用户名: 密码: 验证码:
Cu_2ZnSnSe_4薄膜太阳能电池的制备及其p-n结能带偏移的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着化石能源的枯竭以及环境污染的日益严重,寻找一种可持续发展的清洁能源迫在眉睫。太阳能作为一种取之不尽用之不竭的绿色能源,有希望成为未来人类社会能源消耗的重要来源之一,而太阳能电池可以直接将光能转化成电能,是利用太阳能的最直接方式。薄膜太阳能电池具有原材料消耗较少,转换效率较高,吸收系数大,光学带隙与太阳光谱较匹配等优点,有望成为现有硅电池的替代者,但常规铜基化合物电池铜铟镓太阳能电池面临铟资源短缺的限制,不能大规模发展。本论文拟研究一种新型的铜基化合物薄膜太阳能电池铜锌锡硒Cu2ZnSnSe4(CZTSe)薄膜太阳能电池,这种电池材料不仅具有薄膜太阳能电池的众多优点,而且原材料丰富,无毒,是一种具有很大潜力的薄膜太阳能电池吸收材料。
     本论文借鉴课题组在铜铟镓(CIGS)太阳能电池研究中的众多经验,开展铜锌锡硒太阳能电池的研究。为了避免铜铟镓太阳能电池面临的高真空设备成本问题,我们选择原料利用率高、设备成本低、能量消耗低的电化学沉积技术制备铜锌锡硒薄膜吸收层。同时为了了解CdS是否是CZTSe薄膜太阳能电池的理想缓冲层,我们对CdS/CZTSe异质结的能带偏移做了详细的研究,并比较了ZnS/CZTSe与它的区别。研究内容主要包括三个部分:
     第一部分系统研究了电化学沉积CZTSe薄膜的电沉积及化工艺。CZTSe薄膜作为CZTSe薄膜太阳能电池的吸收层,其成分以及结晶质量对电池性能影响很大。在实验中通过针对不同的沉积电位,化温度和化时间的优化,完成了一步电沉积铜锌锡金属前驱体,以及金属前驱体后期在Se蒸气中成功进行化成铜锌锡硒,并且薄膜组分符合化学计量比、结晶性较好。考虑到锌锡在退火时有很大损失,控制金属前驱体中的锌锡的比例很大。在这个高锌锡成分的金属前驱体下,我们系统研究CZTSe薄膜的化工艺,550℃在Se蒸气下可以得到结晶性能较好的CZTSe薄膜。实验通过测试不同化温度下CZTSe的成相,系统研究了每个温度段可能的反应机理,为进一步控制CZTSe的成相以及抑制杂相的产生提供了参考。同时也初步尝试了利用H2S处理铜锌锡金属前驱体,研究了不同H2S和Ar比例下硫化的效果,为以后从事化后硫化做了初步探索。
     第二部分主要通过对不同锌含量的CZTSe薄膜的光电性质的影响,探索锌含量对薄膜缺陷的控制及对电池性能的影响。由于Zn/Sn的比例对CZTSe本征缺陷影响很大,为了得到性能较好的CZTSe太阳能电池器件,我们将研究具有不同Zn/Sn比例的CZTSe薄膜的光学性能和电学性能。最后将不同锌组分的CZTSe薄膜作为太阳能电池吸收层制备成太阳能电池器件,比较不同锌组分对电池的光电性能的影响,并通过电池参数的测量探索影响电池效率的主要原因。利用优化后的CZTSe薄膜作为吸收层,制备出了具有传统CIGS结构的CZTSe太阳能电池,具体结构为Glass/Mo/CZTSe/CdS/ZnO/AZO。并且在富锌的CZTSe的薄膜电池中获得了1.7%的光电转换效率,明显高于缺锌的太阳能电池。电池面积为0.8cm2,开路电压172mV,短路电流28.4mA.cm-2,填充因子35.7%,串联电阻5.2Ω.cm,并联电阻960Ω。
     第三部分利用X射线光电子能谱对CdS/CZTSe异质结的能带偏移进行研究。半导体异质结能带偏移是影响异质结器件电学功能的重要参数,在太阳能电池中它决定了载流子的输运、载流子的复合和费米能级的劈裂等性质,而目前只有对CdS/CZTSe异质结能带结构的理论模拟计算,缺乏实验报导,本文用X射线光电子能谱对CdS/CZTSe和ZnS/CZTSe异质结的能带偏移进行测量,研究不同的缓冲层对铜锌锡硒薄膜太阳能电池中光生载流子的输运的影响。实验发现CdS/CZTSe属于第二类半导体异质结,光生少子可以从CZTSe导带无障碍的进入CdS缓冲层的导带。但由于带间带隙减小了,光生载流子从CZTSe输运到CdS缓冲层时在界面处的复合几率加大了,这种带间复合是太阳能电池中应该避免的,因此CuInSe2太阳能电池中都要设计成第一类半导体异质结才能获得较高的光电转换效率。而利用PLD技术沉积的CdS/CZTSe异质结虽然具有第一类半导体异质结性质,但由于PLD方法缺少化学浴溶液对吸收层表面的修饰作用,而且这种物理沉积缓冲层的方法容易对吸收层造成物理损伤,使得其并不利于太阳能电池的制作。由于ZnS与CZTSe形成异质结时导带能带偏移较大,会在界面处形成一个较大的尖峰,电子从CZTSe隧穿到ZnS会遇到一个较大的势垒,阻碍了载流子的输运,也不利于太阳能电池的光电转换,其它能带偏移较匹配的缓冲层还有待进一步研究。
With the depletion of fossil fuels and environmental issues becoming serious, looking for a more sustainable long-term clean energy is urgent for people. Solar energy is a inexhaustible green energy which could be one of the future power alternatives. Solar cell is the most direct way to use solar energy which could convert sunlight directly into electricity. Thin film solar cells have many advantages like less consumption of materials, high conversion efficiency, high absorption coefficient, optical band gap is optimizing with the solar spectrum, etc. It will be the candidate of Silicon solar cells. But common CIGS thin film solar cells faces a shortage of Indium resources, and couldn't be largely used. We will study a new Copper based compound thin solar cells which is called Copper zinc tin selenium-Cu2ZnSnSe4(CZTSe) thin film solar cells. This CZTSe solar cell not only has the usual advantage of thin films solar cells, but also has a absorber which consists of abundant and non-toxic element.
     In this paper, we will refer to the past numerous research experience in CIGS to study the CZTSe solar cells. In order to avoid high vacuum equipment cost in CIGS fabrication industry, we intend to select the electrochemical deposition technology which has high utilization ratio of material, low energy consumption and low equipment cost to prepare the absorbing layer of CZTSe thin film solar cell. In the meantime, we measured the band offset in CdS/CZTSe heterojunction to know whether CdS is the ideal buffer layer of CZTSe solar cells. The research content mainly includes three parts:
     In the first part, we systematically study of the electrochemical deposition copper tin zinc precursors and the process of selenization of tin copper zinc precursors. The CZTSe solar cells absorber layer is CZTSe thin film, its composition and crystallization quality will influence intensely with the performance of solar cells. In the experiments we control different deposition potential, selenization temperature and the optimization of the selenization time, achieving the one-step electroplating of copper tin zinc precursors and successful selenizing copper zinc tin into CZTSe. The film components is corresponding to the stoichiometric proportion of CZTSe. Considering the zinc and Tin content will be loss during the annealing process, we deposite a high ratio of zinc and Tin in the copper tin zinc precursors. In this high zinc and Tin components of the precursors, we study the selenization process of copper zinc tin systematically. At550℃we could get a good crystallization CZTSe thin film in Se atmosphere. We measure the different transition phase of CZTSe with temperature int the experiment, study every temperature period for each possible reaction mechanism, in order to further control of CZTSe into second phase and inhibit the generation of miscellaneous phase. We also tried using H2S to sulfurize of copper tin zinc precursors, and study the influnce of the different proportion of Ar:H2S ratio to CZTS formation.
     The second part mainly discusses the influence of different zinc content to the electro-optical properties of CZTSe film, explores the impact of zinc proportion to the defects of CZTSe film and the performance of CZTSe solar cells. Considering the large influence of intrinsic defects relaied on Zn/Sn ratio, we compare CZTSe film and electro-optical properties with different Zn/Sn proportion in order to get a high performance CZTSe solar cell. Finally we fabricate CZTSe solar cells with different Zn/Sn ratio and compare the Ⅰ-Ⅴ character of CZTSe soalr cells. We look for the influnce of solar cells by measure the electronic parameter of different solar cells. Using the optimized CZTSe film as the absorbor layer, we prepared the CZTSe solar cells with structure of the traditional CIGS solar cells which is Glass/Mo/CZTSe/CdS/ZnO/AZO. Finally, in the zinc-rich CZTSe solar cell we achieve a photoelectric conversion efficiency of1.7%, much higher than the zinc-poor solar cells. The area of zinc-rich CZTSe solar cell is0.8cm2, the open voltage is172mV, the short circuit current is28.4mA.cm-2, the fill factor is35.7%, series resistor is5.2Ω.cm and the shunt resistance is960Ω..
