用户名: 密码: 验证码:
CuInSe_2和Cu_2ZnSn(Se,S)_4薄膜制备新方法及其太阳能电池性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铜铟(CuInSe2,简称CISe)及铜锌锡硒硫(Cu2ZnSn(Se,S)4,简称CZTSe/S)薄膜太阳能电池具有高转换效率、稳定性好等优点,被认为是最有前景的一类太阳能电池。目前高效率CISe太阳能电池吸收层材料都是通过真空法(如磁控溅射法、热蒸发法)沉积的,但是真空沉积过程复杂、成本高。为解决这些问题,本论文研究了一种简单、低成本的CISe吸收层非真空制备方法,表征了CISe材料并制备出完整的CISe薄膜电池器件。另外一方面,CISe薄膜中含有昂贵稀有的In元素,限制其大规模生产。CZTSe/S薄膜制备所需的原料较为丰富、价格低廉,且其光电性能与CISe类似,有望取代CISe。以氧化物前驱体制备CZTSe/S薄膜也将被研究。论文主要分为四部分,具体内容如下:
     第一部分是研究低温固相反应合成氧化物纳米颗粒,并在此基础上制各CISe吸收层薄膜。先通过低温固相反应合成高单分散性氧化物纳米颗粒,这种粉体制备方法简单、容易量产。其次,将氧化物前驱体用刀刮法沉积到玻璃衬底成膜。最后,将所得干燥的前驱膜经过退火处理得到致密的CISe薄膜。为了提高CISe薄膜结晶质量,我们研究了在真空或者Ar气氛下化对CISe薄膜性质的影响,发现Ar载气化可以得到更大晶粒的薄膜。同时引入了外压致密化处理,明显改善了CISe薄膜形貌。初步制备出Ag/AZO/i-ZnO/CdS/CISe/Mo/Glass结构的(CISe太阳能电池,转换效率为3.4%。
     第二部分以铜铟氢氧化物为前驱体制备无In203杂相的CISe薄膜。使用氢氧化物替代氧化物可以避免In2O3杂相的生成。将氢氧化物滴注成膜后,再先后经过Ar气氛预退火和蒸汽化,即可得到所需CISe薄膜。系统研究了预退火温度对单相CISe薄膜制备的影响。结果表明当预退火温度在350℃时,可以得到表面平整致密、无In2O3杂相的CISe薄膜。同时发现富铜的前驱膜制备出表面富铟的CISe薄膜,这种富铟表面的薄膜有利于高效率电池的制备。
     第三部分采用直接化氧化物纳米颗粒制备Cu2ZnSnSe4(CZTSe)薄膜。为了进一步降低太阳能电池制备成本,CZTSe薄膜可以通过用便宜的Zn和Sn元素替代CISe薄膜中的昂贵In元素得到。首先通过低温固相反应制备Cu, Zn, Sn氧化物。其次,将所得氧化物刀刮成膜后化得到CZTSe薄膜。我们研究了前驱膜的致密化程度对CZTSe薄膜结构、形貌、光学性能的影响,得到了具有微米尺度的晶粒且成分接近于CZTSe化学计量。这些结果为CZTSe薄膜电池的制备提供了一条新颖的非真空制备路线。
     最后一部分为纳米氧化物墨水制备无毒的Cu2ZnSnS4(CZTS)薄膜太阳能电池。CZTS薄膜通过在硫气氛下退火氧化物前驱体得到。CZTS带隙(1.5eV)相比CZTSe(1.0eV)更适合作为光吸收层材料。但是通常CZTS薄膜结晶性相比CZTSe要差很多。为了提高CZTS薄膜的质量,我们对退火条件进行了系统的研究。通过引入高温硫化退火,得到了具有高品位的CZTS薄膜,为后续制备高效率CZTS薄膜太阳能电池打下了坚实的基础。
CuInSe2(CISe) and Cu2ZnSn(Se,S)4(CZTSe/S) based thin film solar cells have been considered the most promising solar cells due to respectable conversion efficiency and their outdoor stability. Most high-efficiency CISe PV absorption materials are deposited via vacuum-based deposition processes (e.g., sputtering or evaporation). However, vacuum-based deposition processes are complex and expensive. To eliminate this demanding tolerance requirement, the simple and low-cost techniques based on non-vacuum deposition of CISe absorption layer have been researched. On the other hand, CISe contains expensive materials Indium, which is a problem in mass production. CZTSe/S thin films have attracted significant attention as a potential alternative to CISe thin films, owing to the similar photoelectric properties as CISe thin films. The oxides based CZTSe/S was also investigated. The thesis mainly includes four parts, as follows:
     The first part is a low temperature solid state synthesis of oxides for CISe thin films. First, highly monodisperse oxides nanoparticles were synthesized via a low temperature solid state reaction, which is facile and easily scaled up. Second, the oxide particulate precursors were deposited in a thin layer by doctor-blade technique. Finally, the dry layers were sintered into CISe thin films. In order to improve the crystallinity of CISe thin films, the effects of heat treatment in vacuum or Ar atmosphere with elemental selenium vapor on the properties of CISe thin films were also investigated. Selenization under Ar atmosphere led to better crystallinity and an increase in the grain size. Meanwhile, densification studies were performed to improve the morphology of CISe thin films. The preliminary CISe solar cells with Ag/AZO/i-ZnO/CdS/CISe/Mo/Glass structure were fabricated. The solar cell device showed efficiency of3.4%.
