用户名: 密码: 验证码:
中国社会经济系统发展与可持续性的“社会代谢多尺度综合评估(MSIASM)”
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
社会经济系统在经济学家描述为生产和消费的过程中,从其自然环境中输入原材料(包括物质和能量),将它们转变成制成品和服务,并最终变成废弃物和排放,耗散回环境,这一过程就是社会代谢。社会代谢通常分成物质代谢和能量代谢两部分。物质代谢研究基本上等同于物料流分析MFA,从20世纪90年代以来,进入一个迸发期,无论基本概念、范式,还是实际应用,都已臻成熟。我国也有许多学者从事MFA研究,取得了可喜成绩。
     然而,能量代谢研究却很少,(作者发现)目前仅有以奥地利哈珀尔(Helmut Haberl)为首的、与物料流分析对应的“能量流分析EFA”和以意大利吉阿姆皮埃特罗(Mario Giampietro)和日本真弓浩三(Kozo Mayumi)为首的“社会代谢多尺度综合评估MSIASM”。
     社会代谢多尺度综合评估MSIASM并行地利用不同学科与社会经济系统的能量代谢过程及系统的经济、人口、社会和生态特征有关的各种经济参量和生物物理参量,根据“人类活动时间”资源、“体外能流”资源和“增加值流”三者在社会经济系统中的叠合关系,即用投入于整个社会经济系统及其各个组成部门的“人类活动时间”作为共同的参照基础(或者说,公分母),将社会经济系统及其各个部门消费的“体外能”和生产的“增加值”串联起来——社会经济系统x部门(要素)单位人类活动时间消费的体外能←→该部门(要素)单位人类活动时间生产的增加值,将这些参量结合起来,利用多个关系式,计算出社会经济系统的人类活动时间HA、流量份额HA(n-1)/THA(n)、体外能吞吐量ET、贮量份额ET(n-1)/TET(n)、能源强度EI、体外能代谢率EMR、社会生产率ESP、劳动生产率ELP、生物-经济压力BEP和体外能超循环强度SEH等参数或指标。进而根据这些参数或指标综合地分析评估社会经济系统的发展与可持续性。实践证明MSIASM是综合评估社会经济系统的发展与可持续性的一个好方法。
     本文应用经作者视为修改的MSIASM方法,分析了1990年-2006年中国社会经济系统的发展轨迹,发现存在的可持续性胁迫。
     (1)在人类活动时间HA方面,从1990年到2006年,HAH增幅大于HAPW的增幅,表明了17年来中国社会经济系统不断发展的结果:普及义务教育、高中和高校学生增多、平均寿命延长、退休人员比重增大、年工作时间缩短等。HA3比重稳步增长,反映服务业对中国的就业问题贡献最大。
     由参与经济活动的人口比重、HAH份额和高于世界平均水平的HAPW/THA比值表现出来的现阶段的劳动力优势,是中国发展的相对优势。但它可能是未来中国社会可持续性发展的阿基里斯之踵(Ramos-Martín, et al., 2006)。因而中国人口年龄结构是中国社会经济系统可持续性发展在人口方面的一个胁迫。
     人类活动时间的社会开支SOHAe和SOHAb虽有所增大,但与发达国家的SOHAb≈24比较,相差很大,说明现在中国从事生产活动的人数(特别是农业从业者)太多,劳动力转移(尤其是转向服务业)的压力还很大,成为中国社会经济系统可持续性发展在人口方面的又一个胁迫。
     (2)在体外能吞吐量ET方面,1990-2006年,中国TET增加了118%,达79.696×1015KJ(2.723×109tce),ETPW增长了164%,而ETH仅增长22%。同时,ETPW/TET比值从68%增大到82%,而ETH/TET比值则从32%降到18%。表明在此期间,中国社会经济系统增加的体外能吞吐量大多消费于经济活动,这是经济发展初期的特征;而生活消费的能源增加不多,意味着物质生活标准提高不快(特别是广大的农村人口)。
     在此期间,EI下降了54%,而能源吞吐总量TET却稳步上升,可见,中国社会经济系统对能源消费需求的持续快速增大及相联的CO2排放量是中国可持续性发展在能源方面的一个严重胁迫。
     (3)在体外能代谢率EMR方面,1990-2006年间,中国EMRSA上涨了89%。在3个产业中,EMR1增幅最大(119%),表明了农业投入的增加和农业的发展,更重要的是反映了投入在第一产业的人类活动时间减少了;EMR3增幅最小(89%),除了说明投入在第3产业的劳动力增多之外,还说明第3产业的发展较慢(资本化水平偏低)。EMRH的增幅最小,表明:(i)用于生活的人类活动时间增加了,这主要反映在就业人员年工作时间的缩短;(ii)物质生活标准的提高,特别是广大农民的物质生活标准的提高不大。
     EMRH将不断提高(如家用汽车保有量的不断增大),而将导致社会经济系统能源吞吐总量TET增大很多。这将是中国社会经济系统可持续性发展在能源方面的另一胁迫。所以,做社会经济系统能源分析时,一定要把家政部门的能源吞吐量ETH考虑在内。
     (3)从2003-2006年这个时间段来分析,生产率ESP和ELP增幅的变化表明了:(i)社会经济系统总体进步加快;(ii)农业就业人员数量减少和增加值增加在同步进行之中,增加值总量与从业人员数量之间没有关联,说明了农业劳动力转移的可行性和必要性;(iii)第二产业ELP2增幅最小,生产效率提高不大,增加值的增加较多依赖于劳动力的增加。
     中国付薪部门的体外能代谢率EMRPW与劳动生产率ELP的变化轨迹(除了1990和1995年外)相当吻合,说明了二者之间密切的相互关系,也印证了能源消费与经济发展之间的关系。
     (5)在生物经济压力BEP方面,1990-2006年,中国BEP增长了130%,而同期的GDP和人均GDP分别增长了374%和312%,可见BEP更好地反映了社会物质生活标准实际的改善状况。而且BEP增大与GDP/cap增长之间存在近乎直线的关系,再次验证了BEP是一个衡量社会经济系统发展的好的生物物理指标。
     (6)基于家政部门的体外能代谢率EMRH,简单估测:要达到1996年西班牙的物质生活标准(EMRH≈3.0MJ/hr),2020年中国的能源需求量约为4.6btce(含生物质能源约0.26btce)。此数值大于魏一鸣等人(2006)的预测值(2.888-3.880btce)。
     本论文还从MSIASM这一独特视角,分析了2000年-2005(2006)年中国(东西部)福建-甘肃的发展差异性及其内在缘由。
     (1)在人类活动时间HA方面,2000-2005年间,福建HAH仅增加了2.5%,小于THA增幅(3.7%),更小于HAPW的增速(12.2%)。表明了7年来福建社会经济系统增加的人类活动时间主要投入于经济活动之中,这是由其人口的年龄结构所致。同时这也是福建现阶段在劳动力资源上的相对优势,但将成为福建未来可持续性发展在人口方面的一个重大胁迫。
     而甘肃的THA长了1.8%,HAPW却减了7.3%;HAH/THA从88.6%升至89.6%,接近发达国家的90%。意味着:(i)甘肃经济规模(就从业人员数量而言)没有扩大,就业人数不升反降;(ii)高比重的HAH/THA是广大农村劳动力没有充分就业所致(年工作时间仅为1,457hr/yr),而非社会进步的体现;(iii)对甘肃未来可持续性发展的胁迫(与福建不同)在于农村劳动力的充分就业,即扩大第2、3产业的雇佣规模(特别是发展劳动密集型产业),将农村劳动力转移出来。
     福建SOHA逐年减小这种变化轨迹可能是福建社会发展的一个相对优势。而甘肃SOHAe和SOHAb几乎没有变化。但甘肃的SOHAe和SOHAb都比全国大许多,也比福建大,而就业人口比重(2005年)高达54%,也反映了第1产业就业人员没有充分就业。
     (2)在体外能吞吐量ET方面,2000-2006年,福建TET增加了94%,达2,008PJ; ETPW增长了112%,而ETH仅增长45%;三者增幅都高于全国同期增幅。同时, ETPW/TET从74%增大到80%,而ETH/TET则从26%降到20%。表明在此期间,福建社会经济系统的资本化水平高于全国,发展程度也高于全国。同样,福建增加的体外能吞吐量也大多消费于经济活动,,而生活消费的能源增加不多,意味着物质生活标准提高不快(特别是广大的农村人口)。
     同期,甘肃TET增幅为41%,增大到1,429PJ,ETPW增长了54%,ETH增幅14%,都远小于福建,也都比全国同期增幅小,特别是ETH的增幅。可见:(i)甘肃资本化水平提高不大(总的投入小);(ii)所增加的体外能吞吐量主要消费于经济活动,ETPW/TET从74%增至81%;(iii)ETH增幅很小,说明甘肃在家政部门的资本化水平没有什么提高,生活改善有限。甘肃社会经济系统发展与福建的最大差异表现在能源消费量,特别是ETPW、ETH及其增长率上,反映了两省在资本化水平上的极大差距。而在2000年两省的差距并不太明显。
     甘肃能源消费量增幅明显小于福建,表明东部社会经济系统的快速发展,伴随着所消费的能源比重越来越大,而将使发展速度较慢的西部处于不利地位。
     2000-2006年,福建能源强度EI的所有指标都低于全国平均水平,而甘肃能源强度指标(除了异常的EI3外)都比全国高出不少。一者说明甘肃的能源效率还相当落后,能源强度降低的空间和压力都比较大,二者也说明了甘肃增加值的创造更多地依靠能源消费。
     (3)在体外能代谢率EMR方面,2000-2005年间,福建EMRSA上涨了87%,EMRPW增长了89%,EMRH也提高了41%。2005年,福建除了EMR2比全国水平低(增幅也小)外,其他指标均高于全国平均水平,反映出了福建社会经济系统发展水平高于全国平均水平这一现实。
     甘肃最突出的是第2产业体外能代谢率EMR2的增幅最大(125%),高于福建EMR2的增幅(54%),也高于同期全国增幅(49%),代表着甘肃工业部门的资本化水平的极大提高,也就是甘肃在工业的投入(比重)极大。
     2006年甘肃EMR2(239,570KJ/hr)比全国同年EMR2(128,467KJ/hr)高了近1倍,而且2000-2006年增幅达143%,远高于全国同期增幅(54%)。除了甘肃原来的基础(包括设备和技术)较差外,一者说明甘肃工业中高耗能产业比重较大,消费的能源多,能源强度大;二者说明甘肃工业的发展需要更多的资本投入(表现为能源投入),三者说明甘肃近几年来社会经济系统的发展主要依赖于工业的增长,而工业的增长又主要依靠资本(能源)的投入。从而影响了其他部门的投入和发展,特别是物质生活水平EMRH的提高。甘肃ERM2和EI2的高数值表明了甘肃工业面临的节能减排等环境压力也相对较高,除了能够促进技术水平和能源效率的提高外,也可能影响甘肃工业的发展。
     (4)在生产率方面,2000-2005(2006)年,甘肃社会生产率和(各产业)劳动生产率的所有指标的增速(增幅)都大于福建,说明了7年来甘肃经济增长主要靠生产率的提高,特别是第2产业和第3产业生产率的提高。2005年生产率指标绝对数除了ELP3高于福建外,甘肃其他各指标都小于福建,尤其是ESP和ELP1的差距更大,这也是两省发展程度不同的一种表现形式。福建省ESP和ELP的所有指标都大于全国平均水平,与其高于全国平均水平的社会经济发展状况相吻合。
     (5)福建和甘肃BEP与GDP/cap增长趋势(曲线)也都比较吻合,再次说明了BEP是衡量社会经济发展和物质生活标准改善的一个好指标。
