology and composition of obtained CZTS nanoparticles were systematically investigated. A narrow size distribution, uniformed, and pure Kesterite CZTS nanoparticle can be achieved using the thiourea as the sulfur source, and the Cu/Zn+Sn ratio and Zn/Sn ratio of the fabricated CZTS nanoparticle can be ranged from0.8to1and1.0to1.3, respectively. Thiourea plays a key role in the formation of nanocrystals with uniform shape and narrow size distribution because thiourea will gradually release sulfur into the solution which triggers reactionwithmetal ion and eventually leads to the formation of CZTS. Time-dependent results showed that CZTS nanoparticle with uniform shape was form initially, and CZTS nanopartilces grew in one direction because of the thiourea's symmetrical structure. UV-vis absorption spectra of the CZTS nanoparticles revealed a strong absorption in the visible light region with a direct band gap of1.52eV which was optimal for solar cell materials.
     Secondly, spin-coating and drop-cast methods were investigated to obtain the CZTS thin films. The effect of the various concentrated ink and different spin speeds on the thickness of the thin films were investigated using the spin-coating method. A thickness of1μm CZTS thin films was obtained by4times spin-coating using the200mg/ml ink. The influence of the different selenium atmosphere and annealed temperatures on the structure, morphological and optical properties of CZTS thin film were investigated in the sealed quartz tube. It was concluded that an evolution of the initial formation of Cu2-xSe at the surface, and a subsequent extinction completely was performed during the formation of CZTSSe thin films. Sn loss also be observed during the annealing process under Se atmosphere, which has a negative effect on CZTSSe thin film solar cells, only a efficiency of3.8%thin films solar cells was achieved; While adding Sn powders during annealing process could avoid Sn loss and an improved efficiency thin film solar cell with7.50%was obtained at last. Mott-Schottky measurement showed that the higher efficiency solar cells had a lower carrier concentration which was an advantageous case for high efficiency solar cells.
     Finally, a new earth-abundant element material Cu2MgSnS4had been synthesized by hot-injection methods. X-ray diffraction, Raman spectrum and transmission electron microscopy elucidated as-prepared nanoparticles are Kesterite Cu2MgSnS4without binary compounds coexisting. Scanning transmission electron microscopy energy-dispersive spectroscopy element mapping shows the copper, magnesium, tin, and sulfur elements distributed uniformly in the nanoparticles. The result of the Uv-vis absorption spectra revealed the Cu2MgSnS4nanoparticles have an optical band gap of1.63eV, which is suitable for application in the field of photovoltaic.
引文
[1]Renewable Energy Consumption and Electricity Preliminary Statistics 2007, Energy Information administration [M],2008
    [2]H. Kawamura, K. Sakuno, T. Hasegawa, M. Hasegawa, H. Koh, H. Sato, A miniature 44% efficiency GaAs HBT power amplifier MMIC for the W-CDMA application[J], GaAs IC Symposium,2000,22nd Annual,25-28.
    [3]Heliatek, Heliatek consolidates its technology leadership by establishing a new world record for organic solar techonolgy with a cell efficiency of 12%[J], Press release. http://www.heliatek.com/newscenter/presse,2013(accessed 31.07.13)
    [4]Philip Jackson, Dimitrios Hariskos, Roland Wuerz, Wiltraud Wischmann, Michael Powalla, Compositional investigation of potassium doped Cu(In,Ga)Se2 solar cells with efficiencies up to 20.8%[J], Physica status solidi(RRL),8(2014),219-222.
    [5]V. K. Kapur, A. Bansal, P. Le, O. Asensio, Proceedings of the 29th IEEE Photovoltaic Specialists Conference, New Orleans, LA, IEEE, (2002) 688-691
    [6]O. Onn, Malaysian National News Agency BERNAMA February 27,2005 Available online http://bername.com/bernama/v3/news business.php?id=1212800
    [7]V. K. Kapur, A. Bansal, P. Le, O. Asensio, Thin Solid Films,52 (2003),431-431
    [8]C. E. Fritts, Van Nostrand's Engineering Magazine 32 (1885) 392
    [9]W. Siemens, Van Nostrand's Engineering Magazine 32 (1885) 515
    [10]B. Lange, Z. Phys.31 (1930) 139
    [11]W. Schottky, Z. Phys.31 (1930) 913
    [12]L. O. Grondahl, Rev. Mod. Phys.5 (1933) 141
    [13]D. M. Chapin, C. S. Fuller, G. L. Pearson, Journal of Applied Physics,25, (1954) 676-677
    [14]D. C. Reynolds, G. Leies, L. L. Antes, R. E. Marburge, Phys. Rev.96, (1954) 533-534
    [15]M. A. Green,2002. Photovoltaic principles. Physica E,14:11-17.
    [16]Kim, J. Y.; Kim, S. H.; Lee, H. H.; Lee, K.; Ma, W. L.; Gong, X.; Heeger, A. J. Advanced Materials 2006,18,572.
    [17]Cai, W. Z.; Gong, X.; Cao, Y. Solar Energy Materials and Solar Cells 2010,94,114.