     The second part includes the preparation of CISe thin films with In2O3-free by selenizing pre-annealed Cu-In hydroxide precursors. CISe thin films were prepared from hydroxides instead of oxides, which can avoid the formation of In2O3impure phase. The precursor film based on Cu, In hydroxides was firstly prepared by drop-casting and then sequential pre-annealing and selenization treatments were performed in Ar and Se vapor, respectively. The influence of pre-annealing temperature on the preparation of single phase CISe thin films has been systematically investigated. CISe thin films with smooth surface, dense and In2O3-free can be achieved when pre-annealing was performed at350℃. A Cu-deficient surface layer was found although the bulk composition was Cu-rich. The In-rich surface was benefited for the high efficiency CISe solar cells.
     The third part is a low-cost non-vacuum process for fabrication of Cu2ZnSnSe4(CZTSe) thin films by direct selenization of oxides nanoparticles. To reduce the cost of solar cell, the CZTSe thin film can be obtained by replacing the expensive element indium in CISe with the low-cost zinc and tin. First, highly monodisperse Cu, Zn, Sn oxides nanoparticles were synthesized via a facile, low temperature solid state route. Second, the CZTSe thin films were deposited via doctor blade from precursor slurry consisting of Cu, Zn, Sn oxides and selenization. We have studied the effects of compact precursor on the structure, morphology and optical property of CZTSe thin film. The near stoichiometric CZTSe thin films with micron-sized grains were obtained in our work. These results provide a novel non-vacuum route for the preparation of CZTSe thin film solar cell.
     The last part is the preparation of non-toxic Cu2ZnSnS4(CZTS) thin film solar cell from oxides nanoparticles ink. The CZTS thin films were obtained by annealing oxide precursor under sulfur vapor atmosphere. The band gap of CZTS (1.5eV) is more suitable as an absorption material, compared to CZTSe (1.0eV). Generally, the crystallinity of CZTS is poor than that of CZTSe. In order to improve the crystallinity of CZTS thin films, we have made a systematic study on the annealing conditions. Through the introduction of high temperature sulfurization, the CZTS thin film with high quality was obtained. These results laid a solid foundation for the fabrication of high efficient CZTS thin film solar cell.
引文
[1]Annual Energy Outlook 2013 with Projections to 2040-U.S. Energy Information Administration..
    [2]中国可再生能源发展项目办公室,中国光伏产业发展研究报告2006-2007,2008,2.
    [3]PVTECH, http://www.pv-tech.org/news/first_solar_surpasses_ges_cdte_cell_efficiency_record (accessed April 2014).
    [4]M. Kemell, M. Ritala, M. Leskela, Solid State Materials Sciences,2005,30:1-31.
    [5]H.W. Schock, Prog. Photovolt:Res. Appl.,2000,160:151-160.
    [6]M.A. Green, Prog. Photovolt:Res. Appl.,2009,17:347-359.
    [7]P. Jackson, D. Hariskos, R. Wuerz, W. Wischmann, M. Powalla, Phys. Status Solidi RRL,2014, 8:219-222.
    [8]J.H. Im, C.R. Lee, J.W. Lee, S.W. Park, N.G. Park, Nanoscale,2011,3:4088-4093.
    [9]M.J. Carnie, C. Charbonneau, M.L. Davies, J. Troughton, T.M. Watson, K. Wojciechowski, H. Snaith, D.A. Worsley, Chem. Commun.,2013,49:7893-7898.
    [10]L. Etgar, P. Gao, Z. Xue, Q. Peng, A.K. Chandiran, B. Liu, M.K. Nazeeruddin, M. Gratzel, J. Am. Chem. Soc.,2012,134:17396-17399.
    [11]M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith, Science,2012,338: 643-647.
    [12]W. Li, J. Li, L. Wang, G. Niu, R. Gao, Y. Qiu, J. Mater. Chem. A,2013,1:11735-11740.
    [13]J.H. Noh, N.J. Jeon, Y.C. Choi, M.K. Nazeeruddin, M. Gratzel, S. Seok, J. Mater. Chem. A, 2013,1:11842-11847.
    [14]J. Burschka, N. Pellet, S.J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, M. Gratzel, nature,2013,499:316-319.
    [15]RNEL. http://www.nrel.gov/ncpv/images/efficiency_chart.jpg (accessed April 2014).
    [16]I.L. Repins, M.A. Contreras, B. Egaas, C. DeHart, C.L. Perkins, B. To, R. Noufi, Prog. Photovolt:Res. Appl.,2008,16:235-239.
    [17]施敏,半导体器件物理,西安交通大学出版社,2008.
    [18]马丁.格林,太阳能电池:工作原理、技术和系统应用,上海交通大学出版社,2010.
    [19]Alternative and Renewable Energy Tutorials, http://www.alternative-energy-tutorials.com/ solar-power/photovoltaics.html (accessed April 2014).
    [20]林明献,太阳能电池技术入门,科学出版社,2012.
    [21]S. Wagner, J.L. Shay, P. Migliora, Apl. Phys. Lett.,1974,25:434-435.
    [22]L.L. Kazmerski, F.R. White, GK. Morgan, Apl. Phys. Lett.,1976,29:268-270.
    [23]R.A. Mickelsen, W.S. Chen, Apl. Phys. Let.,1980,3:371-373.
    [24]C.J. Hibberd, E. Chassaing, W.Liu, D.B. Mitzi, D. Lincot, A.N. Tiwari, Prog. Photovolt:Res. Appl.,2010,18:434-452.