     作者认识到,需要将BEP指标与历史过程(原来的基础和发展历程)、产业结构、技术水平和资源禀赋等结合起来、综合考虑,才能更好地表征社会经济系统的发展状况,尤其是高耗能产业比重大、技术落后、经济欠发达地区更应该如此。
     本论文的结构为:第一章总结了社会代谢的基本理论、发展历程与发展现状;第二章比较详细地介绍(根据中国具体情况修改后的)社会代谢多尺度综合评估MSIASM方法的基本原理、实际应用和发展状况;第三章应用MSIASM方法,分析了1990-2006年中国社会经济系统的体外能代谢以及与之相关的社会经济系统发展轨迹与可持续性问题;第四章根据体外能代谢的差异性,对比分析福建省与甘肃省的发展状况,从这一独特视角分析中国东西部发展差异性及其成因;文章以对全文的总结和对需要进一步研究的问题的讨论结尾。
Socioeconomic systems input raw materials (including materials and energy) from their natural environments and, through the processes that economists describe as production and consumption, convert them into manufactured products and services, and, finally, output them back to environments in the forms of wastes and emissions. The physical exchange processes (material and energy flows) between human societies and their environments, as well as the internal material and energy flows, is termed Societal Metabolism. The notion of societal metabolism has proved to be fruitful for conceptualizing the interrelations between societies and their natural environments and analysing sustainability.
     Since 1990’s, the study of societal metabolism, especially societal material metabolism, i.e. material flow analysis (MFA), has surged and trended towards maturity. However, most current works on societal metabolism ignore energy flows, that is, energetic metabolism. The“energetic metabolism of societies”, or“society’s energetic metabolism”, or“enrgy flow analysis (EFA)”, mainly studied by Helmut Haberl and colleges, and the“multiple-scale integrated assessment of societal metabolism (MSIASM)”, studied by Mario Giampietro, Kozo Mayumi and colleges, are two main notions of societal energetic metabolism.
     MSIASM, first proposed by Mario Giampietro and Kozo Mayumi in 2000 and further studied by Giampietro in 2003, based on the congruence among resource“Human Activities”, resource“Exosomatic Energy Flows”, and“Added Value Flows”in the hierarchical socioeconomic systems, and using, in an integrated way, incommensurable variables referring to non-equivalent descriptive domains(coming from various scientific disciplines, e.g. biophysics, economics, sociology, anthropology, and energy science) and data gathered at distinct hierarchical levels, addresses the various relevant dimensions of societal development and sustainability.
     First, this dissertation, using the approach of MSIASM modified based on China’s statistical tradition and biomass energy consumption, analyses China’s socieconomic system development trajectory, between 1990 and 2006, as well as the constraints on sustainability.
     (1) In Human Activities, China’s HAH increases faster than HAPW, showing the results of China’s socioeconomic development. And, compared to the world, lower HAH, higher HAPW/THA ratio and the age structure of population show the comparative advantage in working forces at this moment for China, but may represent an Achilles’heel for sustainability.
     (2) While EI decreases explicitly, TET in China grows steadily to 797×1015KJ(2.7×109tce)in 2006. But ETH increases much slower than ETPW. Among exosomatic energy metabolism rates, increase of EMRH is the least. As economy grows further, ETH will increase and result in a big increase of TET.
     (3) China’s economic societal productivity and economic labour productivity increased obviously. But the increasing degree of ELP2 is quite small, implying that the industrial growth relies mainly upon the enlargement of employment.
     (4) China’s empirical analysis showes that bioeconomic pressure (BEP) is a better indicator to represent socioeconomic development than GDP or GDP per capita. And the nearly linear relationship between BEP and GDP per capita verifies BEP is a good biophysical indicator to measure socioeconomic system development.
     (5) Based on the ETH level and its share in TET, it is roughly estimated that, to reach the material living level of Spain in 1996 (EMRH≈3.0MJ/hr), the energy requirement of China in 2020 is about 4,600mtce (including 260mtce biomass energy consumption) . TET and its related CO2 emission will be a big constraint on China’s sustainable development.
     Second, the dissertation, from the unique perspective of MSIASM, analyses the differenciation of socioeconomic development between Fujian in the eastern China and Gansu Province in the western China, from 2000 to 2005.
     (1) The increase of HAPW was much higher than THA and HAH in Fujian, but Gansu’s HAPW reduced by 7.3%, implying the size of Gansu economy did not enlarge.
     (2) TET in Fujian and Gansu increased to 2,008PJ and 1,429PJ, respectively. But the rate of TET increase in Gansu was much lower than Fujian, which was one of main reasons leading to the development diferenciation between Gansu and Fujian. And this trend may maintain, and even enhance, for a long time.
     (3) The increase rates of ETH and EMRH were much slower than ETPW and EMRPW in both Fujian and Gansu, implying the material living standards improved limitedly, especially in Gansu.