     In the third part we study the band offset in CdS/CZTSe by X-ray photoelectron spectroscopy. Semiconductor heterojunction band offset is one of the most important parameters in heterojunction device. It affects the transport property of carriers, the recombination of carriers, the Fermi energy split and so on. But at present only theoretical calculation of CdS/CZTSe heterojunction band structure has been reported, there is still lack of the experiment report. We intend to use X-ray photoelectron spectroscopy to measure the band offset in CdS/Cu2ZnSnSa and ZnS/Cu2ZnSnS4heterojunction, and study the influence of the different buffer layer to photocarrier transport in CZTSe thin film solar cells. It has been found in experiments that CdS/CZTSe belongs to the type-Ⅱ semiconductor heterojunction, photo-generated minority can across from CZTSe into the conduction band of CdS buffer layer without any trouble. But because the interface bandgap was reduced, photocarrier recombination from CZTSe to CdS buffer layer is increased at the interface. This should be avoided in solar cell's designment, so CuInSe2-based solar cell are all designed to the type-I semiconductor heterojunction, and accquired a high photoelectric conversion efficiency. Using the PLD technology deposition, CdS/CZTSe heterojunction has the type-1semiconductor heterojunction, but due to the lack of surface modification in chemical bath solution and the danmage during the PLD process, it is not a proper way to the produce solar cells. The CZTSe heterojunction formed with the ZnS will form a larger spikes at the interface, electrons from CZTSe tunneling to will have a larger potential barrier, and will reduce the photo current in solar cells. Other optimal buffer layer for CZTSe solar cell need further study.
引文
[1]中嵨坚志郎.半导体工程学[M].科学出版社,2001
    [2]施敏.半导体器件物理第3版[M].西安交通大学出版社,2008
    [3]马克沃特.太阳电池:材料、制备工艺及检测[M].机械工业出版社,2010
    [4]彼得.乌夫尔.太阳能电池-从原理到新概念[M].化学工业出版社,2009
    [5]林明献.太阳能电池技术入门[M].2006
    [6]刘正新、沈辉译.太阳电池[M].化学工业出版社,2010年
    [7]马丁.格林.太阳能电池:工作原理、技术和系统应用[M].上海交通大学出版社,2010
    [8]M. A. Green.Photovoltaics:coming of age[J]. Photovoltaic Specialists Conference,1990., Conference Record of the Twenty First IEEE,1990:1-8 vol.1.
    [9]Martin A. Green.Estimates of Te and In prices from direct mining of known ores[J]. Progress in Photovoltaics:Research and Applications,2009,17(5):347-359.
    [10]Coby S. Tao, Jiechao Jiang, Meng Tao.Natural resource limitations to terawatt-scale solar cells[J]. Solar Energy Materials and Solar Cells,2011,95(12):3176-3180.
    [11]US Geological Survey.Mineral Commodity Summaries 2011[R],2011.
    [12]Martin A. Green.Is sour crude or sour gas a potential source of Se and Te?[J]. Progress in Photovoltaics:Research and Applications,2011,19(8):991-995.
    [13]A. M. Alfantazi, R. R. Moskalyk.Processing of indium:a review[J]. Minerals Engineering,2003,16(8):687-694.
    [14]Sigurd Wagner, J. L. Shay, P. Migliorato, H. M. Kasper.CuInSe2/CdS heterojunction photovoltaic detectors[J]. Applied Physics Letters,1974,25(8):434-435.
    [15]J. L. Shay, Sigurd Wagner, H. M. Kasper.Efficient CuInSe2/CdS solar cells[J]. Applied Physics Letters,1975,27(2):89-90.
    [16]L. L. Kazmerski, F. R. White, G. K. Morgan.Thin-film CuInSe2/CdS heterojunction solar cells[J]. Applied Physics Letters,1976,29(4):268-270.
    [17]A. M. Hermann, L. Fabick.Research on polycrystalline thin-film photovoltaic devices[J]. Journal of Crystal Growth,1983,61(3):658-664.
    [18]K. W. Mitchell. Status of new thin-film photovoltaic technologies[M]. Annual Reviews,1982
    [19]R. A. Mickelsen, W. S. Chen, Y. R. Hsiao, V. E. Lowe.Polycrystalline thin-film CuInSe2/CdZnS solar cells[J]. Electron Devices, IEEE Transactions on,1984,31(5):542-546.
    [20]R. A. Mickelsen, Wen S. Chen.High photocurrent polycrystalline thin film CdS/CuInSe2 solar cell[J]. Applied Physics Letters,1980,36(5):371-373.
    [21]W. E. Devaney, W. S. Chen, J. M. Stewart, R. A. Mickelsen.Structure and properties of high efficiency ZnO/CdZnS/CuInGaSe2 solar cells [J]. Electron Devices, IEEE Transactions on,1990, 37(2):428-433.
    [22]Andrew M. Gabor, John R. Tuttle, David S. Albin, Miguel A. Contreras, Rommel Noufi, Allen M. Hermann.High-efficiency CuInxGa(1-x)Se2 solar cells made from (InxGa(1-x))2Se)3 precursor films[J]. Applied Physics Letters,1994,65(2):198-200.
    [23]Philip Jackson, Dimitrios Hariskos, Erwin Lotter, Stefan Paetel, Roland Wuerz, Richard Menner, Wiltraud Wischmann, Michael Powalla.New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%[J]. Progress in Photovoltaics:Research and Applications,2011, 19(7):894-897.
    [24]Susanne Siebentritt, Susan Schorr.Kesterites—a challenging material for solar cells[J]. Progress in Photovoltaics:Research and Applications,2012:n/a-n/a.
    [25]Wang Hongxia.Progress in Thin Film Solar Cells Based on Cu 2ZnSnS 4[J]. International Journal of Photo Energy,2011.
    [26]D. B. Mitzi, O. Gunawan, T. K. Todorov, K. Wang, S. Guha.The path towards a high-performance solution-processed kesterite solar cell[J]. Solar Energy Materials and Solar Cells,2011,95(6):1421-1436.
    [27]K. Jimbo, R. Kimura, T. Kamimura, S. Yamada, W. S. Maw, H. Araki, K. Oishi, H. Katagiri.Cu2ZnSnS4-type thin film solar cells using abundant materials[J]. Thin Solid Films,2007, 515(15):5997-5999.
    [28]H. Katagiri.Cu2ZnSnS4 thin film solar cells[J]. Thin Solid Films,2005,480:426-432.
    [29]H. Katagiri, K. Saitoh, T. Washio, H. Shinohara, T. Kurumadani, S. Miyajima.Development of thin film solar cell based on Cu2ZnSnS4 thin films[J]. Solar Energy Materials and Solar Cells,2001,65(1-4):141-148.
    [30]Sigurd Wagner, P. M. Bridenbaugh.Multicomponent tetrahedral compounds for solar cells[J]. Journal of Crystal Growth,1977,39(1):151-159.
    [31]Tatsuo Nakazawa Kentaro Ito.Electrical and Optical Properties of Stannite-Type Quaternary Semiconductor Thin Films[J]. Japanese Journal of Applied Physics,1988,27(11):2094-2097.
    [32]Hironori Katagiri, Nobuyuki Sasaguchi, Shima Hando, Suguro Hoshino, Jiro Ohashi, Takaharu Yokota.Preparation and evaluation of Cu2ZnSnS4 thin films by sulfurization of E-B evaporated precursors[J]. Solar Energy Materials and Solar Cells,1997,49(1-4):407-414.
    [33]H. Katagiri, M. Nishimura, T. Onozawa, S. Maruyama, M. Fujita, T. Sega, T. Watanabe, leee. Rare-metal free thin film solar cell[M].1997
    [34]T. Kobayashi, K. Jimbo, K. Tsuchida, S. Shinoda, T. Oyanagi, H. Katagiri.Investigation of Cu(2)ZnSnS(4)-based thin film solar cells using abundant materials[J]. Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers,2005,44(1B): 783-787.
    [35]Jimbo Kazuo Katagiri Hironori, Satoru Yamada, Tsuyoshi Kamimura, Win Shwe Maw, Tatsuo Fukano, Tadashi Ito, and Tomoyoshi Motohiro.Enhanced Conversion Efficiencies of Cu2ZnSnS4-Based Thin Film Solar Cells by Using Preferential Etching Technique[J]. Applied Physics Express,2008,1(4):041201-041202.
    [36]Shafaat Ahmed, Kathleen B. Reuter, Oki Gunawan, Lian Guo, Lubomyr T. Romankiw, Hariklia Deligianni.A High Efficiency Electrodeposited Cu2ZnSnS4 Solar Cell[J]. Advanced Energy Materials,2012,2(2):253-259.