    [25]李伟,博士论文,南开大学,2006.
    [26]罗派峰,博士论文,中国科学技术大学,2008.
    [27]国家"863"铜铟镓薄膜太阳能电池中试基地研发出铜铟镓太阳能电池组件;中国建设动态:阳光能源,2009,1:7.
    [28]孙云,孙国忠,敖建平,天津科技,2005,2,11-14.
    [29]王希文,方小红,可再生能源,2008,26:13-16.
    [30]Y. Hagiwara, T. Nakada, A. Kunioka, Sol. Energy Mater. Sol. Cells,2001,67:267-271.
    [31]A. Luque, S. Hegedus, Handbook of Photovoltaic Science and Engineering, ISBN: 0-471-49196-9.,599.
    [32]R. Klenk, Thin Solid Films,2001,387:135-140.
    [33]A. Niemegeers, M. Burgelman, A. De Vos, Appl. Phys. Lett.,1995,67:843-845.
    [34]X. Liu, J. Sites, AIP Conf. Proc.,1996,353:444-453.
    [35]T. Minemoto, Y. Hashimoto, W. Shams-Kolahi, T. Satoh, T. Negami, H. Takakura, Y. Hamakaw, Sol. Energy Mater. Sol. Cells,2003,75:121-126.
    [36]T. Godecke, T. Haalboom, F. Ernst, Z. Metallkd,2000,91:622-634.
    [37]D. Kieven, R. Klenk, S. Naghavi, C. Felser, T. Gruhn, Phys. Rev. B,2010,81: 075208-075214.
    [38]A. Gupta, S. Shirakata, S. Isomura, Sol. Energy Mater. Sol. Cells,1994,32:137-149.
    [39]A.A.S. Akl, A. Ashour, A.A. Ramadan, K. Abd El-Hady,Vacuum,2001,61:75-84.
    [40]K. Bindu, C.Sudha Kartha, K.P. Vijayakumar, T. Abeb, Y. Kashiwaba, Sol. Energy Mater. Sol. Cells,2003,79:67-79.
    [41]C.C. Chen, X. Qia, M.G Tsaia, Y.F. Wu, I.G. Chen, C.Y. Lin, P.H. Wu, K.P. Chang, Surf. Coat. Technol.,2013,231:209-213.
    [42]C.H. Huang, J. Phys. Chem. Solids,2008,69:330-334.
    [43]张中伟,博士论文,中国科学技术大学,2010.
    [44]S. Zhang, S. Wei, A. Zunger, H. Katayama-Yoshida, Phys. Rev. B,1998,57:9642-9656.
    [45]W. Shockley, H.J. Queisser, Jpn J. Appl. Phys.,1961,32:510-519.
    [46]K. Ito, T. Nakazawa, Jpn J. Appl. Phys.,1988,27,11:2094-2097.
    [47]T.M. Friedlmeier, N. Wieser, T. Walter, H. Dittrich, H.W. Schock, Proceedings of the 14th European Conference of Photovoltaic Science and Engineering and Exhibition, pp.1242, Bedford, UK,1997.
    [48]H. Katagiri, K. Jimbo, K. Moriya, K. Tsuchida, Procedding s of the 3rd World Conference on Photovoltaic Energy Conversion, pp.2874-2879, Osaka, Japan, May 2003.
    [49]H. Katagiri, K. Jimbo, S. Yamada, T. Kamimura, W.S. Maw, T. Fukano, T. Ito, T. Motohiro, Appl. Phys. Express,2008,1:041201-041202.
    [50]D. Aaron, R. Barkhouse, O. Gunawan, T. Gokmen, T.K. Todorov, D.B. Mitzi, Prog. Photovolt: Res. Appl.,2012,20:6-11.
    [51]W. Wang, M.T. Winkler, O. Gunawan, T. Gokmen, T.K. Todorov, Y. Zhu, D.B. Mitzi, Adv. Energy Mater.,2013, doi:10.1002/aenm.201301465.
    [52]H. Wang, International Journal of Photoenergy,2011, doi:10.1155/2011/801292.
    [53]H. Zhou, W.C. Hsu, H.S. Duan, B. Bob, W. Yang, T.B. Song, C.J. Hsu, Y. Yang, Energy Environ. Sci.,2013,6:2822-2838.
    [54]A. Polizzotti, I.L. Repins, R. Noufi, S.H. Wei, D.B. Mitzi, Energy Environ. Sci.,2013,6: 3171-3182.
    [55]F.J. Fan, L. Wu, S.H. Yu, Energy Environ. Sci.,2014,7:190-208.
    [56]K. Wang, O. Gunawan, T. Todorov, B. Shin, S.J. Chey, N.A. Bojarczuk, D. Mitzi, S. Guha, Appl. Phys. Lett.,2010,97:143508-143511.
    [57]R. Haight, A. Barkhouse, O. Gunawan, B. Shin, M. Copel, M. Hopstaken, D.B. Mitzi, Appl. Phys. Lett.,2011,98:253502-253505.
    [58]P.S. Vasekar, T.P. Dhakal, Solar Cells Research and Application Perspectives, ISBN: 978-953-51-1003-3,2013, DOI:10.5772/51734.
    [59]G.H. Moh, Chem. Erde,1975,34:1-61.
    [60]H. Wei, Z. Ye, M. Li, Y. Su, Z. Yang, Y. Zhang, CrystEngComm,2011,13:2222-2226.