    [18]O'Regan, B. & Gratzel, M. A low-cost, high-effi ciency solar cell based on dye-sensitizedcolloida1TiO2 films. Nature 353(1991),737-740.
    [28]C. Girotto, D. Moia, B. P. Rand, P. Heremans,, "High-Performance Organic Solar Cells with Spray-Coated Hole-Transport and Active Layers," Advanced Functional Materials,21(2011), 64-72,.
    [29]S-I. Na, B-K.Yu, S-S.Kim, D. Bak, T-S.Kim, J-S.Yeo, D-Y. Kim,, "Fully spray-coated ITO-free organic solar cells for low-cost power generation," Solar Energy Materials and Solar Cells,94(2010),1333-1337
    [30]W. Ma, C. Yang, X. Gong, K. Lee, A.J. Heeger, "Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology," Advanced Functional Materials,15(2005),1617-1622.
    [31]M. J(?)rgensen, K. Norrman, F. C. Krebs, "Stability/degradation of polymer solar cells",Solar Energy Materials and Solar Cells,92(2008),686-714.
    [32]H.-L. Y. Steven K. Han, Nam Seob Baek, Jingyu Zou, Kevin O'Malley, Alex K.-Y. Jen, "Air-stable inverted flexible polymer solar cells using zinc oxide nanoparticles as an electron selective layer," Applied Physics Letters,92(2008),253301.
    [33]Chang Su Kim, Stephanie S. Lee, Enrique D. Gomez, Jong Bok Kim, Yueh-Lin Loo, "Transient photovoltaic behavior of air-stable, inverted organic solar cells with solution-processed electron transport layer," Applied Physics Letters,94(2009),113302.
    [34]W. J. Potscavage, S. Yoo, B. Domercq, B. Kippelen, "Encapsulation of pentacene/C[sub 60] organic solar cells with Al[sub 2]O[sub 3] deposited by atomic layer deposition," Applied Physics Letters,90(2007),253511.
    [35]P. Ravirajan, S. A. Haque, J. R. Durrant, D. Poplavskyy, D. D. C. Bradley, J. Nelson, "Hybrid nanocrystalline TiO2 solar cells with a fluorene--thiophene copolymer as a sensitizer and hole conductor," Journal of Applied Physics,95(2004),1473-1480.
    [36]L. Xiao-e, A. N. M. Green, S. F. Haque, A. Mills, J. R. Durrant, "Light-driven oxygen scavenging by titania/polymer nanocomposite films," Journal of Photochemistry and Photobiology A:Chemistry,162(2004),253-259.
    [37]Y. Sahin, S. Alem, R. De Bettignies, J. M. Nunzi, "Development of air stable polymer solar cells using an inverted gold on top anode structure," Thin Solid Films,476(2005),340-343.
    [38]A. Moliton, J. Nunzi, "How to model the behaviour of organic photovoltaic cells",Polymer International,55(2006),583-600.
    [39]B. O'Regan, M. Gratzel, "A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films",Nature,353(1991),737-740.
    [40]J. Wang, Z. Lin, "Dye-Sensitized TiO2 Nanotube Solar Cells with Markedly Enhanced Performance via Rational Surface Engineering," Chemistry of Materials,22(2009),579-584.
    [41]K. Shankar, J. I. Basham, N. K. Allam, O. K. Varghese,G. K.Mor, X. J. Feng, M. Paulose,J. A. Seabold, K.S. Choi,C. A.Grimes,Recent Advances in the Use of TiO2 Nanotube and Nanowire Arrays for OxidativePhotoelectrochemistry,J. Phys. Chem. C,113(2009),6327-6359.
    [42]D-J. Yang, H. Park, S-J.Cho, H-G.Kim, W-Y. Choi, "TiO2-nanotube-based dye-sensitized solar cells fabricated by an efficient anodic oxidation for high surface area".Journal of Physics and Chemistry of Solids,69(2008),1272-1275.
    [43]A. B. F. Martinson, J. W. Elam, J. T. Hupp, M. J. Pellin, "ZnO Nanotube Based Dye-Sensitized Solar Cells",Nano Letters,7(2007),2183-2187.
    [44]L. E. Greene, M. Law, D. H. Tan, M. Montano, J. Goldberger.G. Somorjai,P. D. Yang, General Route to Vertical ZnO NanowireArrays Using Textured ZnO Seeds, Nano Lett., 5(2005),1231-1236
    [45]Zeng Longyue, Dai Songyuan, Xu Weiwei Wang Kongjia, "Dye-Sensitized Solar Cells Based on ZnO Films", Plasma Science and Technology,8(2006),172.
    [46]S. Somekawa, Y. Kusumoto, M. Abdulla-Al-Mamun, M. Muruganandham, Y. Horie, "Wet-type Fe2O3 solar cells based on Fe2O3 films prepared by laser ablation:Drastic temperature effect," Electrochemistry Communications,11(2009),2150-2152.
    [47]A. K. I. Cesar, J. A. Gonzalez Martinez, M. Gratzel, "Translucent Thin Film Fe2O3 Photoanodes for Efficient Water Splitting by Sunlight:Nanostructure-Directing Effect of Si-Doping," Journal of the American Chemical Society,128(2006),4582-4583.