    [37]T. K. Todorov, K. B. Reuter, D. B. Mitzi.High-Efficiency Solar Cell with Earth-Abundant Liquid-Processed Absorber[J]. Advanced Materials,2010,22(20):156-159.
    [38]O. Gunawan, T. K. Todorov, D. B. Mitzi.Loss mechanisms in hydrazine-processed Cu(2)ZnSn(Se,S)(4) solar cells[J]. Applied Physics Letters,2010,97(23).
    [39]Richard Haight, Aaron Barkhouse, Oki Gunawan, Byungha Shin, Matt Copel, Marinus Hopstaken, David B. Mitzi.Band alignment at the Cu2ZnSn(SxSel-x)4/CdS interface[J]. Applied Physics Letters,2011,98(25):253502.
    [40]K. Wang, O. Gunawan, T. Todorov, B. Shin, S. J. Chey, N. A. Bojarczuk, D. Mitzi, S. Guha.Thermally evaporated Cu2ZnSnS4 solar cells[J]. Applied Physics Letters,2010,97(14): 143508.
    [41]Teodor Todorov, Oki Gunawan, S. Jay Chey, Thomas Goislard de Monsabert, Aparna Prabhakar, David B. Mitzi.Progress towards marketable earth-abundant chalcogenide solar cells[J]. Thin Solid Films,2011,519(21):7378-7381.
    [42]D. B. Mitzi, M. Yuan, W. Liu, A. J. Kellock, S. J. Chey, V. Deline, A. G. Schrott.A High-Efficiency Solution-Deposited Thin-Film Photovoltaic Device[J]. Advanced Materials,2008, 20(19):3657-3662.
    [43]D. Aaron R. Barkhouse, Oki Gunawan, Tayfun Gokmen, Teodor K. Todorov, David B. Mitzi.Device characteristics of a 10.1% hydrazine-processed Cu2ZnSn(Se,S)4 solar cell[J]. Progress in Photovoltaics:Research and Applications,2011.
    [44]Byungha Shin, Oki Gunawan, Yu Zhu, Nestor A. Bojarczuk, S. Jay Chey, Supratik Guha.Thin film solar cell with 8.4% power conversion efficiency using an earth-abundant Cu2ZnSnS4 absorber[J]. Progress in Photovoltaics:Research and Applications,2011:n/a-n/a.
    [45]Giorgio Margaritondo Federico Capasso. Heterojunction band discontinuities[M]. Amsterdam:Elsevier Science Publishers B. V.,1987
    [46]R. S. Bauer, J. C. McMenamin.Ge-GaAs(110) interface formation[J]. Journal of Vacuum Science and Technology,1978,15(4):1444-1449.
    [47]R. W. Grant, J. R. Waldrop, E. A. Kraut.XPS measurements of abrupt Ge-GaAs heterojunction interfaces[J]. Journal of Vacuum Science and Technology,1978,15(4):1451-1455.
    [48]E. A. Kraut, R. W. Grant, J. R. Waldrop, S. P. Kowalczyk.Precise Determination of the Valence-Band Edge in X-Ray Photoemission Spectra:Application to Measurement of Semiconductor Interface Potentials[J]. Physical Review Letters,1980,44(24):1620-1623.
    [49]A. D. Katnani, G. Margaritondo.Microscopic study of semiconductor heterojunctions: Photoemission measurement of the valance-band discontinuity and of the potential barriers[J]. Physical Review B,1983,28(4):1944-1956.
    [50]A. D. Katnani, G. Margaritondo.Empirical rule to predict heterojunction band discontinuities[J]. Journal of Applied Physics,1983,54(5):2522-2525.
    [51]M. Turowski, M. K. Kelly, G. Margaritondo, R. D. Tomlinson.Direct confirmation of the conduction-band lineup in the CuInSe2-CdS heterojunction solar cell[J]. Applied Physics Letters,1984,44(8):768-770.
    [52]Art J. Nelson, Steve Gebhard, Angus Rockett, Elio Colavita, Mike Engelhardt, ouml, Hartmut chst.Synchrotron-radiation photoemission study of CdS/CuInSe2 heterojunction formation[J]. Physical Review B,1990,42(12):7518.
    [53]Allen Rothwarf.CuInSe2/Cd(Zn)S solar cell modeling and analysis[J]. Solar Cells,1986, 16(0):567-590.
    [54]Su-Huai Wei, Alex Zunger.Band offsets at the CdS/CuInSe2 heterojunction[J]. Applied Physics Letters,1993,63(18):2549-2551.
    [55]A. Kanevce, M. Gloeckler, A. O. Pudov, J. R. Sites, Conduction-band-offset rule governing J-V distortion in CdS/CI(G)S solar cells, in:W. Shafarman, T. Gessert, S. Niki, S. Siebentritt (Eds.) Thin-Film Compound Semiconductor Photovoltaics, Materials Research Society, Warrendale, 2005, pp.221-226.
    [56]Alex Niemegeers, Marc Burgelman, Alexis De Vos.On the CdS/CuInSe2 conduction band discontinuity [J]. Applied Physics Letters,1995,67(6):843-845.
    [57]A. J. Nelson, C. R. Schwerdtfeger, W. L. O'Brien.Band alignment at the CdS/Cu2In4Se7 heterojunction interface[J]. Applied Physics Letters,1995,67(20):2969-2971.
    [58]T. Loher, W. Jaegermann, C. Pettenkofer.Formation and electronic properties of the CdS/CuInSe2 (011) heterointerface studied by synchrotron-induced photoemission[J]. Journal of Applied Physics,1995,77(2):731-738.
    [59]Yoshio Hashimoto, Kazuhiro Takeuchi, Kentaro Ito.Band alignment at CdS/CuInS2 heterojunction[J]. Applied Physics Letters,1995,67(7):980-982.
    [60]L. Weinhardt, O. Fuchs, D. Gross, G. Storch, E. Umbach, N. G. Dhere, A. A. Kadam, S. S. Kulkarni, C. Heske.Band alignment at the CdS/Cu(In,Ga)S2 interface in thin-film solar cells[J]. Applied Physics Letters,2005,86(6):062109.
    [61]Liudmila Larina, Donghyeop Shin, Ji Hye Kim, Byung Tae Ahn.Alignment of energy levels at the ZnS/Cu(In,Ga)Se2 interface[J]. Energy & Environmental Science,2011,4(9).
    [62]A. Bauknecht, U. Blieske, T. Kampschulte, J. Albert, H. Sehnert, M. Ch. Lux-Steiner, A. Klein, W. Jaegermann.Band offsets at the ZnSe/CuGaSe2(001) heterointerface[J]. Applied Physics Letters,1999,74(8):1099-1101.
    [63]Art J. Nelson, C. R. Schwerdtfeger, Su-Huai Wei, Alex Zunger, D. Rioux, R. Patel, Hartmut Hochst.Theoretical and experimental studies of the ZnSe/CuInSe2 heterojunction band offset[J]. Applied Physics Letters,1993,62(20):2557-2559.
    [64]J. Sterner, J. Malmstrom, L. Stolt.Study on ALD In2S3/Cu(In,Ga)Se2 interface formation[J]. Progress in Photovoltaics:Research and Applications,2005,13(3):179-193.
    [65]D. Kieven, A. Grimm, I. Lauermann, T. Rissom, R. Klenk.Band alignment at Sb2S3/Cu(In,Ga)Se2 heterojunctions and electronic characteristics of solar cell devices based on them[J]. Applied Physics Letters,2010,96(26):262101-262103.
    [66]S. Y. Chen, J. H. Yang, X. G. Gong, A. Walsh, S. H. Wei.Intrinsic point defects and complexes in the quaternary kesterite semiconductor Cu2ZnSnS4[J]. Physical Review B,2010,81(24): 245204-245201-245210.
    [67]A Nagoya, R Asahi, G Kresse.First-principles study of Cu2ZnSnS 4 and the related band offsets for photovoltaic applications[J]. Journal of Physics:Condensed Matter,2011,23(40): 404203.
    [68]N. Amin, M. I. Hossain, P. Chelvanathan, A. S. M. M. Uzzaman, K. Sopian, Prospects of Cu2ZnSnS4 (CZTS) solar cells from numerical analysis in:Electrical and Computer Engineering (ICECE),2010 International Conference on,2010, pp.730-733.
    [69]Myo Than Htay, Yoshio Hashimoto, Noritaka Momose, Kouichi Sasaki, Hiroshi Ishiguchi, Shigeo Igarashi, Kazuki Sakurai, Kentaro Ito.A Cadmium-Free Cu(2)ZnSnS(4)/ZnO Hetrojunction Solar Cell Prepared by Practicable Processes[J]. Japanese Journal of Applied Physics,2011,50(3).