    [61]K. Jimbo, R. Kimura, T. Kamimura, S. Yamada, W.S. Maw, H. Araki, K. Oishi, H. Katagiri, Thin Solid Films,2007,515:5997-5999.
    [62]V. Dudchak, L.V. Piskach, J. Alloys Compd.,2004,368:135-143.
    [63]A. Walsh, S. Chen, S.H. Wei, X.G Gong, Adv. Energy Mater.,2012,2:400-409.
    [64]D.B. Mitzi, O. Gunawan, T.K. Todorov, K. Wang, S. Guha, Sol. Energy Mater. Sol. Cells, 2011,95:1421-1436.
    [65]A. Weber, R. Mainz, H.W. Schock, J. Appl. Phys.,2010,107:013516-013522.
    [66]I.L. Repins, C. Beall, N. Vora, C. DeHart, D. Kuciauskas, P. Dippo, B. To, J. Mann, W.C. Hsu, A. Goodrich, R. Nou, Sol. Energy Mater. Sol. Cells,2012,101:154-159.
    [67]V. Nadenau, U. Rau, A. Jasenek, H.W. Schock, J. Appl. Phys.,2000,87:584-593.
    [68]M.A. Contreras, L.M. Manseld, B. Egaas, J. Li, M.J. Romero, R. Nou, E. Rudiger-Voigt, W. Mannstadt, Prog. Photovoltaics,2012,20:843-850.
    [69]T. K. Todorov, J. Tang, S. Bag, O. Gunawan, T. Gokmen, Y. Zhu, D. B. Mitzi, Adv. Energy Mater.,2013,3:34-38.
    [70]I.L. Repins, M.J. Romero, J.V. Li, S.H. Wei, D. Kuciauskas, C.S. Jiang, C. Beall, C. DeHart, J. Mann, W.C. Hsu, G. Teeter, A. Goodrich, R. Nou, IEEE Journal of Photovoltaics,2013,3: 439-445.
    [71]W.K. Metzger, I.L. Repins, M.J. Romero, P. Dippo, M.A. Contreras, R. Nou, D. Levi, Thin Solid Films,2009,517:2360-2364.
    [72]I.L. Repins, W.K. Metzger, C.L. Perkins, J. Li, M.A. Contreras, IEEE Trans. Electron Devices, 2010,57:2957-2963.
    [73]D.A.R. Barkhouse, O. Gunawan, T. Gokmen, T. Todorov, D. Mitzi, Prog. Photovoltaics,2012, 20:6-11.
    [74]T. Todorov, O. Gunawan, S.J. Chey, T.G. Monsabert, A. Prabhakar, D.B. Mitzi, Thin Solid Films,2011,519:7378-7381.
    [75]M.J. Romero, H. Du, G. Teeter, Y. Yan, M.M. AlJassim, Phys. Rev. B:Condens. Matter Mater. Phys.,2011,84:165324-165329.
    [1]M. Powalla, G. Voorwinden, D. Hariskos, P. Jackson, R. Kniese, Thin Solid Films,2009,517: 2111-2113.
    [2]B.A. Schubert, B. Marsen, S. Cinque, T. Unold, R. Klenk, S. Schorr, H.W. Schock, Prog. Photovolt. Res. Appl.,2011,19:93-96.
    [3]K. Wang, O. Gunawan, T. Todorov, B. Shin, S.J. Chey, N.A. Bojarczuk, D. Mitzi, S. Guha, Appl. Phys. Lett.,2010,97:143508-143511.
    [4]P. Jackson, D. Hariskos, R. Wuerz, W. Wischmann, M. Powalla, physica status solidi (RRL)-Rapid Research Letters,2014,8:219-222.
    [5]http://dves.egloos.com/4589284 (accessed April 2014).
    [6]E. Romero, C. Calder6n, P. Bartolo-Perez, F. Mesa, G Gordillo, Brazilian Journal of Physics, 2006, doi.org/10.1590/S0103-97332006000600067.
    [7]M.A. Contreras, J. Tuttle, A. Gabor, A. Tennant, K. Ramanathan, S. Asher, A. Franz, J. Keane, L. Wang, J. Scofield, R. Noufi, Proc.1st World Conf. Photovolt. Energy Conv., IEEE, pp. 68-75, Piscataway, NJ.,1994.
    [8]K. Ramanathan, M.A. Contreras, C.L. Perkins, S. Asher, F.S. Hasoon, J. Keane, D. Young, M. Romero, W. Metzger, R. Noufi, J.Ward, A. Duda, Prog. Photovolt:Res. Appl.,2003,11: 225-230.
    [9]M. A. Contreras, B. Egaas, K. Ramanathan, J. Hiltner, A.Swartzlander, F. Hasoon, R. Noufi, Prog. Photovolt:Res.Appl.,1999,7:311-316.
    [10]T. Negami, Y. Hashimoto, S. Nishiwaki, Sol. Energy Mater. Sol. Cells,67,2001,331-335.
    [11]Y. Hagiwara, T. Nakada, A. Kunioka, Sol. Energy Mater. Sol. Cells,2001,67:267-271.
    [12]S. Chaisitsak, A. Yamada, M. Konagai, Jpn. J. Appl. Phys.,2002,41:507-513.
    [13]T. Nakada, M. Mizutani, Jpn. J. Appl. Phys.,2002,41:165-167.