     (4) EMR2 and EI2 in Gansu economy were nuch higher than Fujian, implying industrial growth in Gansu required much capitalization than Fujian, which limited capitalization in other sectors, especially household sector.
     The dissertation consists of four chapters. The 1st chapter introduces briefly the concepts, history, basic paradigm and“state of the art”of societal metabolism.
     The 2nd chapter reviews the rationale, empirical researches and scientificity of Multiple-Scale Integrated Assessment of Societal Metabolism. The 3rd chapter, using the approach of MSIASM, analyses China’s socioeconomic development trajectory, from 1990 to 2006, and the constraints on its sustainability. The last Chapter, from the perspective of MSIASM, analyses the diferenciation of socioeconomic development between Fujian in the eastern China and Gansu in the western China, between 2000 and 2005.
引文
1 Adriaanse, A., S. Bringezu, A. Hammond, et al. Resource Flows: The Material Basis of Industrial Economies[M]. Washington, DC: World Resources Institute. 1997.
    Ayres, R. U. and U. E. Simonis. Industrial Metabolism: Restructuring for Sustainable Development[M]. Tokyo: United Nations University Press.
    Matthews, E., C. Amann, M. Fischer-Kowalski, et al. The Weight of Nations: Material Outflows from Industrial Economies[M]. Washington, DC: World Resources Institute. 2000.
    2 Smil, V. Energy in World History[M]. Boulder, CO: Westview Press. 1994.
    3 Fischer-Kowalski , M. and H. Weisz. 1999. Society as hybrid between material and symbolic realms:Toward a theoretical framework of society-nature interrelation[J]. Advances in Human Ecology, 8: 215– 251.
    4 McDonnell, M. J. and S. T. A. Pickett. (eds). Humans as Components of Ecosystems: The Ecology of Subtle Human Effects and Populated Areas[C]. New York: Springer, 1997.
    5 Georgescu-Roegen , N. The Entropy Law and the Economic Process[M]. Cambridge, MA: Harvard University Press, 1971.
    6 Daly, H. E. 1992. Is the entropy law relevant to the economics of natural resourcescarcity? Yes, of course it is[J]! Journal of Environmental Economics and Management, 23: 91–95.
    7 Young, J. T. 1991. Is the entropy law relevant to the economics of natural resource scarcity[J]? Journal of Environmental Economics and Management, 21: 169–179.
    8 Schr?dinger, E. What is Life[M]?. London: Cambridge University Press, 1967.
    10 Ayres, R.U. Industrial metabolism[A]. In: Ausubel, J.H. and H. Sladovich (eds.): Environment and Technical Change[C]. Washington DC. 1989.
    11 Erkmann, S. 1997. Industrial ecology: An historical view[J]. Journal of Cleaner Production 5(1–2): 1–10.
    12 Frosh, R. and N.Gallopoulos. 1989. Strategies for manufacturing[J]. Scientific American, 261(3): 144-152。
    13 Frankl, P. and M. Gamberale. 1998. The methodology of life-cycle assessment (LCA) and its application to the energy sector[A]. In: Ulgiati S et al., (eds). Advances in Energy Studies, Energy Flows in Ecology and Economy[C]. Rome: MUSIS; p241–256.
    14 Duchin, Faye. Input-Output Economics and Material Flows[M]. Renssalaer Working Papers in Economics. 2004.
     16 Podolinsky, S.A. 1880. Trud cheloveka i ego otnoshenie k raspredeleniiu energii (Human labour and its relations to the distribution of energy)[J], Slovo, 4/5: 135-211.
    17韩立新. 2002.马克思的物质代谢概念与环境保护思想[J].哲学研究(2): 6~13.
    18 Ostwald, W. Energetische Grundlagen der Kulturwissenschaft. [Energetic fundamentals of cultural studies][M]. Leipzig: Akademische Verlagsgesellschaft. 1909.
    19 Cook, E. 1971. The flow of energy in an industrial society[J]. Scientific American, 224(3): 135–144.
    20 Kemp, W. B. 1971. The flow of energy in a hunting society[J]. Scientific American, 224(3): 105–115.
    21 Rappaport, R. A. 1971. The flow of energy in an agricultural society[J]. Scientific American, 224(3): 117–133.
    22 Boulding, K. E. 1973. The economics of the coming spaceship Earth[A]. In: H. E. Daly(ed.) Towards a Steady State Economy[C]. San Francisco: Freeman.
    23 Wolman, Abel. 1965. The metabolism of the city[J]. Sci. Am., 213: 179-190.
    24 United Nations. Draft Guidelines for Statistics on Materials/Energy Balance[M]. UN document E/CN.3/493. 1976.
    25 Integrated Environmental and Economic Accounting. 2003-Handbook on National Accounting, UN, EC, IMF,OECD, World Bank[M]. 2003.
    26 Eurostat. Economy-Wide Material Flow Accounts and Derived Indicators. A Methodological Guide[M]. Luxembourg: Office for Official Publications of the European Communities. 2001.
    28 Matthews, E., C. Amann, S. Bringezu, et al. The Weight of Nations: Material Outflows from Industrial Economies[M]. Washington, DC: World Resources Institute. 2000.
    29 Bringezu, S., H. Schütz, S. Steger, et al. 2004. International comparison of resource use and its relation to economic growth.The development of total material requirement, direct material inputs and hidden flows and the structure of TMR[J]. Ecological Economics, 51: 97- 124.
    30 Behrens, A., S. Giljum, J. Kovanda and S. Niza. The Material Basis of the Global Economy. Implications for Sustainable Resource Use Policies in North and South[M]. SERI.
    31 Eurostat. Material use in the European Union 1980–2000. Indicators and Analysis[M]. Luxembourg: Office for Official Publications of the European Communities. 2002.
    32 Hüttler, W., H. Payer, and H. Schandl. National Material Flow Analysis for Austria 1992[M]. Vienna: IFF (Institute for Interdisciplinary Studies of Austrian Universities), Department of Social Ecology. 1997.
    33 Schandl, H., H. Weisz, and B. Petrovic. 2000. Materialflussrechnung für ?sterreich1960 bis 1997[J]. [Material flow accounts of Austria 1960 to 1997]. Statistische Nachrichten, 55(2): 128–137.
    34 Schütz, H. and S. Bringezu. 1993. Major material flows in Germany[J]. Fresenius Environmental Bulletin, 2: 443–448.
    35 Kuhn, M., et al. 1994. Environmental–economical trends 1960–1990 (Umwelt?konomische Trends 1960 bis 1990)[J]. Wirtschaft Statistik, (8/1994): 658–77 (in German).
    36 Baart, I., A. Colard, C. Ehgartner, et al. Materialflüsse in den USA, Saudi Arabien und der Schweiz[M]. Social Ecology Working Paper no. 74, Institute of Social Ecology, Vienna. 2004.
    37 Weisz, H., C. Amann, N. Eisenmenger, et al. Development of Material Use in the European Union 1970–2001. Material Composition, Cross-country Comparison, and Material Flow Iindicators[M]. Eurostat Working Papers and Studies, Office for Official Publications of the European Communities, Luxembourg. 2004. Weisz, H., F. Krausmann, C. Amann, et al. 2006. The physical economy of the European Union: Cross-country eomparison and determinants of material consumption[J]. Ecological Economics, 58(4): 676–698.
    38 Halla S., S. Dudding and C. Kennedy. 2003. Estimating the urban metabolism of Canadian cites: greater Toronto area case study[J]. Can. J. Civ. Eng., (30): 468-483.
    39 Garvin L., N. Henry and M. Vernon. Community Materials Flow Analysis: A Case Study Of Ann Arbor, Michigan[M]. Center for Sustainable Systems, Report No. CSS00-02, University of Michigan, Ann Arbor, Michigan, August, 2000.
    40 Kimberley Warren-Rhodes and Albert Koeing. 2001. Escalating trends in the urban metabolism of Hong Kong: 1971-1997[J]. AMBIO, (11): 429- 438.
    41 Liu, Wang and Yang. 2004. Metabolism and driving forces of Chinese urban household comsumption[J]. Population and Environment, 26(4): 325-341.
    42 Kleijn, R., R. Huele and E. van der Voet. 2000. Dynamic substance flow analysis: the delaying mechanism of stocks, with the case of PVC in Sweden[J]. Ecological Economics, 32: 241–254.