    [48]M. K. Nazeeruddin, et al., "Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X=C1-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes," Journal of the American Chemical Society,115(1993),6382-6390.
    [49]S. Ferrere, "New photosensitizers based upon [FeII(L)2(CN)2] and [FeIIL3], where L is substituted 2,2'-bipyridine," Inorganica Chimica Acta,329(2002),79-92.
    [50]K. Hara, M. Kurashige, Y. Dan-oh, C. Kasada, A. Shinpo, S. Suga, K. Sayama, H. Arakawa, "Design of new coumarin dyes having thiophene moieties for highly efficient organic-dye-sensitized solar cells," New Journal of Chemistry,27(2003),783-785.
    [51]Z. W,, Y. Cao, Y. Bai, Y. Wang, Y. Shi, M. Zhang, F. Wang, C. Pan, P. Wang, "Efficient Dye-Sensitized Solar Cells with an Organic Photosensitizer Featuring Orderly Conjugated Ethylenedioxythiophene and Dithienosilole Blocks," Chemistry of Materials,22(2010), 1915-1925.
    [52]M. Gratzel, "Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells," Journal of Photochemistry and Photobiology A:Chemistry,164(2004),3-14.
    [53]N. T treault, E. Horv th, T. Moehl, J. Brillet, R. Smajda, S. Bungener, N. Cai, P. ang, S. M. akeeruddin, L. Forr, A. Magrez, M. Gra tzel, "High-Efficiency Solid-State Dye-Sensitized Solar Cells:Fast Charge Extraction through Self-Assembled 3D Fibrous Network of Crystalline TiO2 Nanowires," ACS Nano,4(2010),7644-7650.
    [54]H. Keppner, J. Meier, P. Torres, D. Fischer, A. Shah, "Microcrystalline silicon andmicromorph tandemsolar cells," Applied Physics A:Materials Science & Processing,1999.
    [55]S. Lalitha, R. Sathyamoorthy, S. Senthilarasu, A. Subbarayan, K. Natarajan,, "Characterization of CdTe thin film--dependence of structural and optical properties on temperature and thickness," Solar Energy Materials and Solar Cells,82(2004),187-199.
    [56]G. M. Hanket, B. E. McCandless, W. A. Buchanan, S. Fields, R. W. Birkmire, "Design of a vapor transport deposition process for thin film materials," Journal of Vacuum Science & Technology A:Vacuum, Surfaces, and Films,24(2006),1695-1701.
    [57]H. Nagayoshi, K. Suzuki, "Growth of thick CdTe films by close-space-sublimation technique," in Nuclear Science Symposium Conference Record,2004 IEEE,2004,4411-4414.
    [58]Q. Jiang, D. P. Haliday, B. K. Tanner, A. W. Brinkman, B. J. Cantwell, J. T. Mullins and A. Basu, "Thick epitaxial CdTe films grown by close space sublimation on Ge substrates," Journal of Physics D:Applied Physics,42(2009),012004.
    [59]M. B. Dergacheva, V. N. Statsyuk, L. A. Fogel, "Electrodeposition of CdTe from ammonia-chloride buffer electrolytes," Journal of Electroanalytical Chemistry,579(2005), 43-49.
    [60]B. E. McCandless and W. A. Buchanan, "High throughput processing of CdTe/CdS solar cells with thin absorber layers," in Photovoltaic Specialists Conference,2008. PVSC'08.33rd IEEE,2008,1-6.
    [61]X. Wu, R.G. Dhere, D.S. Albin, T.A. Gessert, C. DeHart, J.C. Keane, A. Duda, T.J. Coutts, S. Asher, D.H. Levi, H.R. Moutinho, Y. Yan, T. Moriarty, S. Johnston, K. Emery, P. Sheldon,, "High-Efficiency CTO/ZTO/CdS/CdTe Polycrystalline Thin-Film Solar Cells," NCPV Program Review Meeting,2005.
    [62]S. H. Demtsu, D. S. Albin, J. W. Pankow, A. Davies, "Stability study of CdS/CdTe solar cells made with Ag and Ni back-contacts," Solar Energy Materials and Solar Cells,90(2006), 2934-2943.
    [63]B. Spath, J. Fritsche, A. Klein, W. Jaegermann, "Nitrogen doping of ZnTe and its influence on CdTe/ZnTe interfaces",Applied Physics Letters,90(2007),062112.
    [64]U. Rau and H. W. Schock, In Solar Cells:Materials, Manufacture and Operation (eds). T. Markvart L. Castaner, Elsevier, Great Britain,2005,305-349
    [65]S. Byrnes, "Shockley-Queisser Full Curve." Wikipedia.2011
    [66]B. J. Stanbery, Critical Reviews in Solid State and Materials Sciences,27(2002),73.
    [67]P. Wurfel, Physics of solar cells:from basic principles to advanced concepts, WILEY-VCH, Germany,2009.
    [68]J. A. Frantz, R. Y. Bekele, V. Q. Nguyen, J. S. Sanghera, A. Bruce, S. V. Frolov, M. Cyrus and I. D. Aggarwal, Thin Solid Films,519(2011),7763.
    [69]H.-R. Hsu, S.-C. Hsu Y. S. Liu, solar Energy,86(2012),48.