    [14]W.C. Hsu, I. Repins, C. Beall, C. DeHart, B. To, W. Yang, Y. Yang, R. Noufi, Prog. Photovo It: Res. Appl.,2014,22:35-43.
    [15]B. Shin, O. Gunawan, Y. Zhu, N. A. Bojarczuk, S. J. Chey, S. Guha, Progress in Photovoltaics: Research and Applications,2013,21:72-76.
    [16]AdNaNotek Corp., http://www.dualsignal.com.tw/30913255112866637709-sputter.html (accessed April 2014).
    [17]S. Grindle, C. Smith, S. Mittleman, Appl. Phys. Lett.,1979,35:24-26.
    [18]T. Chu, S. Chu, S. Lin, J. Yue, J. Electrochem. Soc.,1984,131:2182-2185.
    [19]R. Gay, M. Dietrich, C. Fredric, C. Jensen, K. Knapp, D. Tarrant, D. Willett, Proc.12th Euro. Conf. Photovoltaic Solar Energy Conversion, pp.935-938,1994.
    [20]Y. Tanaka, N. Akema, T. Morishita, D. Okumura, K. Kushiya, Proc.17th Euro. Conf. Photovoltaic Solar Energy Conversion, pp.989-994,2001.
    [21]K. Ito, T. Nakazawa, Jpn J. Appl. Phys.,1988,27:2094-2097.
    [22]R.B.V. Chalapathy, S. J. Gwang, T.A. Byung, Sol. Energy Sol. Mater. Cells,2011,95: 3216-3221.
    [23]K. Jimbo, R. Kimura, T. Kamimura, S. Yamada, W. S. Maw, H. Araki, K. Oishi, H. Katagiri, Thin Solid Films,2007,515:5997-5999.
    [24]H. Katagiri, K. Jimbo, S. Yamada, T. Kamimura, W.S. Maw, T. Fukano, T. Ito, T. Motohiro, Appl. Phys. Express,2008,1:041201-041202.
    [25]V. Chawla, B. Clemens, Proceedings of the 38th IEEE Photovoltaic Specialists Conference, pp.2990-2992,2012.
    [26]T.K. Todorov, O. Gunawan, T. Gokmen, D.B. Mitzi, Prog. Photovolt.:Res.Appl.,2013,21: 82-87.
    [27]W. Wang, M.T. Winkler, O. Gunawan, T. Gokmen, T.K. Todorov, Y. Zhu, D. B. Mitzi, Adv. Energy Mater., doi:10.1002/aenm.201301465.
    [28]International Solar Electric Technology (ISET) Corp., http://www.isetinc.com/ wp-content/uploads/2012/03/tech white paper4.pdf (accessed April 2014).
    [29]J.K.J. Duern, C. Leidholm, A. Pudov, Technical Digest of the International PVSC-17, Tokyo, Japan,2007.
    [30]Wikipedia, http://en.wikipedia.org/wiki/Copper_indium_gallium_selenide_sola-r_cells (accessed April 2014).
    [31]D. Lincot, Guillemoles J.F., S. Taunier, D. Guimard, J. Sicx-Kurdi, A. Chaumont, O. Roussel, O. Ramdani, C. Hubert, J.P. Fauvarque, N. Bodereau, L. Parissi, P. Panheleux, P. Fanouillere, N. Naghavi, P.P. Grand, M. Benfarah, P. Mogensen, O. Kerrec, Solar Energy, 2004,77:725-737.
    [32]Wikipedia, http://en.wikipedia.org/wiki/Copper_indium gallium_selenide_solar_cells (accessed April 2014).
    [33]R.N. Bhattacharya, J. Electrochem. Soc.,1983,130:2040-2042.
    [34]R.N. Bhattacharya, J.F. Hiltner, W. Batchelor, M.A. Contreras, R.N. Noufi, J.R. Sites, Thin Solid Films,2000,361:396-99.
    [35]J.J. Scragg, P.J. Dale, L.M. Peter, G. Zoppi, I. Forbes, Phys. Status Solidi B,2008,245: 1772-1778.
    [36]S. Ahmed, K.B. Reuter, O. Gunawan, L. Guo, L.T. Romankiw, H. Deligianni, Adv. Energy Mater.2012,2:253-259.
    [37]J.O. Jeon, K.D. Lee, L.S. Oh, S.W. Seo, D.K. Lee, H. Kim, J. Jeong, M.J. Ko, B. Kim, H.J. Son, J.Y. Kim, ChemSusChem,2014,7:1073-1077.
    [38]R.M. Pasquarelli, D.S. Ginley, R. OHayre, Chem. Soc. Rev.,2011,40:5406-5441.
    [39]M. Kaelin, D. Rudmann, A.N. Tiwari, Solar Energy,2004,77:749-756.
    [40]H. Zhou, W.C. Hsu, H.S. Duan, B. Bob, W. Yang, T.B. Song, C.J. Hsu, Y. Yang, Energy Environ. Sci.,2013,6,2822-2838.
    [41]Q. Guo, G.M. Ford, R. Agrawal, H.W. Hillhouse, Prog. Photovolt:Res. Appl.,2013,21: 64-71.
    [42]Q. Guo, G.M. Ford, H.W.Hillhouse, R.Agrawal, Proceedings of the 37th IEEE Photovoltaic Specialists Conference, pp.003522-003526,2011.
    [43]Y. Cao, M.S. Denny, J.V. Caspar, W.E. Farneth, Q. Guo, A.S. Ionkin, L.K. Johnson, M. Lu, I. Malajovich, D. Radu, H.D. Rosenfeld, K.R. Choudhury, W. Wu, J. Am. Chem. Soc.,2012, 134:15644-15647.