    43 Andersen, J. P., and B. Hyman. 2001. Energy and material flow models for the US steel industry[J]. Energy, 26: 137–159.
    44周哲李有润沈静珠等. 2001.煤工业的新陈代谢及其生态优化[J].计算机与应用化学, 18(3):193~198.
    45刘毅.中国磷代谢与水体富营养化控制政策研究[D].清华大学博士学位论文. 2004.
    46 Giljum, Stefan. Biophysical Dimensions of North-South Trade: Material Flows and Land Use[D]. Ph D Dissertation, The University of Vienna. 2003.
    47黄贤金于术桐马其芳等. 2006.区域土地利用变化的物质代谢响应初步研究[J].自然资源学报, 21(1): 1~8.
    48 EEA (European Environment Agency). Environment in the European Union at the Turn of the Century[M]. Environmental assessment report no. 2. Luxembourg: European Environment Agency, Office for Offi.cial Publications of the European Union. 1999.
    49 Eurostat. Towards Environmental Pressure Indicators for the EU[M]. Luxembourg: Office for Official Publications of the European Communities. 1999.
    50 Rosa, E. A., G. E. Machlis and K. M. Keating. 1988. Energy and Society[J]. Annual Review of Sociology 14: 149-72.
    51 NCV→GCV的系数:石油及其制品1.06,天然气1.11,硬煤1.04,褐煤1.19,生物质1.10(Haberl, et al., 2006)。
    53 Boyden, S. Biohistory, the Interplay between Human Society and the Biosphere[M]. Paris: UNESCO and Parthenon Publishing Group. 1992.
    54 Sitch, S., B. Smith, I. C. Prentice, et al. 2003. Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model[J]. Global Change Biology, 9(2): 161–185.
    55 Gerten, D., A. Bondeau, H. Hoff, et al. 2004. Assessment of "green" water fluxes with a dynamic global vegetation model[A]. In: B. Webb, et al.(eds). Hydrology: Science and Practice for the 21st Century, Vol. I[C]. Krips, The Netherlands: Proceedings of the British Hydrological Society International Conference, Imperial College, London.
    56 Krausmann, F., H. Schandl, and N. B. Schulz. Long Term Industrial Transformation: A Comparative Study on the Development of Social Metabolism and Land Use in Austria and the United Kingdom 1830–2000[M]. Social Ecology Working Paper No. 70, Institute of Social Ecology, Vienna. 2003.
    57 Weisz, H., F. Krausmann, and S. Sangkaman. Resource Use in a Transition Economy. Material- and Energy-Flow Analysis for Thailand 1970/1980–2000[M]. Social Ecology Working Paper No. 81, Institute of Social Ecology, Vienna. 2004.
    58 Krausmann, F. 2004. Milk, manure and muscular power. Livestock and the industrialization of agriculture[J]. Human Ecology, 32(6): 735–773.
    59 Singh, S. J. and H. Schandl. 2003. Socio-economic metabolism in the Nicobar Islands. Empirical research in society-nature interactions[A]. In: Benzing, B. and B. Herrmann (eds.). Exploitation and Overexploitation in Societies. Past and Present. IUAES-Intercongress 2001 Goettingen[C], Münster: LIT Publishing House.
    60 Sundkvist, ?., A. Jansson, ?. Enefalk and P. Larsson. 1999. Energy flow analysis as a tool for developing a sustainable society—a case study of a Swedish island[J]. Resources, Conservation and Recycling, 25: 289–299.
    62 Tjahjadi, B., D. Sch?fer, W. Radermacher, et al. 1999. Material and energy flow accounting in Germany: data base for applying the national accounting matrix including environmental accounts eoncept[J]. Structural Change and Economic Dynamics, (10): 73-97.
    63 Schulz, Niels B. Contributions of Material and Energy Flow Accounting to Urban Ecosystems Analysis: Case Study Singapore[M]. UNU-IAS Working Paper No.136, 2005.
    65 Adams, R N. The Eight Day: Social Evolution as the Self-Organization of Energy[M]. Austin: University of Texas Press, 1988.
    66 Cleveland, C J, Costanza R, et al. 1984. Energy and the U. S. Economy: A Biophysical Perspective[J]. Science, 225: 880-889.
    67 Costanza, R. 1980. Embodied energy and economic valuation[J]. Science, 210: 1219-1224.
    68 Herendeen, R A. 1981. Energy intensities in economic and ecological systems[J]. Journal of Theoretical Biology, 91: 607-620.
    69 Kaufmann, R. 1992. A biophysical analysis of the energy/real GDP ratio: implications for substitution and technical change[J]. Ecological Economics, 6: 35-56.
    70 Odum, H T. 1971. Environment, Power, and Society[M]. New York: Wiley- Interscience.
    71 Pimentel, D. and M. Pimentel. 1979. Food, Energy and Society[M]. London: Edward Arnold.
    72 Watt, K. 1989. Evidence of the role of energy resources in producing long waves in the US economy[J]. Ecological Economics, 1: 181-195.
    73 Stern, David. A Multivariate Cointegration Analysis of the Role of Energy in the U.S. Macroeconomy[M]. Working Papers in Ecological Economics, No. 9803. Centre for Resource and Environmental Studies, Ecological Economics Program. THE AUSTRALIAN NATIONAL UNIVERSITY. 1998.
    74 Granger, C. W. J. 1969. Investigating causal relations by econometric models and cross-spectral methods[J], Econometrica, 37: 424-438.
    75 EIA. International Energy Outlook 2000[M]. Energy Information Administration, DoE, USA. 2000.
    76 Mario Giampietro(1953-):Senior researcher and Director of the Unit of Technological Assessment and Food Technology at the National Research Institute on Food and Nutrition (INRAN), Rome, Italy; currently a reseach professor at Universitat Autònoma de Barcelona, Spain. E-mail: giampietro@inran.it.
    77 Kozo Mayumi (1954-):graduated from Vanderbilt University under Prof. Nicholas Georgescu-Roegen, now a full professor at the University of Tokushima, Japan. E-mail: mayumi@ias.tokushima-u.ac.jp.
    78 Leotief, W.W. 1941. The Structure of American Economy, 1919-1929: An Empirical Analysis of Equilibrium Analysis[M]. Cambridge, MA: Harvard University Press.
    79 Leontief, W. 1966. Input-Output Economics[M]. New York: Oxford University Press.
    80 Zipf, G K. National Unity and Disunity: The Nation as a Bio-social Organism[M]. Bloomington, IN: The Principia Press, 1941.
    81 Calstein, T. Time resources, society and ecology: On the capacity for human interaction in space and time in pre-industial societies[C]. //Lund Studies in Geography, Ser. B: Human Geography No.49. Lund: The Royal University of Lund, 1982.
    82许多国家的人口和体重数据可从“James, W.P.T. and E.C. Schofield. Human Energy Requirement[M]. Oxford: Oxford University Press.1990.”查到。
    84 WU, Jianguo. 1999. Hierarchy and scalling: Extrapolating information along a scalling ladder[J]. Canadian Journal of Remote Sensing. 25(4): 367-380.
    85 Allen, T. F. H. and T. B. Starr. Hierarchy Theory: Perspective for Ecological Complexity[M]. Chicago: University of Chicago Press, 1982.
    86因统计数据的调整,不同版本的“统计年鉴”的数据有所出入。
    87 Jian, W. Fueling the Dragon: China's Quest for Energy Security and Canada's Opportunities[M]. Asia Pacific Foundation of Canada, Vancouver, 2005.
    88 Zweig, D., Fianbai, B., 2005. China's global hunt for energy[J]. Foreign Affairs 84: 25–38.
    89 Aldhous, P. 2005. Energy: China's burning ambition[J]. Nature, 435: 1152–1154.
    90 Smil, V. Energy at the Crossroads.: Global Perspectives and Uncertainties[M]. Cambridge, Massachusetts: MIT Press, 2003.
    91朱越中2002.中国能源与经济增长关系现状分析[J].经济研究参考, (72): 26-31.
    92曾胜我国能源消费与经济增长的关联关系研究[D].西南交通大学硕士论文, 2004, pp.72.
    93何宏我国能源消费同经济增长变动关系实证研究——基于分位回归法[D].厦门大学硕士论文, 2006, pp.49.