    [70]M. Marudachalam, H. Hichri, R. Klenk, R. W. Birkmire, W. N. Shafarman and J. M. Schultz, APpl. Phys. Lett,67(1995),3978.
    [71]A. Halbe, P. Johnson, S. Jackson, R. Weiss, U. Avachat, A. Welsh A. P. Ehiasarian, Mater. Res. Soc. Symp. Proc.,2010,1210.
    [72]N. Inc, in 17th International Photovoltaic Science and Engineering Conference,Tokyo, Japan, 2007.
    [73]Q. Guo, G. M. Ford, H. W. Hillhouse and R. Agrawal, in 37th IEEEPhotovoltaic Specialists Conference, Seattle, WA,2011,003522.
    [74]T. K. Todorov, O. Gunawan, T. Gokmen and D. B. Mitzi, Prog. Photovolt. Res.Appl., 21(2013),82-87.
    [75]R. N. Bhattacharya, W. Batchelor, J. F. Hiltner and J. R. Sites, Appl. Phys.Lett.,75(1999), 1431.
    [76]S. Chen, X. G. Gong, A. Walsh, S.Wei, Appl. Phys. Lett.94(2009),4.
    [77]S. Schorr, Thin Solid Films,515(2007),5985-5991.
    [78]Ankur Khare, Burak Himmetoglu, Melissa Johnson, David J. Norris, Matteo Cococcioni, Eray S. Aydil Journal of Applied Physics 111(2012),083707-083715.
    [79]C. Persson, J. Appl. Phys.,107 (2010),5.
    [80]Shiyou Chen, X. G. Gong, Aron Walsh, and Su-Huai Wei Crystal and electronic band structure of Cu2ZnSnX4 (X= S and Se) photovoltaic absorbers:First-principles insights,Appl. Phys. Lett.94(2009),041903.
    [81]T. K. Todorov, K. B. Reuter, D. B. Mitzi, High-Efficiency Solar Cell with Earth-Abundant Liquid-Processed Absorber[J],Adv. Mater.,22 (2010), E156-E159.
    [82]Q. Guo, G. M. Ford, W.-C. Yang, B. C. Walker, E. A. Stach, H. W. Hillhouse, R. Agrawal, J. Am. Chem. Soc.,132(2010),17384.
    [83]I. Repins, C. Beall, N. Vora, C. DeHart, D. Kuciauskas, P. Dippo, B. To, J. Mann, W.-C. Hsu, A. Goodrich, R. Noufi, Sol. Energy Mater. Sol. Cells,101(2012),154.
    [84]D. Barkhouse, O. Gunawan, T. Gokmen, T. Todorov, D. Mitzi, Prog. Photovolt.:Res. Appl., 20(2012),6.
    [85]K. Maeda, K. Tanaka, Y. Fukui, H. Uchiki, Sol. Energy Mater. Sol. Cells,95(2011),2855.
    [86]B.-A. Schubert, B. Marsen, S. Cinque, T. Unold, R. Klenk, S. Schorr, H.-W. Schock, Prog. Photovolt.:Res. Appl.,19(2011),93.
    [87]F. Hergert, R. Hock, Thin Solid Film,515(2007),5953.
    [88]P. Salome, J. Malaquias, P. Fernandes, M. Ferreira, J. Leitao,A. da Cunha, J. Gonzalez, F. Matinaga, G. Ribeiro, E. Viana, Sol. Energy Mater. Sol. Cells,95(2011),3482.
    [89]S. W. Shin, S. Pawar, C. Y. Park, J. H. Yun, J.-H.Moon, J. H. Kim, J. Y. Lee, Sol. Energy Mater. Sol. Cells,95(2011),3202.
    [90]A. Wangperawong, J. King, S. Herron, B. Tran, K. Pangan-Okimoto, S. Bent, Thin Solid Films,519(2011),2488.
    [91]K. C. Mills, Thermodynamic Data of Sulphides, Selenides and Tellurides (Butterworths, London,1974).
    [92]Justus Just, Dirk Liitzenkirchen-Hecht, Ronald Frahm, Susan Schorr, Thomas Unold "Determination of secondary phases in kesterite Cu2ZnSnS4 thin films by x-ray absorption near edge structure analysis", Appl. Phys. Lett.99(2011),262105.
    [93]T. Prabhakar, N. Jampana, Sol. Energy Mater. Sol. Cells,95(2011),1001.
    [94]J. P. Leitao, N. M. Santos, P. A. Fernandes, P. M. P. Salome, A. F. da Cunha, J. C. Gonzalez, G. M. Ribeiro, F. M. Matinaga, Phys. Rev. B,84(2011),024120.
    [95]D. W. Miller, C. W. Warren, O. Gunawan, T. Gokmen, D. B. Mitzi, J. D. Cohen, Appl. Phys. Lett.,101(2012),142106.
    [96]Shiyou Chen, Aron Walsh, Xin-Gao Gong, and Su-Huai Wei "Classification of Lattice Defects in the Kesterite Cu 2 ZnSnS 4 and Cu 2 ZnSnSe 4 Earth-Abundant Solar Cell Absorbers" Adv. Mater. DOI:10.1002/adma.201203146
    [97]H. Katagiri, N. Sasaguchi, S. Hando, S. Hoshino, J. Ohashi and T. Yokota:Sol. Energy Mater. Sol. Cells,49(1997),407-414.