    [1]Sigurd Wagner, P. M. Bridenbaugh.Multicomponent tetrahedral compounds for solar cells[J]. Journal of Crystal Growth,1977,39(1):151-159.
    [2]Tatsuo Nakazawa Kentaro Ito.Electrical and Optical Properties of Stannite-Type Quaternary Semiconductor Thin Films[J]. Japanese Journal of Applied Physics,1988,27(11):2094-2097.
    [3]H. Katagiri, M. Nishimura, T. Onozawa, S. Maruyama, M. Fujita, T. Sega, T. Watanabe, Ieee. Rare-metal free thin film solar cell[M].1997
    [4]Hironori Katagiri, Nobuyuki Sasaguchi, Shima Hando, Suguro Hoshino, Jiro Ohashi, Takaharu Yokota.Preparation and evaluation of Cu2ZnSnS4 thin films by sulfurization of E-B evaporated precursors[J]. Solar Energy Materials and Solar Cells,1997,49(1-4):407-414.
    [5]任湘眉.黄锡矿-似黄锡矿-硫锡铁铜矿组合及其结构特征[J].矿物学报,1990,(02):147-151+197-198.
    [6]B. R. Pamplin.Super-Cell Structure of Semiconductors[J]. Nature,1960,188(4745):136-137.
    [7]W. Schafer, R. Nitsche.Tetrahedral quaternary chalcogenides of the type Cu2II IVS4(Se4)[J]. Materials Research Bulletin,1974,9(5):645-654.
    [8]Shiyou Chen, Aron Walsh, Ye Luo, Ji-Hui Yang, X. G. Gong, Su-Huai Wei.Wurtzite-derived polytypes of kesterite and stannite quaternary chalcogenide semiconductors[J]. Physical Review B,2010,82(19):195203.
    [9]Aron Walsh, Shiyou Chen, Su-Huai Wei, Xin-Gao Gong.Kesterite Thin-Film Solar Cells: Advances in Materials Modelling of Cu2ZnSnS4[J]. Advanced Energy Materials,2012:n/a-n/a.
    [10]S. Schorr.Structural aspects of adamantine like multinary chalcogenides[J]. Thin Solid Films,2007,515(15):5985-5991.
    [11]Susan Schorr.The crystal structure of kesterite type compounds:A neutron and X-ray diffraction study[J]. Solar Energy Materials and Solar Cells,2011,95(6):1482-1488.
    [12]陈时友.多元半导体及其合金的第一性原理计算研究[D].复旦大学,2009.
    [13]S. R. Hall, J. T. Szymanski, and J. M. Stewart.Kesterite Cu2 (Zn,Fe)SnS4 and stannite Cu2(Fe,Zn)SnS4 structurally similar but distinct minerals[J]. Can Mineral,1978,16:131-137.
    [14]I. D. Olekseyuk, L. D. Gulay, I. V. Dydchak, L. V. Piskach,O. V. Parasyuk, O. V. Marchuk.Single crystal preparation and crystal structure of the Cu2Zn/Cd,Hg/SnSe4 compounds[J]. Journal of Alloys and Compounds,2002,340(1-2):141-145.
    [15]Susan Schorr, Hans-Joachim Hoebler, Michael Tovar.A neutron diffraction study of the stannite-kesterite solid solution series[J]. European Journal of Mineralogy,2007,19(1):65-73.
    [16]Clas Persson.Electronic and optical properties of Cu2ZnSnS4and Cu2ZnSnSe4[J]. Journal of Applied Physics,2010,107(5):053710.
    [17]SeJin Ahn, Sunghun Jung, Jihye Gwak, Ara Cho, Keeshik Shin, Kyunghoon Yoon, Doyoung Park, Hyeonsik Cheong, Jae Ho Yun.Determination of band gap energy (Eg) of Cu2ZnSnSe4 thin films:On the discrepancies of reported band gap values[J]. Applied Physics Letters,2010,97(2): 021905.
    [18]H. Katagiri, K. Saitoh, T. Washio, H. Shinohara, T. Kurumadani, S. Miyajima.Development of thin film solar cell based on Cu2ZnSnS4 thin films[J]. Solar Energy Materials and Solar Cells,2001,65(1-4):141-148.
    [19]S. B. Zhang, Su-Huai Wei, Alex Zunger, H. Katayama-Yoshida.Defect physics of the CuInSe2 chalcopyrite semiconductor[J]. Physical Review B,1998,57(16):9642-9656.
    [20]S. Y. Chen, J. H. Yang, X. G. Gong, A. Walsh, S, H. Wei.Intrinsic point defects and complexes in the quaternary kesterite semiconductor Cu2ZnSnS4[J]. Physical Review B,2010,81(24): 245204-245201-245210.
    [21]Susanne Siebentritt, Malgorzata Igalson, Clas Persson, Stephan Lany.The electronic structure of chalcopyrites—bands, point defects and grain boundaries[J]. Progress in Photovoltaics: Research and Applications,2010,18(6):390-410.
    [22]I. D. Olekseyuk, I. V. Dudchak, L. V. Piskach.Phase equilibria in the Cu2S-ZnS-SnS2 system[J]. Journal of Alloys and Compounds,2004,368(1-2):135-143.
    [23]I. V. Dudchak, L. V. Piskach.Phase equilibria in the Cu2SnSe3-SnSe2-ZnSe system[J]. Journal of Alloys and Compounds,2003,351(1-2):145-150.
    [24]Akihiro Nagoya, Ryoji Asahi, Roman Wahl, Georg Kresse.Defect formation and phase stability of Cu2ZnSnS4 photovoltaic material[J]. Physical Review B,2010,81(11):113202.
    [25]A Nagoya, R Asahi, G Kresse.First-principles study of Cu2ZnSnS4 and the related band offsets for photovoltaic applications[J]. Journal of Physics:Condensed Matter,2011,23(40): 404203.
    [26]Clas Persson, Yu-Jun Zhao, Stephan Lany, Alex Zunger.n-type doping of CuInSe2 and CuGaSe2[J]. Physical Review B,2005,72(3):035211.
    [27]Hironori Katagiri, Kazuo Jimbo, Masami Tahara, Hideaki Araki, Koichiro Oishi, The influence of the composition ratio on CZTS-based thin film solar cells, in:2009 MRS Spring Meeting, April 13,2009-April 17,2009, Materials Research Society, San Francisco, CA, United states,2010, pp.125-136.
    [28]A. Redinger, D. M. Berg, P. J. Dale, R. Djemour, Gu, x, L. tay, T. Eisenbarth, N. Valle, S. Siebentritt.Route Toward High-Efficiency Single-Phase Cu2ZnSn(S,Se)4 Thin-Film Solar Cells: Model Experiments and Literature Review[J]. Photovoltaics, IEEE Journal of,2011,1(2):200-206.
    [29]Alex Redinger, Katja Hones, Xavier Fontane, Victor Izquierdo-Roca, Edgardo Saucedo, Nathalie Valle, Alejandro Perez-Rodriguez, Susanne Siebentritt.Detection of a ZnSe secondary phase in coevaporated Cu2ZnSnSe4 thin films[J]. Applied Physics Letters,2011,98(10):101907.
    [30]Ying-Teng Zhai, Shiyou Chen, Ji-Hui Yang, Hong-Jun Xiang, Xin-Gao Gong, Aron Walsh, Joongoo Kang, Su-Huai Wei.Structural diversity and electronic properties of Cu2SnX3 (X=S, Se): A first-principles investigation[J]. Physical Review B,2011,84(7):075213.
    [31]S. Schorr, G. Geandier.In-situ investigation of the temperature dependent structural phase transition in CuInSe2 by synchrotron radiation[J]. Crystal Research and Technology,2006,41(5): 450-457.
    [32]S. Schorr, G. Geandier, B. V. Korzun.Some are different from others:high temperature structural phase transitions in ternary chalcopyrites[J]. physica status solidi (c),2006,3(8): 2610-2613.
    [33]Susan Schorr, Gabriela Gonzalez-Aviles.In-situ investigation of the structural phase transition in kesterite[J]. physica status solidi (a),2009,206(5):1054-1058.
    [34]Daniel Abou-Ras, Bernhard Schaffer, Miroslava Schaffer, Sebastian S. Schmidt, Raquel Caballero, Thomas Unold.Direct Insight into Grain Boundary Reconstruction in Polycrystalline Cu(In,Ga)Se2 with Atomic Resolution[J]. Physical Review Letters,2012,108(7):075502.
    [35]Hironori Katagiri, Kotoe Saitoh, Tsukasa Washio, Hiroyuki Shinohara, Tomomi Kurumadani, Shinsuke Miyajima.Development of thin film solar cell based on Cu2ZnSnS4 thin films[J]. Solar Energy Materials and Solar Cells,2001,65(1-4):141-148.