    94国涓项吉宁2006.辽宁能源消费与经济增长关系的实证分析[J].辽宁工程技术大学学报(社会科学版), 8(6): 577-580.
    95史丹1999.结构变动是影响我国能源消费的主要因素[J].中国工业经济, (11): 38-43.
    96林艳君冯春萍2006.上海市产业结构变化对能源强度的影响[J].能源研究与信息, 22(1): 30-35.
    97徐国泉刘则渊2007. 1998~2005年中国八大经济区域全要素能源效率——基于省际面板数据的分析[J].中国科技论坛, (7): 68-72.
    98贺建华2006. 2005年青海省能源消耗情况分析.青海统计, (10): 22-24.
    99马晓微刘兰翠2007.区域产业终端能源消费的影响因素[J].中国能源, 29(7): 35-38.
    100王庆一2005.中国的能源效率及国际比较[J].节能与环保, (6): 10-13.
    101戴彦德朱跃中.应慎重看待能源效率水平评价的国际比较[N].中国经济时报, 2005年6月17日.
    102杨宏伟张敏思2007.高能耗产品出口对我国能源环境的利弊分析[J].中国能源, 29(1): 27-29, 44.
    103张德英我国工业部门碳源排碳量估算办法研究[D].北京林业大学硕士论文, 2005. pp. 63.
    104储慧斌.中国能源需求及其风险管理研究[D].湖南大学博士学位论文, 2005.
    105李洪嫔杨永刚2006.中国能源形势和政策浅析[J].资源与产业, 8(3): 9-13.
    106姜克隽胡秀莲等2007.中国能源税体系设想[J].绿叶, (7): 26-27.
    107李树标1998.我国能源工业中长期趋势预测与分析[J].预测, (2): 16-20.
    108杨宏伟周大地2005.实现中国能源与环境协调发展的战略对策[J/OL].环境污染与防治网络版, (1):1-8.
    109杨文培2005.我国经济持续发展的能源需求分析[J].煤炭经济研究, (285): 7-8, 24.
    110 EIA.国家能源展望——未来国际能源市场分析与预测(至2025年)[M]. Energy Information Administration, DoE. 2005.
    111沈玉志中国能源发展的决策模型研究[D].辽宁工程技术大学博士论文, 2004. pp.143.
    112张勇卫.我国能源需求预测与发展战略研究[D].武汉理工大学硕士论文, 2006. pp.58.
    113陈文颖吴宗鑫2001.用MARKAL模型研究中国未来可持续能源发展战略[J].清华大学学报(自然科学版), 41(12): 103-106.
    114于弘文2001.从2000年人口普查看我国人口状况的几个特点[J].人口研究, 25(4): 12-18.
    115翟振武2001.中国人口规模与年龄结构矛盾分析[J].人口研究, 25(3): 1-7.
    116引自:王庆一2005.中国的能源与环境:问题及对策[J].能源与环境, (3): 4-11.
    117钟华平岳燕珍樊江文2003.中国作物秸秆资源及其利用[J].资源科学, 25(4): 62-67.
    118但新球1994.利用能源需求与消耗平衡估测农村烧柴总量方法探讨[J].中南林业调查规划, (47): 4-5.
    119林治柑2007.福建能源消费与GDP增长关系研究[J].能源与环境, (5): 22-23.
    120陈祖英赵忠廉. 2006.能源对福建经济发展的支撑力分析[J].能源与环境, (5): 18-20.
    121赵忠廉2006.福建能源生产、消费与结构状况分析[J].福建能源开发与节约, (3): 12-14.
    122赵忠廉2002.福建支持可再生能源规模化发展的法律制度选择[J].中国能源,27(4): 38-40.
    123刘叶志. 2006.资源约束下的福建能源战略[J].发展研究, (8): 43-44.
    124贾亚娟沈发云李阳. 2007.自然保护区林缘社区能源需求分析与研究——以甘肃白水江国家级自然保护区为例[J].干旱区资源与环境, 21(2): 121-128.
    125马存世刘正祥. 2007.甘肃农林牧区能源建设的现状与对策[J].中国林业, (1B): 44-45.
    126王志锋.陇中黄土丘陵地区农村生活能源潜力估算及消费结构分析[D].兰州大学硕士论文, 2007
    127李国柱.区域农村生活能源生态经济系统研究[D].兰州大学博士论文,2005.
    [1] Ayres, R. U. and L. W. Ayres. Economy-wide applications of mass-balance principles to materials and waste. Accounting for resources, Vol. 1[M]. Northampton: Edward Elgar, 1998.
    [2] Ayres, R. U. and A. Kneese. 1969. Production, consumption and externalities[J]. American Economic Review, 59(3): 282–297.
    [3] Ayres, R. U. and U. E. Simonis. Industrial Metabolism: Restructuring for Sustainable Development[M]. Tokyo: United Nations University Press, 1994.
    [4] Bringezu, S., M. Fischer-Kowalski, R. Kleijn, and V. Palm. Regional and National Material Flow Accounting: From Paradigm to Practice of Sustainability[M]. Wuppertal special report no. 4, Wuppertal, Germany: Wuppertal Institute for Climate, Environment, Energy,1997.
    [5] Bringezu, S., R. Behrensmeier, and H. Schütz. 1998. Material flow accounts indicating the environmental pressure of economic sectors[A]. In: Uno, K. and P. Bartelmus (eds.). Environmental Accounting in Theory and Practice[C]. Dordrecht: Kluwer.
    [6] Bringezu, S., M. Fischer-Kowalski, R. Kleijn and V. Palm. The ConAccount Agenda: The Concerted Action on Material Flow Analysis and its Research & Development Agenda[M]. Wuppertal special report no. 8, Wuppertal, Germany: Wuppertal Institute for Climate, Environment, Energy, 1998.
    [7] Bringezu, S. and H. Schütz. Material Use Indicators for the European Union, 1980-1997[M]. Luxembourg: Office for Official Publications of the European Communities, 2001.
    [8] Cleveland, C. J., R. Costanza, C. A. S. Hall and R. K. Kaufmann. 1984. Energy and the U.S. economy: a biophysical perspective[J]. Science, 225: 890–897.
    [9] Cleveland C. J., R. Kaufman, and D. Stern. 2000. Aggregation and the role of energy in the economy[J]. Ecological Economics, 32: 301–17.
    [10] European Communities. Economy-Wide Material Flow Accounts and Derived Indicators. A Methodological Guide[M]. Luxembourg: Office for Official Publications of the European Communities, 2001.
    [11] Conforti, P. and M. Giampietro. 1997. Fossil energy use in agriculture: aninternational comparison[J]. Agriculture, Ecosystems and Emvironment, 65:231-243.
    [12] European Communities. Material Use in the European Union 1980-2000: Indicators and Analysis[M]. Luxembourg: Office for Official Publications of the European Communities, 2002.
    [13] Falconí-Benítez, F. 2001. Integrated assessment of the recent economic history of Ecuador[J]. Population and Environment, 22(3): 257-280.
    [14] Falconí-Benítez, F., J. Ramos-Martin. 2003. Social metabolism of societies: The bifurcation between Spain and Ecuador[A]. In: Ulgiati, S, M. T. Brown, M. Giampietro, et al. (eds.). Advances in Energy Studies. Reconsidering the Importance of Energy[C]. Padova, Italy: SGE Publisher, p45-61.
    [15] Fischer-Kowalski, M. 1997. Society’s metabolism: On the childhood and adolescence of a rising conceptual star[A]. In: Redclift, M. and G. R. Woodgate (eds.).The International Handbook of Environmental Sociology[C], Cheltenham, UK: Edward Elgar.
    [16] Fischer-Kowalski, M. 1998. Society’s metabolism: The intellectual history of materials flow analysis. Part 1. 1860–1970[J]. Journal of Industrial Ecology 2(1): 61– 78.
    [17] Fischer-Kowalski, M. 2001. Society’s Metabolism: Social science perspectives on what this concept guides us to see (PPT)[Z]. ConAccount.
    [18] Fischer-Kowalski, M. 2003. On the history of industrial metabolism[A]. In: Bourg, D. and S. Erkman (eds.). Perspectives on Industrial Ecology[C]. Sheffield, UK: Greenleaf Publishing, p35-45.