    [98]H. Araki, A. Mikaduki, Y. Kubo, T. Sato, K. Jimbo, W. S. Maw, H. Katagiri, M. Yamazaki, K. Oishi and A. Takeuchi:Thin Solid Films,517(2008),1457-1460.
    [99]B.-A. Schubert, B. Marsen, S. Cinque, T. Unold, R. Klenk, S. Schorr, H.-W. Schock:Prog. Photovolt. Res. Appl.,19(2011),93-96.
    [100]K. Wang, O. Gunawan, T. Todorov, B. Shin, S.J. Chey, N.A. Bojarczuk, D. Mitzi and S. Guha:Appl. Phys. Lett.,97(2010),143508.
    [101]B. Shin, O. Gunawan, Y. Z. Nestor, A. Bojarczuk, S. Jay Chey and S. Guha:Prog. Photovolt.Res. Appl.,2011,1174.
    [102]T.. Kato, H. Hiroi, N. Sakai, S. Muraoka, H. Sugimoto, Characterization of front and back interfaces in on Cu2ZnSnS4 thin film Solar cells, in 27th EPSEC, Frankfurt(2012).
    [103]Byungha Shin, Yu Zhu, Nestor A. Bojarczuk, S. Jay Chey, and Supratik Guha Control of an interfacial MoSe2 layer in Cu2ZnSnSe4 thin film solar cells:8.9% power conversion efficiency with a TiN diffusion barrier Appl. Phys. Lett.101 (2012),053903.
    [104]Jian V. Li, Darius Kuciauskas, Matthew R. Young, and Ingrid L. Repins Effects of sodium incorporation in Co-evaporated Cu2ZnSnSe4 thin-film solar cells Appl. Phys. Lett.,102 (2013), 163905.
    [105]Ingrid Repins, CarolynBeall, NiravVora, ClayDeHart, DariusKuciauskas, PatDippo, BobbyTo, Jonathan Mann, Wan-ChingHsu, AlanGoodrich, RommelNoufi Co-evaporatedCu2ZnSnSe4 films anddevices Solar Energy Materials & Solar Cells,101(2012) 154-159.
    [106]H. Katagiri, K. Jimbo, S. Yamada, T. Kamimura, W. S. Maw, T. Fukano, T. Ito and T. Motohiro:Appl. Phys. Exp.,1 (2008),041201.
    [107]Guy Brammertz, Yi Ren, Marie Buffiere, Sofie Mertens, Jurgen Hendrickx, Hakim Marko, Armin E. Zaghi, Nick Lenaers, Christine Koble, Jef Vleugels, Marc Meuris, Jef Poortmans Electrical characterization of Cu2ZnSnSe4 solar cells from selenization of sputtered metal layers Thin Solid Films,535 (2013),348-352.
    [108]P. A. Fernandes, P. M. P. Salome and A. F. da Cunha:Semicond. Sci. Technol.,24 (2009), 105013.
    [109]R. B. V. Chalapathy, S. J. Gwang and T. A. Byung:Sol. Energy Sol. Mater. Cells,95 (2011), 3216-3221.
    [110]K. Jimbo, R. Kimura, T. Kamimura, S. Yamada, W. S. Maw, H. Araki, K. Oishi and H. Katagiri:Thin Solid Films,515 (2007),5997-5999.
    [111]K. Sekiguchi, K. Tanaka, K. Moriya and H. Uchiki:Phys. Stat. Sol. C.,2006,3C, (8), 2618-2621.
    [112]K. Moriya, K. Tanaka and H. Uchiki:Jpn J. Appl. Phys.,46 (2007),5780-5781.
    [113]A. V. Moholkar, S. S. Shinde, A. R. Babar, Kyu-Ung Sim, Ye-bin Kwon, K. Y. Rajpure, P. S. Patil, C. H. Bhosale, J. H. Kim:Sol. Energy,85(2011),1354-1363.
    [114]A. V. Moholkar, S. S. Shinde, G. L. Agawane, S. H. Jo, K. Y. Rajpure, P. S. Patil, C. H. Bhosale, J. H. Kim:J. Alloys Compounds,2012, http://dx.doi.org/10.1016/j-jallcom.2012.07.108.
    [115]D. R. Johnson:Thin solid Films,361(2000),321-326.
    [116]. S. Taunier, J. Sicxkurdi, P. Grand, A. Chomont, O. Ramdani, L. Parissi, P. Panheleux, N. Naghavi, C. Hubert and M. Benfarah:Thin Solid Films,480(2005),526-531.
    [117]J. J. Scragg, P. J. Dale, L. M. Peter, G. Zoppi, and I. Forbes, Phys. Status Solidi (b),245(2008),1772.
    [118]J. J. Scragg, D. M. Berg, P. J. Dale, J. Electroanal.Chem.,646(2010),52.
    [119]H. Araki, Y. Kubo, K. Jimbo, W. S. Maw, H. Katagiri, M. Yamazaki, K. Oishi, and A. Takeuchi, Phys. Status Solidi (c),6 (2009),1266.