    [36]H. Katagiri, K. Jimbo, K. Moriya, K. Tsuchida, Solar cell without environmental pollution by using CZTS thin film, in:Photovoltaic Energy Conversion,2003. Proceedings of 3rd World Conference on,2003, pp.2874-2879 Vol.2873.
    [37]T. M. Friedlmeier, H. Dittrich, H. W. Schock, Growth and characterization of Cu2ZnSnS4 and Cu2ZnSnSe4 thin films for photovoltaic applications, in:R.D. Tomlinson, A.E. Hill, R.D. Pilkington (Eds.) Ternary and Multinary Compounds, lop Publishing Ltd, Bristol,1998, pp. 345-348. [38] N Wieser Theresa Magorian Friedlmeier, Th Walter, Herbert Dittrich, Hans-Werner Schock,
    Heterojunctions based on Cu2ZnSnS4 and Cu2ZnSnSe4 thin films, in:Proceedings of the 14th European Photovoltaic Solar Energy Conference 1997, pp.1242-1245.
    [39]Philip Jackson, Dimitrios Hariskos, Erwin Lotter, Stefan Paetel, Roland Wuerz, Richard Menner, Wiltraud Wischmann, Michael Powalla.New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%[J]. Progress in Photovoltaics:Research and Applications,2011, 19(7):894-897.
    [40]A. Weber, H. Krauth, S. Perlt, B. Schubert, I. Kotschau, S. Schorr, H. W. Schock.Multi-stage evaporation of Cu2ZnSnS4 thin films[J]. Thin Solid Films,2009,517(7):2524-2526.
    [41]Tobias Eisenbarth, Raquel Caballero, Melanie Nichterwitz, Christian A. Kaufmann, Hans-Werner Schock, Thomas Unold.Characterization of metastabilities in Cu(In,Ga)Se(2) thin-film solar cells by capacitance and current-voltage spectroscopy[J]. Journal of Applied Physics,2011,110(9).
    [42]M. Igalson, A. Urbaniak, A. Krysztopa, Y. Aida, R. Caballero, M. Edoff, S. Siebentritt.Sub-bandgap photoconductivity and photocapacitance in CIGS thin films and devices[J]. Thin Solid Films,2011,519(21):7489-7492.
    [43]V. Izquierdo-Roca, R. Caballero, X. Fontane, C. A. Kaufmann, J. Alvarez-Garcia, L. Calvo-Barrio, E. Saucedo, A. Perez-Rodriguez, J. R. Morante, H. W. Schock.Raman scattering analysis of Cu-poor Cu(In,Ga)Se(2) cells fabricated on polyimide substrates:Effect of Na content on microstructure and phase structure[J]. Thin Solid Films,2011,519(21):7300-7303.
    [44]A. Meeder, P. Schmidt-Weber, U. Hornauer, D. Foerster, T. Schubert, A. Neisser, S. Merdes, R. Mainz, R. Klenk.High voltage Cu(In,Ga)S(2) solar modules[J]. Thin Solid Films,2011,519(21): 7534-7536.
    [45]S. Merdes, R. Mainz, J. Klaer, A. Meeder, H. Rodriguez-Alvarez, H. W. Schock, M. Ch Lux-Steiner, R. Klenk.12.6% efficient CdS/Cu(In,Ga)S(2)-based solar cell with an open circuit voltage of 879 mV prepared by a rapid thermal process[J]. Solar Energy Materials and Solar Cells,2011,95(3):864-869.
    [46]H. Moenig, C. A. Kaufmann, Ch-H. Fischer, A. Grimm, R. Caballero, B. Johnson, A. Eicke, M. Ch Lux-Steiner, I. Lauermann.Gallium gradients in chalcopyrite thin films:Depth profile analyses of films grown at different temperatures[J]. Journal of Applied Physics,2011,110(9).
    [47]I. Riedel, J. Riediger, J. Ohland, J. Keller, M. Knipper, J. Parisi, R. Mainz, S. Merdes.Photoelectric characterization of Cu(In,Ga)S(2) solar cells obtained from rapid thermal processing at different temperatures[J]. Solar Energy Materials and Solar Cells,2011,95(1): 270-273.
    [48]Li Wenjie, S. Cohen, K. Gartsman, R. Caballero, P. van Huth, R. Popovitz-Biro, D. Cahen.Chemical compositional non-uniformity and its effects on CIGS solar cell performance at the nm-scale[J]. Solar Energy Materials and Solar Cells,2012,98.
    [49]A. Ennaoui, M. Lux-Steiner, A. Weber, D. Abou-Ras, I. Koetschau, H. W. Schock, R. Schurr, A. Hoelzing, S. Jost, R. Hock, T. Voss, J. Schulze, A. Kirbs.Cu(2)ZnSnS(4) thin film solar cells from electroplated precursors:Novel low-cost perspective[J]. Thin Solid Films,2009,517(7): 2511-2514.
    [50]M. Baer, B. A. Schubert, B. Marsen, S. Krause, S. Pookpanratana, T. Unold, L. Weinhardt, C. Heske, H. W. Schock.Native oxidation and Cu-poor surface structure of thin film Cu(2)ZnSnS(4) solar cell absorbers[J]. Applied Physics Letters,2011,99(11).
    [51]M. Baer, B. A. Schubert, B. Marsen, R. G. Wilks, S. Pookpanratana, M. Blum, S. Krause, T. Unold, W. Yang, L. Weinhardt, C. Heske, H. W. Schock.Cliff-like conduction band offset and KCN-induced recombination barrier enhancement at the CdS/Cu(2)ZnSnS(4) thin-film solar cell heterojunction[J]. Applied Physics Letters,2011,99(22).
    [52]P. A. Fernandes, P. M. P. Salome, A. F. da Cunha, Bjoern-Arvid Schubert.Cu(2)ZnSnS(4) solar cells prepared with sulphurized dc-sputtered stacked metallic precursors[J]. Thin Solid Films,2011,519(21):7382-7385.
    [53]Justus Just, Dirk Luetzenkirchen-Hecht, Ronald Frahm, Susan Schorr, Thomas Unold.Determination of secondary phases in kesterite Cu(2)ZnSnS(4) thin films by x-ray absorption near edge structure analysis[J]. Applied Physics Letters,2011,99(26).
    [54]Bjoern-Arvid Schubert, Bjoern Marsen, Sonja Cinque, Thomas Unold, Reiner Klenk, Susan Schorr, Hans-Werner Schock.Cu(2)ZnSnS(4) thin film solar cells by fast coevaporation[J]. Progress in Photovoltaics,2011,19(1):93-96.
    [55]M. Bar, B.-A. Schubert, B. Marsen, S. Krause, S. Pookpanratana, T. Unold, L. Weinhardt, C. Heske, H.-W. Schock.Impact of KCN etching on the chemical and electronic surface structure of Cu2ZnSnS4 thin-film solar cell absorbers[J]. Applied Physics Letters,2011,99(15):152111.
    [56]K. Wang, O. Gunawan, T. Todorov, B. Shin, S. J. Chey, N. A. Bojarczuk, D. Mitzi, S. Guha.Thermally evaporated Cu2ZnSnS4 solar cells[J]. Applied Physics Letters,2010,97(14): 143508.
    [57]Byungha Shin, Oki Gunawan, Yu Zhu, Nestor A. Bojarczuk, S. Jay Chey, Supratik Guha.Thin film solar cell with 8.4% power conversion efficiency using an earth-abundant Cu2ZnSnS4 absorber[J]. Progress in Photovoltaics:Research and Applications,2011:n/a-n/a.
    [58]Tooru Tanaka, Akihiro Yoshida, Daisuke Saiki, Katsuhiko Saito, Qixin Guo, Mitsuhiro Nishio, Toshiyuki Yamaguchi.Influence of composition ratio on properties of Cu2ZnSnS4 thin films fabricated by co-evaporation[J]. Thin Solid Films,2010,518(21, Supplement):S29-S33.
    [59]Katsuhiko Moriya, Kunihiko Tanaka, Hisao Uchiki.Cu2ZnSnS4 Thin Films Annealed in H2S Atmosphere for Solar Cell Absorber Prepared by Pulsed Laser Deposition[J]. Japanese Journal of Applied Physics,2008,47(Copyright (C) 2008 The Japan Society of Applied Physics):602-604.
    [60]Katsuhiko Moriya, Kunihiko Tanaka, Hisao Uchiki.Fabrication of Cu2ZnSnS4 Thin-Film Solar Cell Prepared by Pulsed Laser Deposition[J]. Japanese Journal of Applied Physics,2007, 46(Copyright (C) 2007 The Japan Society of Applied Physics):5780-5081.
    [61]Noritaka Momose, Myo Than Htay, Takuto Yudasaka, Shigeo Igarashi, Takuro Seki, Shota Iwano, Yoshio Hashimoto, Kentaro Ito.Cu2ZnSnS4 Thin Film Solar Cells Utilizing Sulfurization of Metallic Precursor Prepared by Simultaneous Sputtering of Metal Targets[J]. Japanese Journal of Applied Physics,2011,50(Copyright (C) 2011 The Japan Society of Applied Physics):01BG09.