    [19] Fischer-Kowalski, M. and C. Amann. 2001. Beyond IPAT and Kuznets curves: Globalization as a vital factor in analysing the environmental inpact of socio-economic metabolism[J]. Population and Environment, 23(1): 7-35.
    [20] Fischer-Kowalski, M. and H. Haberl. 1993. Metabolism and colonization, modes of production and the physical exchange between societies and nature[J]. Innovation in Social Sciences Research, 6: 415–442.
    [21] Fischer-Kowalski, M. and H. Haberl. 1997. Tons, joules, and money: Modes of production and their sustainability problems[J]. Society and Natural Resources, 10(1): 61–85.
    [22] Fischer-Kowalski , M. and W. Hüttler. 1999. Society’s metabolism: The intellectual history of materials flow analysis. Part 2. 1970–1998[J]. Journal of Industrial Ecology, 2(4): 107–137.
    [23] Giampietro, M. 1994. Using hierarchy theory to explore the concept of sustainable development[J]. Futures, 26(6): 616-625.
    [24] Giampietro, M. 1997a. Linking technology, natural resources, and the socioeconomic structure of human society: A theoretical model[J].Advances in Human Ecology, 6: 75–130.
    [25] Giampietro, M. 1997b. Socioeconomic constraints to farming with biodiversity[J]. Agriculture, Ecosystems and Environment, 62: 145-167.
    [26] Giampietro, M. 1997c. Socioeconomic pressure, demographic pressure, environmental loading and technological changes in agriculture[J]. Agriculture, Ecosystems and Environment, 65: 201-229.
    [27] Giampietro, M. 1997d. The link between resources, technology and standard of living: a theoretical model[J]. Advances in Human Ecology, 6: 73-128.
    [28] Giampietro, M. 1998. Energy budget and demographic changes in socioeconomic systems[A]. In: Gansl?sser, U. and M. O’Connor (eds.). Life Science Dimensions of Ecological Economics and Sustainable Uses[C]. Fürth: Filander Verlag, p327-354.
    [29] Giampietro, M. 2001a. Complexity and scales: the challenge for integrated assessments[A]. In: Rotmans, J. and M. van Asselts (eds.). Scaling Issues in Integrated Assessment[C]. Dordrecht, the Netherlands: Kluwer Academic Publishers, p305-318.
    [30] Giampietro, M. Multi-scale Integrated Analysis of Agroecosystems[M]. Boca Raton: CRC Press, 2003.
    [31] Giampietro, M. 2006. Comments on“The energetic metabolism of the European Union and the United States”by Haberl and colleagues: Theoretical and practical considerations on the meaning and usefulness of traditional energy analysis[J]. Journal of Industrial Ecology 10(4): 173–185.
    [32] Giampietro, M., S. G. F. Bukkens and D. Pimental. 1993. Labour productivity: A biophysical definition and assessment[J]. Human Ecology, 21(3): 229-260.
    [33] Giampietro, M., S. G. F. Bukkens and D. Pimental. 1994, Models of energy analysis to assess the performance of food systems[J]. Agricultural Systems, 45(1): 19-41.
    [34] Giampietro, M., S. G. F Bukkens and D. Pimental. 1997. The link between resources, technology and standard of living: Examples and applications[J]. Advances in Human Ecology, 6: 129-199.
    [35] Giampietro, M, G. Cerretelli, D. Pimentel. 1992. Energy analysis of agricultural ecosystem management: human return and sustainability[J]. Agriculture, Ecosystems & Environment, 38: 219–244.
    [36] Giampietro, M. and K. Mayumi. 1997. A dynamic model of socioeconomic systems based on hierarchy theory and its application to sustainability[J]. Structural Change and Economic Dynamics, 8(4): 453-469.
    [37] Giampietro, M. and K. Mayumi. 2000a. Multiple-scale integrated assessment of societal metabolism: Introducing the approach[J].Population and Environment, 22(2): 109-154.
    [38] Giampietro, M. and K. Mayumi. 2000b. Multiple-scale integrated assessment of societal metabolism: Integrating biophysical and economic representations across scales[J]. Population and Environment, 22(2): 155-210.
    [39] Giampietro, M. and K. Mayumi. 2004. Complex systems and energy[A]. In: Cleveland C, (ed.). Encyclopedia of Energy. San Diego: Elsvier.
    [40] Giampietro, M., K. Mayumi and G. F. Bukkens. 2001. Multiple-scale integrated assessment of societal metabolism: An analytical tool to study development and sustainability[J]. Environment, Development and Sustainability, 3: 275-307.
    [41] Giampietro, M., K. Mayumi, and J. Martinez-Alier. 2000. Introduction to the special issues on societal metabolism: Blending new insights from complex system thinking with old insights from biophysical analyses of the economic process[J]. Population and Environment, 22(2): 97-108.
    [42] Giampietro, M., K. Mayumi and G. Munda. 2006. Integrated asssessment and energy analysis: Quality assurance in multi-criteria analysis of sustainability[J]. Energy, 31: 59-86.
    [43] Giampietro, M., K. Mayumi and J. Ramos-Martin. 2006. Can biofuels replace fossil energy fuels? A multi-scale integrated analysis based on the concept of societal and ecosystem metabolism: Part 1[J]. International Journal of Transdisciplinary Research, 1(1): 51-87.
    [44] Giampietro, M. and G. Pastore. 1999. Multidimensional reading of the concept of rural intensification in China: the AMOEBA approach[J]. Critical Reviews in Plant Sciences, 18(3): 299-330.
    [45] Giampietro, M. and G. Pastor. 1999. Biophysical roots of“enjoyment of life”according to Georgescu-Roegen’s bioeconomic paradigm[A]. In: Mayumi, K. and J. Gowdy (eds.). Bioeconomics and Sustainability: Essays in Honor of Nicholas Georgescu-Roegen[C]. Cheltenham, UK: Edward Elgar Publisher, p287-325.
    [46] Giampietro, M. and D. Pimentel. 1990. Assessment of the energetics of human labor[J]. Agriculture, Ecosystems & Environment, 32: 257–272.
    [47] Giampietro, M. and D. Pimentel. 1991a. Energy analysis models to study the biophysical limits for human exploitation of natural processes[A]. In: Rossi, C. and E. Tiezzi (eds.). Ecological Physical Chemistry, Proceedings of an International Workshop[C], 8–12 November 1990, Siena, Italy. Amsterdam: Elsevier. p139–183.
    [48] Giampietro, M. and D. Pimentel. 1991b. Energy efficiency: Assessing the interaction between humans and their environment[J]. Ecological Economics, 4: 117–144.
    [49] Gomiero, T. and M. Giampietro. 2001. Multiple-scale integrated analysis offarming systems: The Thuong Lo Commune (Vietnamese Uplands) case study[J]. Population and Environment, 22(3): 315-352.
    [50] Grünbühel, C. M., et al. 2003. Socioeconomic metabolism and colonization of naural prosesses in Sang Saeng village: Material and energy flows, land use, and cultural change in Northeast Thailand[J]. Human Ecology, 31(1): 53-86.
    [51] Haberl, H. 1997. Human appropriation of net primary production as an environmental indicator: Implications for sustainable development[J]. Ambio, 26(3): 143–146.
    [52] Haberl, H. 2001. The energetic metabolism of societies, Part I: Accounting concepts[J]. Journal of Industrial Ecology, 5(1): 11–34.
    [53] Haberl, H. 2002. The energetic metabolism of societies, Part II: Empirical examples[J]. Journal of Industrial Ecology, 5(2): 71–88.
    [54] Haberl, H. 2006a. The global socioeconomic metabolism as a sustainability problem[J]. Energy—The International Journal, 31(1): 87–99.
    [55] Haberl, H. 2006b. On the utility of counting joules: Reply to comments by Mario Giampietro[J]. Journal of Industrial Ecology, 10(4): 187–192.
    [56] Haberl, H., K.-H. Erb, F. Krausmann, W. Loibl, N. B. Schulz, and H. Weisz. 2001. Changes in ecosystem processes induced by land use: Human appropriation of net primary production and its influence on standing crop in Austria[J]. Global Biogeochemical Cycles, 15(4): 929–942.
    [57] Haberl, H. and F. Krausmann. 2001. Changes in population, affluence and environmental pressures during industrialization. the case of Austria 1830–1995[J]. Population and Environment, 23: 49–70.