    [120]A. Ennaoui, M. Lux-Steiner, A. Weber, D. Abou-Ras, I. Kotschau, H.. Schock, R. Schurr, A. Holzing, S. Jost, R. Hock, T. VoB, J. Schulze, A. Kirbs, Thin Solid Films 517,2511 (2009).
    [121]S. Ahmed, K. B. Reuter, O. Gunawan, L. Guo, L. T. Romankiw, H. Deligianni, Adv. Energy Mater.2(2012),253.
    [122]D. B. Mitzi, in Solution processing of inorganic materials, ed. D. B. Mitzi, John Wiley & Sons, Inc.,2009,77-102.
    [123]D. B. Mitzi, Inorg.Chem.,46 (2007),926.
    [124]D. B. Mitzi, T. K. Todorov, O. Gunawan, M. Yuan, Q. Cao, W. Liu,K. B. Reuter, M.Kuwahara, K. Misumi, A.J. Kellock, S. J. Chey,T. Goislard de Monsabert, A. Prabhakar, V.Deline, K. E. Fogel, in:Proc.35th IEEE Photovoltaics Specialist Conf., IEEE, New York2010,640.
    [125]Santanu Bag, Oki Gunawan, Tayfun Gokmen, Yu Zhu, David B. Mitzi., Hydrazine-Processed Ge-Substituted CZTSe Solar Cells, Chem. Mater.24 (2012),4588-4593
    [126]W. Wang, M. T. Winkler, O. Gunawan, T Gokmen, T. K. Todorov, Y. Zhu, D. B. Mitzi Device Characteristics of CZTSSe Thin-Film Solar Cells with 12.6%Efficiency, Adv. Energy Mater. DOI:10.1002/aenm.201301465
    [127]Y. Cao, M. S. Denny, J. V. Caspar, W. E. Farneth, Q. Guo,A. S. Ionkin, L. K. Johnson, M. Lu, I. Malajovich, D. Radu,H. D. Rosenfeld, K. R. Choudhury and W. Wu, J. Am.Chem. Soc.,134(2012),15644-15647.
    [128]Q. Guo,G. M. Ford, W. C. Yang, B. C. Walker, E. A. Stach,H. W.Hillhouse, R. Agrawal, Fabrication of 7.2% Efficient CZTSSe Solar Cells Using CZTSNanocrystals, J. AM. CHEM. SOC. 132(2012),17384-17386.
    [129]Q. Tian, X. Xu, L. Han, M. Tang, R. Zou, Z. Chen, M. Yu,J. Yang, J. Hu, CrystEngComm., 14(2012),3847-3850.
    [130]C. C. Yang, Y. W. Mai, Chem. Phys. Lett.,535(2012),91.
    [131]M. G. Panthani, V. Akhavan, B. Goodfellow, J. P. Schmidtke, L. Dunn, A. Dodabalapur, P. F.Barbara, B. A. Korgel, J. Am. Chem. Soc.,130(2008),16770.
    [132]M. L. Liu, I. W. Chen, F. Q. Huang, L. D. Chen, Adv.Mater.,21(2009),3808.
    [1]R. Pierret, Semiconductor device fundamentals [M], Addison-Wesley publishingcompany, 1996.
    [2]M. Green, Solar cells:operating principles, technolog, and systemapplications[M], Prentice-Hall,1982.
    [3]J. R. Sites and P. H. Mauk, Solar Cells[J],27(1989),411.
    [4]U. Rau and H. W. Schock, in Solar Cells:Materials, Manufacture andOperation, (Eds.) T. Markvart and L. Castaner, Elsevier, Great Britain,2005,305-349.
    [5]M. B. Prince, Silicon Solar Energy Converters [J]. Journal of Applied Physics,1955,26(5):534-540.
    [1]Park, J.; Joo, J.; Kwon, C. G.; Jang, Y.; Hyeon, T. Angew. Chem., Int. Ed.,46(2007),4630.
    [2]Park, J.; An, K.; Hwang, Y.; Park, J.-G.; Noh, H.-J.; Kim, H.-J.; Park, J.-H.; Hwang, N.-M.; Hyeon, T. Nat. Mater.,3(2004),891.
    [3]Yin, Y.; Alivisatos, A. P. Nature,437(2005),664.
    [4]Talapin, D. V.; Nelson, J. H.; Shevchenko, E. V.; Aloni, S.; Sadtler, B.; Alivisatos, A. P. Nano Lett.,7(2007),2951.
    [5]Bruchez, J. M.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A. P. Science,281(1998),2013.
    [6]Klimov, V. I.; Mikhailovsky, A. A.; Xu, S.; Malko, A.; Hollingsworth, J. A.; Leatherdale, C. A.; Eisler, H. J.; Bawendi, M. G. Science,290(2000),314.
    [7]Jain, P. K.; Huang, X.; El-Sayed, I. H.; El-Sayad, M. A. Plasmonics,2(2007),107.