    [62]Kazuo Jimbo, Ryoichi Kimura, Tsuyoshi Kamimura, Satoru Yamada, Win Shwe Maw, Hideaki Araki, Koichiro Oishi, Hironori Katagiri.Cu2ZnSnS4-type thin film solar cells using abundant materials[J]. Thin Solid Films,2007,515(15):5997-5999.
    [63]Hironori Katagiri, Kazuo Jimbo, Satoru Yamada, Tsuyoshi Kamimura, Win Shwe Maw, Tatsuo Fukano, Tadashi Ito, Tomoyoshi Motohiro.Enhanced Conversion Efficiencies of Cu2ZnSnS4-Based Thin Film Solar Cells by Using Preferential Etching Technique[J]. Applied Physics Express,2008,1 (Copyright (c) 2008 The Japan Society of Applied Physics):041201.
    [64]P. M. P. Salome, P. A. Fernandes, A. F. da Cunha.Morphological and structural characterization of Cu2ZnSnSe4 thin films grown by selenization of elemental precursor layers[J]. Thin Solid Films,2009,517(7):2531-2534.
    [65]P. M. P. Salome, P. A. Fernandes, A. F. da Cunha.Influence of selenization pressure on the growth of Cu2ZnSnSe4 films from stacked metallic layers[J]. physica status solidi (c),2010, 7(3-4):913-916.
    [66]G. Zoppi, I. Forbes, R. W. Miles, P. J. Dale, J. J. Scragg, L. M. Peter.Cu2ZnSnSe4 thin film solar cells produced by selenisation of magnetron sputtered precursors [J]. Progress in Photovoltaics:Research and Applications,2009,17(5):315-319.
    [67]S.N. Sahu R.K. Pandey, S. Chandra. Handbook of Semiconductor Electrodeposition[M]. New York:1996
    [68]Daniel Lincot.Electrodeposition of semiconductors[J]. Thin Solid Films,2005,487(1-2): 40-48.
    [69]D. Lincot, J. F. Guillemoles, S. Taunier, D. Guimard, J. Sicx-Kurdi, A. Chaumont, O. Roussel, O. Ramdani, C. Hubert, J. P. Fauvarque, N. Bodereau, L. Parissi, P. Panheleux, P. Fanouillere, N. Naghavi, P. P. Grand, M. Benfarah, P. Mogensen, O. Kerrec.Chalcopyrite thin film solar cells by electrodeposition[J]. Solar Energy,2004,77(6):725-737.
    [70]D. Cunningham, M. Rubcich, D. Skinner.Cadmium telluride PV module manufacturing at BP Solar[J]. Progress in Photovoltaics:Research and Applications,2002,10(2):159-168.
    [71]B. E. McCandless, A. Mondal, R. W. Birkmire.Galvanic deposition of cadmium sulfide thin films[J]. Solar Energy Materials and Solar Cells,1995,36(4):369-379.
    [72]Jonathan J. Scragg, Phillip J. Dale, Laurence M. Peter.Towards sustainable materials for solar energy conversion:Preparation and photoelectrochemical characterization of Cu2ZnSnS4[J]. Electrochemistry Communications,2008,10(4):639-642.
    [73]J. J. Scragg, P. J. Dale, L. M. Peter.Synthesis and characterization of Cu2ZnSnS4 absorber layers by an electrodeposition-annealing route[J]. Thin Solid Films,2009,517(7):2481-2484.
    [74]Jonathan J. Scragg, Philip J. Dale, Laurence M. Peter, Guillaume Zoppi, Ian Forbes.New routes to sustainable photovoltaics:evaluation of Cu2ZnSnS4 as an alternative absorber material[J]. physica status solidi (b),2008,245(9):1772-1778.
    [75]Jonathan J. Scragg, Dominik M. Berg, Phillip J. Dale.A 3.2% efficient Kesterite device from electrodeposited stacked elemental layers[J]. Journal of Electroanalytical Chemistry,2010, 646(1-2):52-59.
    [76]Hideaki Araki, Yuki Kubo, Aya Mikaduki, Kazuo Jimbo, Win Shwe Maw, Hironori Katagiri, Makoto Yamazaki, Koichiro Oishi, Akiko Takeuchi.Preparation of Cu2ZnSnS4 thin films by sulfurizing electroplated precursors[J]. Solar Energy Materials and Solar Cells,2009,93(6-7): 996-999.
    [77]Hideaki Araki, Yuki Kubo, Kazuo Jimbo, Win Shwe Maw, Hironori Katagiri, Makoto Yamazaki, Koichiro Oishi, Akiko Takeuchi.Preparation of Cu2ZnSnS4 thin films by sulfurization of co-electroplated Cu-Zn-Sn precursors [J]. physica status solidi (c),2009,6(5):1266-1268.
    [78]A. Ennaoui, M. Lux-Steiner, A. Weber, D. Abou-Ras, I. Kotschau, H. W. Schock, R. Schurr, A. Holzing, S. Jost, R. Hock, T. Voβ, J. Schulze, A. Kirbs.Cu2ZnSnS4 thin film solar cells from electroplated precursors:Novel low-cost perspective[J]. Thin Solid Films,2009,517(7): 2511-2514.
    [79]R. Schurr, A. Holzing, S. Jost, R. Hock, T. Voβ, J. Schulze, A. Kirbs, A. Ennaoui, M. Lux-Steiner, A. Weber, I. Kotschau, H. W. Schock.The crystallisation of Cu2ZnSnS4 thin film solar cell absorbers from co-electroplated Cu-Zn-Sn precursors[J]. Thin Solid Films,2009,517(7): 2465-2468.
    [80]Shafaat Ahmed, Kathleen B. Reuter, Oki Gunawan, Lian Guo, Lubomyr T. Romankiw, Hariklia Deligianni.A High Efficiency Electrodeposited Cu2ZnSnS4 Solar Cell[J]. Advanced Energy Materials,2012,2(2):253-259.
    [81]Kunihiko Tanaka, Noriko Moritake, Hisao Uchiki.Preparation of Cu2ZnSnS4 thin films by sulfurizing sol-gel deposited precursors[J]. Solar Energy Materials and Solar Cells,2007,91(13): 1199-1201.
    [82]Kunihiko Tanaka, Masatoshi Oonuki, Noriko Moritake, Hisao Uchiki.Cu2ZnSnS4 thin film solar cells prepared by non-vacuum processing[J]. Solar Energy Materials and Solar Cells,2009, 93(5):583-587.
    [83]Kunihiko Tanaka, Yuki Fukui, Noriko Moritake, Hisao Uchiki.Chemical composition dependence of morphological and optical properties of Cu2ZnSnS4 thin films deposited by sol-gel sulfurization and Cu2ZnSnS4 thin film solar cell efficiency[J]. Solar Energy Materials and Solar Cells,2011,95(3):838-842.
    [84]Qijie Guo, Hugh W. Hillhouse, Rakesh Agrawal.Synthesis of Cu2ZnSnS4 Nanocrystal Ink and Its Use for Solar Cells[J]. Journal of the American Chemical Society,2009,131(33): 11672-11673.
    [85]Qijie Guo, Grayson M. Ford, Wei-Chang Yang, Bryce C. Walker, Eric A. Stach, Hugh W. Hillhouse, Rakesh Agrawal.Fabrication of 7.2% Efficient CZTSSe Solar Cells Using CZTS Nanocrystals[J]. Journal of the American Chemical Society,2010,132(49):17384-17386.
    [86]T. K. Todorov, K. B. Reuter, D. B. Mitzi.High-efficiency solar cell with earth-abundant liquid-processed absorber[J]. Advanced Materials,2010,22(20):E156-E159.
    [87]Teodor Todorov, Oki Gunawan, S. Jay Chey, Thomas Goislard de Monsabert, Aparna Prabhakar, David B. Mitzi.Progress towards marketable earth-abundant chalcogenide solar cells[J]. Thin Solid Films,2011,519(21):7378-7381.
    [88]D. B. Mitzi, T. K. Todorov, O. Gunawan, Yuan Min, Cao Qing, Liu Wei, K. B. Reuter, M. Kuwahara, K. Misumi, A. J. Kellock, S. J. Chey, T. G. de Monsabert, A. Prabhakar, V. Deline, K. E. Fogel, Torwards marketable efficiency solution-processed kesterite and chalcopyrite photovoltaic devices, in:Photovoltaic Specialists Conference (PVSC),2010 35th IEEE,2010, pp. 000640-000645.
    [89]D. Aaron R. Barkhouse, Oki Gunawan, Tayfun Gokmen, Teodor K. Todorov, David B. Mitzi.Device characteristics of a 10.1% hydrazine-processed Cu2ZnSn(Se,S)4 solar cell[J]. Progress in Photovoltaics:Research and Applications,2012,20(1):6-11.