    [58] Haberl, H., K.-H. Erb, F. Krausmann, et al. 2003. Land-use change and socioeconomic metabolism in Austria, part II: land-use scenarios for 2020[J]. Land Use Policy, 20(1): 21–39.
    [59] Haberl, H., N. B. Schulz, C. Plutzar, et al. 2004a. Human appropriation of net primary production and species diversity in agricultural landscapes[J]. Agriculture, Ecosystems & Environment, 102(2): 213–218.
    [60] Haberl, H., M. Fischer-Kowalski, F. Krausmann, H. Weisz, and V. Winiwarter. 2004b. Progress towards sustainability? What the conceptual framework of material and energy flow accounting(MEFA) can offer[J]. Land Use Policy, 21(3): 199–213.
    [61] Haberl, H., C. Plutzar, K.-H. Erb, V. Gaube, M. Pollheimer, and N. B. Schulz, 2005. Human appropriation of net primary production as determinant of avifauna diversity in Austria[J]. Agriculture, Ecosystems & Environment, 110(3–4): 119–131.
    [62] Haberl, H., H. Weisz, C. Amann, A. Bondeau, N. Eisenmenger, K-H. Erb, M. Fischer-Kowalski, and F. Krausmann. 2006. The energetic metabolismof the European Union and the United States: Decadal energy input time-series with an emphasis on biomass[J]. Journal of Industrial Ecology, 10(4): 151–171.
    [63] den Hond, F. 2000. Industrial ecology: a review[J]. Reg Environ Change, 1(2): 60-69.
    [64] Hinterberger, F., S. Giljum and M. Hammer. Material Flow Accounting and Analysis (MFA). A Valuable Tool for Analyses of Society-Nature Interrelationships[M]. SERI Background Paper. Sustainable Europe Reseach Institute (SERI), Vienna, 2003.
    [65] Huang, S., C. Lee and C. Chen. 2006. Socioeconomic metabolism in Taiwan: Emergy synthesis versus material flow analysis[J]. Resources, Conservation and Recycling, 48:166-196.
    [66] Kleijn, R., R. Huele and E. van der Voet. 2000. Dynamic substance flow analysis: the delaying mechanism of stocks, with the case of PVC in Sweden[J]. Ecological Economics, 32 (2): 241–254
    [67] Krausmann, F. and H. Haberl. 2002. The process of industrialization from the perspective of energetic metabolism. Socioeconomic energy flows in Austria 1830–1995[J]. Ecological Economics, 41(2): 177–201.
    [68] Krausmann, F., H. Haberl, N. B. Schulz, et al. 2003. Land-use change and socio-economic metabolism in Austria—Part I: driving forces of land-use change: 1950-1995[J]. Land Use Policy, 20: 1-20.
    [69] Krausmann, F., H. Haberl, K.-H. Erb and M. Wackernagel. 2004. Resource flows and land use in Austria 1950–2000: Using the MEFA framework to monitor society-nature interaction for sustainability[J]. Land Use Policy, 21(3): 215–230.
    [70] Lawrence Berkeley National Laboratory. China Energy Databook V6.0 (中国能源数据手册V6.0版)[M]. 2004.
    [71] Liu, J., R. Wang and J. Yang. 2005. Metabolism and driving forces of Chinese urban household consumption[J]. Population and Environment, 26(4): 325-341.
    [72] Martinez-Alier, J. with K. Schlüpmann. Ecological Economics. Energy, environment and society[M]. Oxford: Basil Blackwell. 1987.
    [73] Martinez-Alier, J. Marxism, Social Metabolism, and Ecologicallly Unequal Exchange[Z]. Lund University, World Systems Theory and the Environment. 19-22 Sept. 2003.
    [74] Mayumi, K. The Origins of Ecological Economics: The Bioeconomics of Georgescu-Roegen[M]. Landon: Routledge, 2001.
    [75] Newman, P. 1999. Sustainability and cities: extending the metabolism model[J]. Landscape and Urban Planning, 44: 219-226.
    [76] Odum, E. P. 1969. The strategy of ecosystem development[J]. Science, 164: 262–270.
    [77] Odum, H. T. Environmental Accounting: Emergy and Decision Making[M]. New York: Wiley. 1996.
    [78] Pastore, G., M. Giampietro and K. Mayumi. 2000. Societal metabolism and multiple-scale integrated assessment: Empirical validation and examples of application[J]. Population and Environment, 22(2): 211-254.
    [79] Ramos-Martín, J. 2001. Historical analysis of energy intensity of Spain: From a“conventional view”to an“integrated assessment”[J]. Population and Environment, 22(3): 281-313.
    [80] Ramos-Martín, J. 2002. Analysing the Energy Metabolism for Economies from a Complex-Systems Perspective[Z]. Keele University.
    [81] Ramos-Martín, J. 2003. Empiricism in ecological economics: a vision frow complex systems theory[J]. Revísta de Economia Crítica, 1: 75-93.
    [82] Ramos-Martín, J. Complex Systems and Exosomatic Energy Metabolism of Human Societies[D]. Universítat Autònoma de Barcelona (Doctoral Dissertation), 2005.
    [83] Ramos-Martin, J., M. Giampietro and K. Mayumi. 2007. On China's exosomatic energy metabolism: An application of multi-scale integrated analysis of societal metabolism (MSIASM)[J]. Ecological Economics, 63(1):174-191.
    [84] Schandl, H. and N. Schulz. 2000. Using Material Flow Accounting to Operationalize the Concept of Society’s Metabolism. A Preliminary MFA for the United Kingdom for the Period of 1937–1997[M]. Institute for Social & Economic Research (ISER) working paper, Number 2000-3. University of Essex, Essex.
    [85] Schandl, H. and N. Schulz. 2002. Changes in the United Kingdom’s natural relations in terms of society’s metabolism and land-use from 1850 to the present day[J]. Ecological Economics, 41: 203–221.
    [86] Schandl, H., C. Grünbühel, H. Haberl, et al. 2002. Handbook of Physical Accounting. Measuring bio-physical dimensions of socio-economic activities. MFA– EFA– HANPP[M]. Social Ecology Working Paper 73. Vienna. ISSN 1726-3816.
    [87] Singh, S., C. Grünbühel, H. Schandl and N. Schulz. 2001. Social metabolism and labour in a local context: changing environmental relations on Trinket Island[J]. Population and Environment, 23(1): 71-104.
    [88] Ulgiati, S., M. Brown, M. Giampietro, et al. (eds.). Advances in Energy Studies (3): Reconsidering the Importance of Energy[C]. In: Proceedings of the 3rd Biennial International Workshop. Servizi Grafici Editoriali, Padova, Italy, 2003.
    [89] Vitousek, P. M., P. R. Ehrlich, A. H. Ehrlich and P. A. Matson. 1986. Human appropriation of the products of photosynthesis[J]. BioScience, 36(6): 368–373.
    [90]常瑜. 2007.世界区域物质流分析及预测[D].吉林大学硕士学位论文.
    [91]陈定江李有润沈静珠等. 2004.工业生态学的系统分析方法与实践[J].化学工程, 32(4): 53-57.
    [92]陈效逑乔立佳. 2000.中国经济-环境系统的物质流分析[J].自然资源学报, 15(1):17~23.
    [93]陈效逑赵婷婷郭玉泉等. 2003.中国经济系统的物质输入与输出分析[J].北京大学学报(自然科学版), 39(4): 538~547.
    [94]丁一王青顾晓薇. 2005.中国铜资源开发利用中的物质投入[J].资源科学, 27(5): 27~32.
    [95]杜涛蔡九菊. 2006.钢铁企业物质流、能量流和污染物流研究[J].钢铁, 41(4): 82~87.
    [96]段宁2004.城市物质代谢及其调控[J].环境科学研究17(5): 75-77.
    [97]冯飞2005.“十一五”期间及2020年能源供求格局[J].改革, (4): 5-15.
    [98]福建省统计局,国家统计局福建调查总队.福建统计年鉴[M].北京:中国统计出版社, 2007, 2006, 2005, 2004, 2003, 2001.
    [99]甘肃年鉴编委会.甘肃年鉴[M].北京:中国统计出版社, 2007, 2006, 2005, 2004, 2003, 2001.