    [44]B.M. Basol, Thin Solid Films,2000,514:361-362.
    [45]K. Woo, Y. Kim, J. Moon, Energy Environ. Sci.,2012,5:5340-5345.
    [46]C. Eberspacher, K. Pauls, J. Serra,28th IEEE Photovoltaic Specialists Conference, pp. 517-520, Anchorage, Alaska,2000.
    [47]V.K. Kapur, M. Fisher, R. Roe, Mater. Res. Soc. Symp. Proc.,2001,668:1-7.
    [48]陈少贞,陈森凤,材料导报,1996,3:39-45.
    [49]Q. He, W. Tu, J. Hu, Jounral of Chemical Industry and Engineering,2006,57:1490-1495.
    [50]刘粤惠,刘平安,X射线衍射分析原理与应用,化学工业出版社,2003.
    [51]Physikalisches Institut Georg-August-Universitat Gottingen, http://physik2.unigoettingen.de/-research/2 hofs/methods/XRD (accessed April 2014).
    [52]Purdue University, http://www.purdue.edu/rem/rs/sem.htm (accessed April 2014).
    [53]Wikipedia, http://en.wikipedia.org/wiki/Atomic_force microscopy (accessed April 2014).
    [54]Wikipedia, http://en.wikipedia.org/wiki/Raman_spectroscopy (accessed April 2014).
    [55]Leibniz Institute for Solid State and Materials Research Dresden, http://www.ifw-dresden.de/?id=346 (accessed April 2014).
    [56]University of Alberta, http://www.ualberta.ca/-cblung/designs/(accessed April 2014).
    [57]Toray Research Center, http://www.toray.cn/trc/kinougenri/kouzou/kou 005.html (accessed April 2014).
    [1]V.K. Kapur, M. Fisher, R. Roe, Mater. Res. Soc. Symp. Proc.,2001,668:1-7.
    [2]V.K. Kapur, A. Bansal, P. Le, O.I. Asensio, Thin Solid Films,2003,431:53-57.
    [3]K. Yanagisawa, J. Ovenstone, J. Phys J. Chem. B,1999,103:7781-7787.
    [4]P.F. Luo, R.Z. Zuo, L.T. Chen, Sol. Energy Mater. Sol. Cells,2010,94:1146-1151.
    [5]F. Robert, Science,2008,320:1584-1585.
    [6]T. Negami, Y. Hashimoto, M. Nishitani, T. Wada, Sol. Energy Mater. Sol. Cells,1997,49: 343-348.
    [7]M. Kaelin, D. Rudmann, A.N. Tiwari, Solar Energy,2004,77:749-756.
    [8]S. Ahn, C. Kim, J.H. Yun, J. Gwak, S. Jeong, B.H. Ryu, K. Yoon, J. Phys. Chem. C,2010,114: 8108-8113.
    [9]M. Kaelin, D. Rudmann, F. Kurdesau, T. Meyer, H. Zogg, A.N. Tiwari, Thin Solid Films,2003, 432:58-62.
    [10]M. Kaelin, H. Zogg, A.N. Tiwari, O. Wilhelm, S.E. Pratsinis, T. Meyer, A. Meyer, Thin Solid Films,2004,457:391-396.
    [11]A. Gupta, S. Isomura, Sol. Energy Mater. Sol. Cells,1998,53:385-401.
    [12]O. Ramdani, J.F. Guillemoles, D. Lincot, P.P. Grand, E. Chassaing, O. Kerrec, E. Rzepka, Thin Solid Films,2007,515:5909-5912.
    [13]W. Wolfram, K. Robert, P. Michael, Thin Solid Films,2008,517:867-869.
    [14]R. Caballero, C. Maffiotte, C. Guillen, Thin Solid Films,2005,474:70-76.
    [15]Q. Guo, G.M. Ford, R. Agrawal, H.W. Hillhous, Prog. Photovolt:Res. Appl.,2013,21: 64-71.
    [16]E. Lee, S.J. Park, J.W. Choa, J. Gwakb, M.K. Ohc, B.K. Mina, Sol. Energy Mater. Sol. Cells, 2011,95:2928-2932.
    [17]A. Moure, J. Tartaj, C. Moure, J. Eur. Ceram. Soc.,2009,29:2559-2565.
    [18]C.L. Chen, W.C.J. Wei, J. Eur. Ceram. Soc.,2002,22:2883-2892.
    [19]D.L. Corker, Q. Zhang, R.W. Whatmore, C. Perrin, J. Eur. Ceram. Soc.,2002,22:383-390.
    [20]W.H. Hsua, H.I. Hsiang, F.C. Yen, S.C. Shei, F.S. Yen, J. Eur. Ceram. Soc.,2012,32: 3753-3757.
    [21]Z. Zhang, H. Guo, J. Li, C. Zhu, Chin. J. Chem. Phys.,2011,24:225-230.
    [1]A. Romeo, M. Terheggen, D. Abou-Ras, D.L. Batzner, F.J. Haug, M. Kalin, D. Rudmann, A.N. Tiwari,2004,12:93-111.
    [2]R. Ugarte, R. Schrebler, R. Cordova, E.A. Dalchiele, H. Gomez, Thin Solid Films,1999,340: 117-124.