    [90]X. Y. Shi, F. Q. Huang, M. L. Liu, L. D. Chen.Thermoelectric properties of tetrahedrally bonded wide-gap stannite compounds Cu2ZnSnl-xInxSe4[J]. Applied Physics Letters,2009, 94(12):122103.
    [1]Jonathan J. Scragg, Phillip J. Dale, Laurence M. Peter.Towards sustainable materials for solar energy conversion:Preparation and photoelectrochemical characterization of Cu2ZnSnS4[J]. Electrochemistry Communications,2008,10(4):639-642.
    [2]Jonathan J. Scragg, Philip J. Dale, Laurence M. Peter, Guillaume Zoppi, Ian Forbes.New routes to sustainable photovoltaics:evaluation of Cu2ZnSnS4 as an alternative absorber material[J]. physica status solidi (b),2008,245(9):1772-1778.
    [3]Hideaki Araki, Yuki Kubo, Aya Mikaduki, Kazuo Jimbo, Win Shwe Maw, Hironori Katagiri, Makoto Yamazaki, Koichiro Oishi, Akiko Takeuchi.Preparation of Cu2ZnSnS4 thin films by sulfurizing electroplated precursors [J]. Solar Energy Materials and Solar Cells,2009,93(6-7): 996-999.
    [4]J. J. Scragg, P. J. Dale, L. M. Peter.Synthesis and characterization of Cu2ZnSnS4 absorber layers by an electrodeposition-annealing route[J]. Thin Solid Films,2009,517(7):2481-2484.
    [5]Jonathan J. Scragg, Dominik M. Berg, Phillip J. Dale.A 3.2% efficient Kesterite device from electrodeposited stacked elemental layers[J]. Journal of Electroanalytical Chemistry,2010, 646(1-2):52-59.
    [6]Shafaat Ahmed, Kathleen B. Reuter, Oki Gunawan, Lian Guo, Lubomyr T. Romankiw, Hariklia Deligianni.A High Efficiency Electrodeposited Cu2ZnSnS4 Solar Cell[J]. Advanced Energy Materials,2012,2(2):253-259.
    [7]余绵飞.电镀铜锌锡三元合金仿金工艺[J].电镀与精饰,1985,(05):42.
    [8]吴菊珍,王丛岭.电镀黄铜工艺的研究[J].电镀与环保,2005,(01):16-18.
    [9]钟云,何永福,贺飞,刘利梅,苏永庆.电镀铜锡合金工艺研究进展[J].电镀与环保,2007,(04):1-3.
    [10]David K. Gosser. Cyclic voltammetry—simulation and analysis of reaction mechanisms[M]. New York:VCH 1995
    [11]Shigeru Niki, Miguel Contreras, Ingrid Repins, Michael Powalla, Katsumi Kushiya, Shogo Ishizuka, Koji Matsubara.CIGS absorbers and processes[J]. Progress in Photovoltaics:Research and Applications,2010,18(6):453-466.
    [12]万磊.铜铟薄膜太阳能电池相关材料研究[D].中国科学技术大学,2010.
    [13]B. M. Basol, A. Halani, C. Leidholm, G. Norsworthy, V. K. Kapur, A. Swartzlander, R. Matson.Studies on sulfur diffusion into Cu(In,Ga)Se2 thin films[J]. Progress in Photo voltaics: Research and Applications,2000,8(2):227-235.
    [14]Hironori Katagiri, Kazuo Jimbo, Satoru Yamada, Tsuyoshi Kamimura, Win Shwe Maw, Tatsuo Fukano, Tadashi Ito, Tomoyoshi Motohiro.Enhanced Conversion Efficiencies of Cu2ZnSnS4-Based Thin Film Solar Cells by Using Preferential Etching Technique[J]. Applied Physics Express,2008,1 (Copyright (c) 2008 The Japan Society of Applied Physics):041201.
    [15]D. Aaron R. Barkhouse, Oki Gunawan, Tayfun Gokmen, Teodor K. Todorov, David B. Mitzi.Device characteristics of a 10.1% hydrazine-processed Cu2ZnSn(Se,S)4 solar cell[J]. Progress in Photovoltaics:Research and Applications,2011.
    [16]Teodor Todorov, Oki Gunawan, S. Jay Chey, Thomas Goislard de Monsabert, Aparna Prabhakar, David B. Mitzi.Progress towards marketable earth-abundant chalcogenide solar cells[J]. Thin Solid Films,2011,519(21):7378-7381.
    [17]C. H. Henry.Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells[J]. Journal of Applied Physics,1980,51(8):4494-4500.
    [18]Marianna Kemell, Mikko Ritala, Markku Leskela.Thin Film Deposition Methods for CuInSe2 Solar Cells[J]. Critical Reviews in Solid State and Materials Sciences,2005,30(1):1-31.
    [19]Zhongwei Zhang, Ji Li, Man Wang, Ming Wei, Guoshun Jiang, Changfei Zhu.Influence of annealing conditions on the structure and compositions of electrodeposited CuInSe2 films[J]. Solid State Communications,2010,150(47-48):2346-2349.
    [20]A. Weber, R. Mainz, H. W. Schock.On the Sn loss from thin films of the material system Cu-Zn-Sn-S in high vacuum[J]. Journal of Applied Physics,2010,107(1):013516.
    [21]Alex Redinger, Susanne Siebentritt.Coevaporation of Cu2ZnSnSe4 thin films[J]. Applied Physics Letters,2010,97(9):092111.
    [22]Alex Redinger, Katja Hones, Xavier Fontane, Victor Izquierdo-Roca, Edgardo Saucedo, Nathalie Valle, Alejandro Perez-Rodriguez, Susanne Siebentritt.Detection of a ZnSe secondary phase in coevaporated Cu2ZnSnSe4 thin films[J]. Applied Physics Letters,2011,98(10):101907.
    [23]SeJin Ahn, Sunghun Jung, Jihye Gwak, Ara Cho, Keeshik Shin, Kyunghoon Yoon, Doyoung Park, Hyeonsik Cheong, Jae Ho Yun.Determination of band gap energy (Eg) of Cu2ZnSnSe4 thin films:On the discrepancies of reported band gap values[J]. Applied Physics Letters,2010,97(2): 021905.
    [1]方容川.固体光谱学[M].合肥:中国科学技术大学,2001
    [2]SeJin Ahn, Sunghun Jung, Jihye Gwak, Ara Cho, Keeshik Shin, Kyunghoon Yoon, Doyoung Park, Hyeonsik Cheong, Jae Ho Yun.Determination of band gap energy (Eg) of Cu2ZnSnSe4 thin films:On the discrepancies of reported band gap values[J]. Applied Physics Letters,2010,97(2): 021905.
    [3]A P Levanyuk, V V Osipov.Edge luminescence of direct-gap semiconductors[J]. Soviet Physics Uspekhi,1981,24(3):187.
    [4]M. Grossberg, J. Krustok, K. Timmo, M. Altosaar.Radiative recombination in Cu2ZnSnSe4 monograins studied by photoluminescence spectroscopy[J]. Thin Solid Films,2009,517(7): 2489-2492.
    [5]Jesko A. von Windheim, Henry Wynands, Michael Cocivera.Removal and Preparation of Electrodeposited Semiconductors for High Impedance Hall Effect Measurements[J]. Journal of The Electrochemical Society,1991,138(11):3435-3439.
    [6]Masao Miyake, Kuniaki Murase, Tetsuji Hirato, Yasuhiro Awakura.Hall effect measurements on CdTe layers electrodeposited from acidic aqueous electrolyte[J]. Journal of Electroanalytical Chemistry,2004,562(2):247-253.
    [7]Jean-Francois Guillemoles, Pierre Cowache, Alain Lusson, Kamel Fezzaa, Frederic Boisivon, Jacques Vedel, Daniel Lincot.One step electrodeposition of CuInSe2:Improved structural, electronic, and photovoltaic properties by annealing under high selenium pressure[J]. Journal of Applied Physics,1996,79(9):7293-7302.
    [8]L. Assmann, J. C. Bernede, A. Drici, C. Amory, E. Halgand, M. Morsli.Study of the Mo thin films and Mo/CIGS interface properties[J]. Applied Surface Science,2005,246(1-3):159-166.
    [9]A. Musa, J. P. Ponpon, J. J. Grob, M. HageAli, R. Stuck, P. Siffert.Properties of electroless gold contacts on p-type cadmium telluride[J]. Journal of Applied Physics,1983,54(6):3260-3268.
    [10]P A Fernandes, P M P Salome, A F da Cunha.Precursors' order effect on the properties of sulfurized Cu2ZnSnS4 thin films[J]. Semiconductor Science and Technology,2009,24(10): 105013.