    [8]Huang Z. Y.; Barber Y.; Mills G.; Morris M. B. J. Phys. Chem.,98(1994),12746
    [9]H. Katagiri, K. Jimbo, W.S. Maw, K. Oishi, M. Yamazaki, H. Araki, A. Takeuchi, Thin Solid Films 517 (2009) 2455.
    [10]Steinhagen C., Panthani M. G., Akhavan V., Goodfellow B., Koo B., Korgel B. A., Synthesis of Cu2ZnSnS4 Nanocrystals for Use in Low-Cost Photovoltaics, J. AM. CHEM. SOC., 131(2009),12554-12555.
    [11]Norako M. E., Greaney M. J., Brutchey R. L., Synthesis and Characterization of Wurtzite-Phase Copper Tin Selenide Nanocrystals, J. Am. Chem.Soc.dx.doi.org/10.1021/ja206929s
    [12]Kruszynska M, Borchert H, Parisi Jr, Kolny-Olesiak J., J. Am. Chem. Soc,132(2010), 15976-15986.
    [13]Koo B, Patel RN, Korgel BA. J. Am. Chem. Soc.,131(2009),3134-3135.
    [14]Koo B, Patel RN, Korgel BA. Chem. Mater.,21(2009),1962-1966.
    [15]Wang JJ, Wang YQ, Cao FF, Guo YG, Wan LJ. J. Am. Chem. Soc., 132(2009),12218-12221.
    [16]Riha SC, Parkinson BA, Prieto AL. J. Am. Chem. Soc.,131(2009),12054-12055
    [17]Steinhagen C, Panthani MG, Akhavan V, Goodfellow B, Koo B, Korgel BA. J. Am. Chem. Soc.,131(2009),12554-12555.
    [18]Zhou YL, Zhou WH, Du YF, Li M, Wu SX. Mater Lett.,65(2011),1535-1537
    [19]Habas SE, Platt HAS, van Hest MFAM, Ginley DS. Chem. Rev.,110(2010),6571-6594.
    [20]Fernandes PA, Salome PMP, da Cunha AF. J. Alloys Compd.,509(2011),7600-7606.
    [21]Riha S. C., Parkinson B. A., Prieto A. L., Solution-Based Synthesis and Characterization of Cu2ZnSnS4 Nanocrystals, J. AM. CHEM. SOC.,131(2009),12054-12055
    [22]Katagiri H, Sasaguchi N, Hando S, Hoshino S, Ohashi J, Yokota T. Sol. Energy Mater.Sol. Cells,49(1997),407-14.
    [23]Wei H., Guo W. Sun Y. J. Hot-injection synthesis and characterization of quaternary Cu2ZnSnSe4nanocrystals, Materials Letters,64(13)(2009),1424-1426.
    [24]I.P. Parkin, L.S. Price, T.G. Hibbert, K.C. Molloy, The first single source deposition of tin sulfide coatings on glass:aerosol-assisted chemical vapour deposition using [Sn(SCH2CH2S)(2)], Journal of Materials Chemistry,11(2001),1486-1490.
    [1]Susan E. Habas, Heather A. S. Platt, Maikel F. A. M. van Hest, David S. Ginley, Low-CostInorganic Solar Cells:From Ink To Printed Device, Chem. Rev.,110(2010), 6571-6594.
    [2]Philip Jackson, Dimitrios Hariskos, Erwin Lotter, Stefan Taetel, Roland Wuerz, Richard Menner, Wiltraud Wischmann, Michael Powalla, New world record efficiency for Cu(In,Ga)Se2 thin film solar cells beyond 20%[J]. Progress in photovoltaics:Research and Applications,19(7)(2011),894-897.
    [3]Byungha Shin, Oki Gunawan, Yu Zhu, Nestor A. Bojarczuk, S. Jay Chey, Supratik Guha, Thin film solar cell with 8.4% power conversion efficiency using an earth-abundant Cu2ZnSnS4 absorber [J]. Progress in photovoltaics:Research and Applications,2011:n/a-n/a.
    [4]A. Meeder, P. Schmidt-Weber, U. Hornauer, D. Foerster, A. Neisser, S. Merdes, R. Mainz, R. Klenk, High voltage Cu(In,Ga)Se2 solar modules [J], Thin Solid Films,519(2011),7534-7536
    [5]S. Byrnes, "Shockley-Queisser Full Curve." Wikipedia.2011.
    [6]Qijie Guo,Grayson M. Ford, Wei-Chang Yang, Bryce C. Walker, Eric A. Stach,Hugh W.Hillhouse, Rakesh Agrawal, Fabrication of 7.2% Efficient CZTSSe Solar Cells Using CZTSNanocrystals [J], J. AM. CHEM. SOC.,132(2011),17384-17386.
    [7]Carolin M. Fella, Alexander R. Uhl, Yaroslav E. Romanyuk, and Ayodhya N. Tiwari, Cu2ZnSnSe4 absorbersprocessed from solution depositedmetal salt precursors underdifferent selenization conditions, Phys. Status Solidi A,209(2012),1043-1048.
    [8]R. W. Birkmire, E. Eser, Polycrystalline thin film solar cells:Present status and future potential. Annual Review of Materials Science,27(1997),625-653.