    [3]S. Niki, I. Kima, P.J. Fons, H. Shibata, A. Yamada, H. Oyanagi, T. Kurafuji, S. Chichibu, H. Nakanishi, Sol. Energy Mater. Sol. Cells,1997,49:319-326.
    [4]D. Wolf, D. Muller, Thin Solid Films,2000,361:155-160.
    [5]M. Kaelin, D. Rudmann, F. Kurdesau, T. Meyer, H. Zogg, A.N. Tiwari, Thin Solid Films,2003, 432:58-62.
    [6]L.T. Kang, Y.F. Gao, H.J. Luo, ACS Appl. Mater. Interfaces,2009,1:2211-2218.
    [7]M.E. Beck, M. Cocivera, Thin Solid Films,1996,272:71-82.
    [8]J. Lanos, A. Buljan, C. Mujica, R. Ramirez, J. Alloys Compd.,1996,234:40-42.
    [9]R. Herberholz, U. Rau, H.W. Schock, T. Haalbooma, T. Godeckea, F. Ernsta, C. Beilharza, K. W. Benza, D. Cahen, Eur. Phys. J. Appl. Phys.,1999,2:131-139.
    [10]C. Calderona, P. Bartolo-Perez, O. Rodriguez, G. Gordillo, Microelectronics Journal,2008,39: 1324-1326.
    [11]Todorov T, Oliveira L, Carda J, P. Escribano, Phys. Status Solidi c,2008,5:3437-353.
    [1]M. Kemell, M. Ritala, M. Leskela, Crit. Rev. Solid State Mater. Sci.,2005,30:1-31.
    [2]H.W. Schock, Prog. Photovolt:Res. Appl.,2000,160:151-160.
    [3]J.F. Guillemoles, Thin Solid Films,2000,362:338-345.
    [4]W. Cyrus, A.P. Alivisatos, D.M. Kammen, Environ. Sci. Technol.,2009,43:2072-2077.
    [5]H. Katagiri, Thin Solid Films,2005,480:426-432.
    [6]H. Wang, Int. J. Photoenergy,2011, Article ID 801292,10 pages, doi:10.1155/2011/801292.
    [7]Q.J. Guo, H.W. Hillhouse, R. Agrawal, J. Am. Chem. Soc.,2009,131:11672-11673.
    [8]I. Kentaro,N. Tatsuo, J. Appl. Phys.,1988,27:2094-2097.
    [9]R.A. Wibowo, E.S. Lee, B. Munir, K.H. Kim, Phys. Status Solidi a,2007,204:3373-3379.
    [10]W. Wang, M.T. Winkler, O. Gunawan, T. Gokmen, T.K. Todorov, Y. Zhu, D.B. Mitzi, Adv. Energy Mater. doi:10.1002/aenm.201301465.
    [11]C. Steinhagen, M.G. Panthani, V. Akhavan, B. Goodfellow, B. Koo, B.A. Korgel, J. Am. Chem. Soc.,2009,131:12554-12555.
    [12]Q. Guo, H.W. Hillhouse, R. Agrawal, J. Am. Chem. Soc.,2009,131:11672-11673.
    [13]Z. Zhou, Y. Wang, D. Xu, Y. Zhang, Sol. Energy Mater. Sol. Cells,2010,94:2042-2045.
    [14]K. Woo, Y. Kim, J. Moon, Energy Environ. Sci.,2012,5:5340-5345.
    [15]Q. Guo, Y. Cao, J.V. Caspar, WE. Farneth, A.S. Ionkin, L.K. Johnson, M. Lu, I. Malajovich, D. Radu, K.R. Choudhury, H.D. Rosenfeld, W. Wu, Photovoltaic Specialists Conference (PVSC),2012 38th IEEE, pp.002993-002996, Austin,2012.
    [16]K. Moriya, J. Watabe, K. Tanaka, H. Uchikiphys, Stat. Sol. (c),2006,8:2848-2852.
    [17]K. Woo, Y. Kim, J. Moon, Energy Environ. Sci.,2012,5:5340-5345.
    [18]S. Delbos, EPJ photovoltaics,2012,3:35004-35017.
    [19]O. Zaberca, F. Oftinger, J.Y. Chane-Ching, L. Datas, A. Lafond, P. Puech, A. Balocchi, D. Lagarde, X. Marie, Nanotechnology,2012,23:185402-185413.
    [20]G. Zoppi, I. Forbes, R.W. Miles, P.J. Dale, J.J. Scragg, L.M. Peter, Prog. Photovolt.:Res. Appl.,2009,17:315-319.
    [21]L. Shi, Q. Li, CrystEngComm,2011,13:6507-6510.
    [22]P.M.P. Salome, P.A. Fernandes, A.F. daCunha, J.P. Leitao, J. Malaquias, A. Weber, J.C. Gonzalez, M.I.N. daSilva, Sol. Energy Mater. Sol. Cells,2010,94:2176-2180.
    [23]A. Redinger, K. Hones, X. Fontane, V. Izquierdo-Roca, E. Saucedo, N. Valle, A. Perez-Rodriguez, S. Siebentritt, Appl. Phys. Lett.,2011,98:101907-101909.
    [24]M. Altosaar, J. Raudoja, K. Timmo, M. Danilson, M. Grossberg, J. Krustok, E. Mellikov, Phys. Stat. Sol. (a),2008,205:167-170.
    [25]A. Nagoya, R. Asahi, R. Wahl, G. Kresse, Phys. Rev. B,2010,81:113202-113206.