    [11]彼得.乌夫尔.太阳能电池-从原理到新概念[M].化学工业出版社,2009
    [12]马丁.格林.太阳能电池:工作原理、技术和系统应用[M].上海交通大学出版社,2010
    [13]马克沃特.太阳电池:材料、制备工艺及检测[M].机械工业出版社,2010
    [14]Keith Emery, Measurement and Characterization of Solar Cells and Modules, in:Handbook of Photovoltaic Science and Engineering, John Wiley & Sons, Ltd,2005, pp.701-752.
    [15]Carl R. Osterwald, llf-1-Standards, calibration and testing of PV modules and solar cells, in: M. Tom, C. Luis (Eds.) Solar Cells:Materials Manufacture and Operation, Elsevier Science, Oxford,2005, pp.451-474.
    [16]D. Pysch, A. Mette, S. W. Glunz.A review and comparison of different methods to determine the series resistance of solar cells[J]. Solar Energy Materials and Solar Cells,2007,91(18): 1698-1706.
    [17]A. G. Aberle, S. R. Wenham, M. A. Green, New method for accurate measurements of the lumped series resistance of solar cells, in:Proceedings of the 23rd IEEE Photovoltaic Specialists Conference, May 10,1993-May 14,1993, Publ by IEEE, Louisville, KY, USA,1993, pp. 133-139.
    [18]2010吉时利新能源与新材料测试技术中国区巡回研讨会[R],2010.
    [19]Steven S. Hegedus, William N. Shafarman.Thin-film solar cells:device measurements and analysis[J]. Progress in Photovoltaics:Research and Applications,2004,12(2-3):155-176.
    [20]Ken Durose, Sally E. Asher, Wolfram Jaegermann, Dean Levi, Brian E. McCandless, Wyatt Metzger, Helio Moutinho, P. D. Paulson, Craig L. Perkins, James R. Sites, Glenn Teeter, Mathias Terheggen.Physical characterization of thin-film solar cells[J]. Progress in Photovoltaics: Research and Applications,2004,12(2-3):177-217.
    [21]Jenny Nelson. The Physics of Solar Cells[M]. World Scientific Pub Co.,2003
    [22]巴德.电化学方法-原理与应用(第二版)[M].北京:化学工业出版社,2005
    [23]J. Ross Macdonald Evgenij Barsoukov. Impedance Spectroscopy-Theory, Experiment, and Applications[M]. John Wiley & Sons, Inc,2005
    [1]Hans-Werner Schock Roland Scheer. Chalcogenide Photovoltaics-Physics, Technologies, and Thin Film Devices[M]. Wiley-VCH,2011
    [2]R. Dingle, W. Wiegmann, C. H. Henry.Quantum States of Confined Carriers in Very Thin AlxGal-xAs-GaAs-AlxGal-xAs Heterostructures[J]. Physical Review Letters,1974,33(14): 827-830.
    [3]班大雁.Ⅱ-Ⅵ族半导体异质结能带偏移和表面电子结构研究[D].中国科学技术大学,1997.
    [4]卢学坤,王迅.半导体异质结界面能带排列的实验研究[J].物理学进展,1991,(04):456-482.
    [5]张宝利.宽禁带半导体异质结能带不连续值的测定以及低维结构散射机制的研究[D].中国科学院半导体研究所,2009.
    [6]H. Kroemer, Wu-Yi Chien, Jr. J. S. Harris, D. D. Edwall.Measurement of isotype heterojunction barriers by C-V profiling[J]. Applied Physics Letters,1980,36(4):295-297.
    [7]熊超ZnO/Si异质结的制备与特性研究[D].华南理工大学,2011.
    [8]P. Perfetti, D. Denley, K. A. Mills, D. A. Shirley.Angle-resolved photoemission measurements of band discontinuities in the GaAs-Ge heterojunction [J]. Applied Physics Letters,1978,33(7): 667-670.
    [9]R. S. Bauer, J. C. McMenamin.Ge-GaAs(110) interface formation[J]. Journal of Vacuum Science and Technology,1978,15(4):1444-1449.
    [10]R. W. Grant, J. R. Waldrop, E. A. Kraut.XPS measurements of abrupt Ge-GaAs heterojunction interfaces[J]. Journal of Vacuum Science and Technology,1978,15(4):1451-1455.
    [11]E. A. Kraut, R. W. Grant, J. R. Waldrop, S. P. Kowalczyk.Precise Determination of the Valence-Band Edge in X-Ray Photoemission Spectra:Application to Measurement of Semiconductor Interface Potentials[J]. Physical Review Letters,1980,44(24):1620-1623.
    [12]麻茂生.电子能谱及其应用[M].中国科学技术大学,2000
    [13]C. Lamberti. Characterization of Semiconductor Heterostructures and Nanostructures[M]. Elsevier B.V.,2008
    [14]C. Lamberti.The use of synchrotron radiation techniques in the characterization of strained semiconductor heterostructures and thin films[J]. Surface Science Reports,2004,53(1-5):1-197.
    [15](意)兰伯蒂.半导体异质结构与纳米结构表征[M].科学出版社,2010
    [16]A. D. Katnani, G. Margaritondo.Empirical rule to predict heterojunction band discontinuities[J]. Journal of Applied Physics,1983,54(5):2522-2525.
    [17]A. D. Katnani, G. Margaritondo.Microscopic study of semiconductor heterojunctions: Photoemission measurement of the valance-band discontinuity and of the potential barriers[J]. Physical Review B,1983,28(4):1944-1956.
    [18]E. A. Kraut, R. W. Grant, J. R. Waldrop, S. P. Kowalczyk.Semiconductor core-level to valence-band maximum binding-energy differences:Precise determination by x-ray photoelectron spectroscopy[J]. Physical Review B,1983,28(4):1965-1977.
    [19]J. R. Waldrop, R. W. Grant, S. P. Kowalczyk, E. A. Kraut.Measurement of semiconductor heterojunction band discontinuities by x‐ray photoemission spectroscopy[J]. Journal of Vacuum Science & Technology A:Vacuum, Surfaces, and Films,1985,3(3):835-841.
    [20]D. Schmid, M. Ruckh, F. Grunwald, H. W. Schock.Chalcopyrite/defect chalcopyrite heterojunctions on the basis of CuInSe2[J]. Journal of Applied Physics,1993,73(6):2902-2909.
    [21]Allen Rothwarf.CuInSe2/Cd(Zn)S solar cell modeling and analysis[J]. Solar Cells,1986, 16(0):567-590.
    [22]Su-Huai Wei, Alex Zunger.Band offsets at the CdS/CuInSe2 heterojunction[J]. Applied Physics Letters,1993,63(18):2549-2551.
    [23]A. Kanevce, M. Gloeckler, A. O. Pudov, J. R. Sites, Conduction-band-offset rule governing J-V distortion in CdS/CI(G)S solar cells, in:W. Shafarman, T. Gessert, S. Niki, S. Siebentritt (Eds.) Thin-Film Compound Semiconductor Photovoltaics, Materials Research Society, Warrendale, 2005, pp.221-226.
    [24]Robert S. Bauer, Peter Zurcher, Jr Henry W. Sang.Inequality of semiconductor heterojunction conduction-band-edge discontinuity and electron affinity difference[J]. Applied Physics Letters,1983,43(7):663-665.
    [25]Robert S. Bauer, Henry W. Sang Jr.On the adjustability of the "abrupt" heterojunction band-gap discontinuity [J]. Surface Science,1983,132(1-3):479-504.
    [26]Yoshio Hashimoto, Kazuhiro Takeuchi, Kentaro Ito.Band alignment at CdS/CuInS2 heterojunction[J]. Applied Physics Letters,1995,67(7):980-982.
    [27]Tokio Nakada, Masashi Hongo, Eiji Hayashi.Band offset of high efficiency CBD-ZnS/CIGS thin film solar cells[J]. Thin Solid Films,2003,431-432(0):242-248.
    [28]Art J. Nelson, Steve Gebhard, Angus Rockett, Elio Colavita, Mike Engelhardt, ouml, Hartmut chst.Synchrotron-radiation photoemission study of CdS/CuInSe2 heterojunction formation[J]. Physical Review B,1990,42(12):7518.
    [29]Liudmila Larina, Donghyeop Shin, Ji Hye Kim, Byung Tae Ahn.Alignment of energy levels at the ZnS/Cu(In,Ga)Se2 interface[J]. Energy & Environmental Science,2011,4(9).
    [30]徐彭寿,陆尔东,张发培,徐世红,张新夷,赵特秀,方容川,金晓峰.NSRL在半导体表面和界面的同步辐射研究进展[J].自然科学进展,2000,(02):8-17.
    [31]A Nagoya, R Asahi, G Kresse.First-principles study of Cu2ZnSnS4 and the related band offsets for photovoltaic applications[J]. Journal of Physics:Condensed Matter,2011,23(40): 404203.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700