    [9]Q. Guo,G. M. Ford, W. C. Yang, B. C. Walker, E. A. Stach,H. W.Hillhouse, R. Agrawal, Fabrication of 7.2% Efficient CZTSSe Solar Cells Using CZTSNanocrystals, J. AM. CHEM. SOC.,132(2010),17384-17386.
    [10]Fernandes PA, Salome PMP, da Cunha AF. J Alloys Compd 2011;509:7600-7606
    [11]Vijay K. Kapur, Ashish Bansal, Phucan Le and Omar I. Asensio, NON-VACUUM PRINTINGPROCESS FOR CIGS SOLAR CELLS ON RIGID ANDFLEXIBLE SUBSTRATES, IEEE,2002,688-691.
    [12]Cai, W. Z.; Gong, X.; Cao, Y. Solar Energy Materials and Solar Cells,94(2010),114.
    [13]Shannon C. Riha, Bruce A. Parkinson, Amy L. Prieto,Solution-Based Synthesis and Characterization of Cu2ZnSnS4 Nanocrystals,J. AM. CHEM. SOC.,131(2009),12054-12055.
    [14]P.M.P. Salome, J.Malaquias, P.A.Fernandes, M.S.Ferreira, A.F.daCunha, J.P.Leitao, J.C. Gonzalez, F.M.Matinaga, Growth andcharacterizationofCu2ZnSn(S,Se)4 thin filmsforsolarcells,Solar Energy Materials & Solar Cells,101 (2012),147-153.
    [15]D. Park, D. Nam, S. Jung, S. An, J. Gwak, K. Yoon, J.H. Yun, H. Cheong, Optical characterization of Cu2ZnSnSe4 grown by thermal co-evaporation, Thin Solid Films,519 (2011),7386-7389.
    [16]A. Weber, R. Mainz, H.W. Schock, On the Sn loss from thin films of the material system Cu-Zn-Sn-S in high vacuum, J Appl Phys,107 (2010),013516-013521.
    [17]J.J. Scragg, T. Ericson, T. Kubart, M. Edoff, C. Platzer-Bjorkman, Chemical Insights into the Instability of Cu2ZnSnS4 Films during Annealing, Chemistry of Materials,23 (2011), 4625-4633.
    [18]W. Wang, M. T. Winkler, O. Gunawan, T Gokmen, T. K. Todorov, Y. Zhu, D. B. Mitzi Device Characteristics of CZTSSe Thin-Film Solar Cells with 12.6% Efficiency, Adv. Energy Mater. DOI:10.1002/aenm.201301465
    [19]Weber A. Krauth H. Thin Solid Films,517(2009),2524.
    [20]Alex Redinger, Dominik M. Berg,* Phillip J. Dale, and Susanne Siebentritt, The Consequences ofKesterite Equilibria for Efficient Solar Cells, J. Am. Chem. Soc.,133(2011), 3320-3323.
    [21]Jonathan J. Scragg, Tove Ericson, Tomas Kubart, Marika Edoff, Charlotte Platzer-Bjorkman, Chemical Insights into the Instability of Cu2ZnSnS4 Films duringAnnealing, Chem. Mater, dx.doi.org/10.1021/cm202379s.
    [22]Byungha Shin, Yu Zhu, Nestor A. Bojarczuk, S. Jay Chey, and Supratik Guha Control of an interfacial MoSe2 layer in Cu2ZnSnSe4 thin film solar cells:8.9% power conversion efficiency with a TiN diffusion barrier, Appl. Phys. Lett.,101(2012),053903.
    [1]张跃,谷景华,尚家香等,计算材料学基础,北京航空航天大学出版社,2007,26-28,69-79.
    [2]M. Altosaar, J. Raudoja, K. Timmo, M. Danilson, M. Grossberg, J. Krustok, E. Mellikov, Phys. Status Solidi A,205(2008),167.
    [3]C.C. Yang, Y.W. Mai, Size-dependent absorption properties of CdX (X= S, Se, Te) quantum dots, Chem Phys Lett,535 (2012),91-93.
    [4]M. G. Panthani, V. Akhavan, B. Goodfellow, J. P. Schmidtke, L. Dunn, A. Dodabalapur, P. F. Barbara, B. A. Korgel, J. Am. Chem. Soc.,130 (2008),16770.
    [5]M. L. Liu, I. W. Chen, F. Q. Huang, L. D. Chen, Adv.Mater.,21(2009),3808.
    [6]A. Shavel, J. Arbiol, A. Cabot, J. Am. Chem. Soc.,132(2010),4514.
    [7]Shiyou Chen, X. G. Gong, Aron Walsh, and Su-Huai Wei Crystal and electronic band structure of Cu2ZnSnX4 (X=S and Se) photovoltaic absorbers:First-principles insights, Appl. Phys. Lett.,94(2009),041903.
    [8]Fernandes PA, Salome PMP, da Cunha AF., J. Alloys Compd.,509(2009),7600-7606.
    [9]I.P. Parkin, L.S. Price, T.G. Hibbert, K.C. Molloy, The first single source deposition of tin sulfide coatings on glass:aerosol-assisted chemical vapour deposition using [Sn(SCH2CH2S)(2)], Journal of Materials Chemistry,11(2001),1486-1490.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700