    [26]S.Y. Chen, X.G Gong, W. Aron, S.H. Wei, Appl. Phys. Lett.,2010,96:021902-021905.
    [27]T. Tanaka, T. Yamaguchi, T. Ohshima, H. Itoh, A. Wakahara, A. Yoshida, Sol. Energy Mater. Sol. Cells,2003,75:109-113.
    [28]S. Schorr, Sol. Energy Mater. Sol. Cells,2011,95:1482-1488.
    [29]S. Schorr, Thin Solid Films,2007,515:5985-5991.
    [30]S.Y. Chen, X.G. Gong, W. Aron, S.H. Wei, Appl. Phys. Lett.,2009,94:041903-041906.
    [1]M.A. Green, K. Emery, Y. Hishikawa, W. Warta, Prog. Photovolt:Res. Appl.,2011,19:84-92.
    [2]S. Schorr, Thin Solid Films,2007,515:5985-5991.
    [3]D.A.R. Barkhouse, O. Gunawan, T. Gokmen, T.K. Todorov, D.B. Mitzi, Prog. Photovolt:Res. Appl.,2011, doi:10.1002/p ip.1160.
    [4]A. Redinger, D.M. Berg, P.J. Dale, R. Djemour, L. Gutay, T. Eisenbarth, N. Valle, S. Siebentritt, Journal of Photovoltaics,2011,1:200-206.
    [5]D.B. Mitzi, M. Yuan, W. Liu, A. Kellock, J. Chey, S J. V. Deline, A.G Schortt, Adv. Mater., 2008,20:3657-3662.
    [6]M. Jiang, X. Yan,Cu2ZnSnS4 Thin Film Solar Cells:Present Status and Future Prospects, DOI: 10.5772/50702.
    [7]D.A.R. Barkhouse, O. Gunawan, T. Gokmen, T.K. Todorov, D.B. Mitzi, Prog. Photovolt:Res. Appl.,2012,20:6-11.
    [8]C. Wang, X.M. Wang, J. Mater. Sci.,2002,37:2989-2996.
    [9]S.J. Ahn, C.W. Kim, J.H. Yun, J.C. Lee, K.H. Yoon, Sol. Energy Mater. Sol. Cells,2007,91: 1836-1841.
    [10]韩东麟,张弓,庄大明,元金石,宋军,真空,2007,44:30-33.
    [11]韩东麟,张弓,庄大明,沙晟春,元金石,功能材料,2008,39:446-448.
    [12]廖成,韩俊峰,江涛,谢华木,焦飞,赵夔,物理化学学报,2011,27:432-436.
    [13]N.M. Shinde, D.P. Dubal, D.S. Dhawale, C.D. Lokhande, J.H. Kim, J.H. Moon, Mater. Res. Bull.,2012,47:302-307.
    [14]K. Woo, Y. Kim, J. Moon, Energy Environ. Sci.,2012,5:5340-5345.
    [15]S. WookShin, S.M. Pawar, C.Y. Park, J.H. Yun, J.H. Moon, J.H. Kim, J.Y. Lee, Sol. Energy Mater. Sol. Cells,2011,95:3202-3206.
    [16]L.J. Chen, Y.J. Chuang, J. Power Sources,2013,241:259-265.
    [17]M.R. Byeon, E.H. Chung, J.P. Kim, T.E. Hong, J.S. Jin, E.D. Jeong, J.S. Ba, YD. Kim, S. Park, W.T. O, Y.S. Hu, S.J. Chang, S.B. Lee, I.H. Jung, J. Hwang, Thin Solid Films,2013, 546:387-392.
    [18]A. Redinger, D. Berg, P. Dale, S. Siebentritt, J. Am. Chem. Soc.,2011,133:3320-3323.
    [19]A. Weber, R. Mainz, H.W. Schock, J. Appl. Phys.,2010,107:013516-013522.
    [20]W.Yang, H.S Duan, B. Bob, H. Zhou, B. Lei, C.H. Chung, S.H. Li, W.W. Hou,Y. Yang, Adv. Mater.,2012,24:6323-6329.
    [21]J. He, L. Sun, S. Chen, Y. Chen, P.X. Yang, J.H. Chu, J. Alloys Compd.,2012,511:129-132.
    [22]L. Sun, J. He, H. Kong, F. Yue, P. Yang, J. Chu, Sol. Energy Mater. Sol. Cells,2011,95: 2907-2913.
    [23]H. Katagiri, K. Saitoh, T. Washio, H. Shinohara, T. Kurumadani, S. Miyajima, Sol. Energy Mater. Sol. Cells,2001,65:141-148.
    [24]M. Masjedi, N. Mir, E. Noori, T. Gholami, M. Salavati-Niasari, Superlattices Microstruct., 2013,62:30-38.
    [25]K. Tanaka, Y. Fukui, N. Moritake, H. Uchiki, Sol. Energy Mater. Sol. Cells,2011,95: 838-842.
    [26]S.Y. Chen, X.G. Gong, A. Walsh, S.H. Wei, Appl. Phys. Lett.,2009,94:041903-041906.
    [27]B. Shin, O. Gunawan, Y. Zhu, N.A. Bojarczuk, S.J. Chey, S. Guha, Prog. Photovolt:Res. Appl.,2013,21:72-76.
    [28]B. Shin, Y. Zhu, N.A. Bojarczuk, S.J. Chey, S. Guha, Appl. Phys. Lett.,2012,101: 053903-05397.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700