    [100]国家发展与改革委员会能源研究所“中国能源需求情景分析”课题组.中国可持续发展能源暨碳排放情景分析[M]. 2003.
    [101]国家发展改革委和国家能源领导小组办公室.“十一五”期间各地区单位生产总值能源消耗降低指标计划表[Z]. 2005.
    [102]国家发展和改革委员会.能源发展“十一五”规划[Z]. 2007年4月10日.
    [103]国家发展和改革委员会.可再生能源发展“十一五”规划[Z]. 2008年3月18日.
    [104]国家统计局.中国统计年鉴[M].北京:中国统计出版社, 2007, 2006, 2005, 2004, 2001, 1996, 1991.
    [105]国家统计局.关于我国国内生产总值历史数据修订结果的公告[Z]. 2006.
    [106]国家统计局.第一次全国经济普查主要数据公报[Z]. 2005.
    [107]国家统计局. 2000年第五次全国人口普查主要数据[Z]. 2001.
    [109]国家统计局.中国农村统计年鉴[M].北京:中国统计出版社, 2006, 2005, 2004.
    [110]国家统计局人口和就业统计司,劳动和社会保障部规划财务司.中国劳动统计年鉴[M].北京:中国统计出版社. 2006, 2005, 2004.
    [111]国家统计局,国家发展改革委和国家能源领导小组办公室. 2005年各省、自治区、直辖市单位GDP能耗等指标公报[Z]. 2006年6月30日.
    [112]国家统计局工业交通统计司,国家发展和改革委员会能源局.中国能源统计年鉴[M].北京:中国统计出版社. 2007, 2006, 2005, 2004, 2000-2002.
    [113]韩智勇魏一鸣,范英. 2004.中国能源强度与经济结构变化特征研究[J].数理统计与管理, 23(1): 1-6.
    [114]何祚庥王亦楠. 2005.实现小康究竟需多少能源.今日中国论坛, (1): 81-87.
    [115]洪银兴主编.可持续发展经济学[M].北京:商务印书馆, 2002, pp449.
    [116]黄和平毕军李祥妹. 2006.区域生态经济系统的物质输入与输出分析——以常州市武进区为例[J].生态学报, 26(8): 2578-2586.
    [117]黄和平毕军张柄等. 2006.物质流分析研究述评[J].生态学报, 27(1): 369-379.
    [118]黄玲. 2007.福建能源消费与经济增长关系的实证研究[J].经济研究导刊, (13): 148-150.
    [119]李刚张彦伟孙丰云. 2005.中国环境经济系统的物质需求量研究[J].中国软科学, (11): 39-44.
    [120]李同升韦亚权. 2005.工业生态学研究现状与展望[J].生态学报, 25(4): 869-877.
    [121]林伯强.现代能源经济学[M].北京:中国财政经济出版社, 2007. pp361.
    [122]刘晶茹王如松王震杨建新. 2003.中国城市家庭代谢及其影响因素分析[J].生态学报, 23(12): 2672-2676.
    [123]陆钟武岳强. 2006.物质流分析的两种方法及应用[J].非金属循环与利用, (2): 27-28.
    [124]江泽民. 2008.对中国能源问题的思考[J].上海交通大学学报, 42(3): 345-359. [125玛丽娜·费希尔-科瓦尔斯基赫尔穆特·哈珀尔. (黄纪苏译).可持续性发展:社会经济代谢与开殖自然[J].
    [126]马舒曼吕永波韩晓雪. 2004.我国能源消费与经济发展[J].能源研究与信息, 20(1): 6-10.
    [127]马其芳黄金贤于术桐等. 2007.物质代谢研究进展综述[J].自然资源学报, 22(1): 141-152.
    [128]潘敏卫俊. 2007.环境社会学主要理论综论——兼谈中国环境社会学的发展[J].学习与实践, (9): 134-140.
    [129]彭志龙吴优武央等. 2007.能源消费与GDP增长关系研究[J].统计研究, 24(7): 6-10.
    [130]全国妇联研究所,国家统计局社会科技司.中国性别统计(1990-1995)[M].北京:中国统计出版社, 1998.
    [131]秦霏刘海燕荆玲等. 2007.吉林省农村能源消费调查研究[J].吉林建筑工程学院学报, 24(2): 37-40.
    [132]单永娟. 2007.北京地区经济系统物质流分析的应用研究[D].北京林业大学硕士学位论文.
    [133]沈怀军. 2007.安徽省环境经济系统的物质流分析[D].合肥工业大学硕士学位论文.
    [134]史丹. 2007.我国能源经济的总体特征、问题及展望[J].中国能源, 29(1): 5-11.
    [135]石培基祝璇. 2007.甘肃省人口预测与可持续发展研究[J].干旱区资源与环境, 21(9): 1-5.
    [136] (美)塔克(Tucker, I.).今日宏观经济学[M].北京:北京大学出版社, 2005. pp495.
    [137]陶在朴.生态包袱与生态足迹[M].北京:经济科学出版社, 2003. pp216.
    [138]陶在朴. 2003.社会代谢理论与工业生态[Z].
    [139]王庆一. 2004.中国与世界能源数据(2003版)(1~7)[J].煤炭经济研究, (02): 72-79, (03): 74-79, (04): 73-79, (05): 73-79, (06): 74-79, (08): 74-78, (09): 73-77.
    [140]王庆一. 2005.中国的能源与环境:问题及对策[J].能源与环境, (3): 4-11.
    [141]王寿兵吴峰刘晶茹.产业生态学[M].北京:化学工业出版社, 2006, pp294.
    [142]王天送. 2008.社会代谢多尺度综合评估(MSIASM)的基本理论与实践[J].地球科学进展, 23(1): 63-70.
    [143]王天送孙成权张志强. 2008.从“人类活动时间”分配视角看甘肃社会发展状况——“社会代谢多尺度综合评估(MSIASM)”方法的应用[J].甘肃社会科学, (3):
    [144]王兴艳佘元冠邵剑华. 2006.“十一五”我国能源需求预测[J].技术经济与管理研究, (6): 29-30.
    [145]王雪娜.我国能源类碳源排碳量估算办法研究[D].北京林业大学硕士论文, 2006, pp.67.
    [146]魏一鸣范英韩智勇等中国能源报告(2006)——战略与政策研究[M].北京:科学出版社, 2006. pp304.
    [147]夏传勇. 2005.经济系统物质流分析研究述评[J].自然资源学报20(3): 415-421.
    [148]徐明贾小平石磊等. 2006.辽宁省经济系统物质代谢的核算及分析[J].资源科学, 28(5): 127-132.
    [149]徐绍峰. 2005.中国能源状况与阶级社会可持续发展分析[J].经济论坛, (7): 8-11.
    [150]徐涛涛. 2007.基于可持续发展的家庭核算:理论与方法[D].贵州大学硕士学位论文.
    [151]徐一剑张天柱石磊等. 2004.贵阳市物质流分析[J].清华大学学报(自然科学版), 44(12): 1688-1699.
    [152]徐中民张志强程国栋.生态经济学理论方法与应用[M].郑州:黄河水利出版社, 2003, pp306.
    [153]严陆光陈俊武主编.中国能源可持续发展若干重大问题研究(上、下篇)[M].北京:科学出版社, 2007, pp417.
    [154]严茂超.生态经济学新论——理论、方法与应用[M].北京:中国致公出版社, 2001. pp296.
    [155]颜文洪刘益民黄向等. 2003.深圳城市系统代谢的变化与废物生成效应[J].城市问题, (1): 40~44.
    [156]余少谦.宏观经济分析基础[M].北京:中国金融出版社, 2006, pp386.
    [157]于术桐黄贤金. 2005.区域系统物质代谢研究——以江苏省南通市为例[J].自然资源学报, 20(2): 212~221.
    [158]袁增伟,毕军. 2006.产业生态学最新研究进展及趋势展望[J].生态学报,26(8): 2709-2715.
    [159]张华盛. 2003.能源与农业生产方式[J].山西能源与节能, (12): 21-22.
    [160]张丽峰.中国能源供求预测模型及发展对策研究[D].首都经济贸易大学博士论文, 2006.
    [161]张莓. 2004.我国矿产品物质流程研究——铜的实践[J].国土资源情报, (8): 48~52.
    [162]中华人民共和国农业部.中国农业统计资料(2004)[M].北京:中国农业出版社, 2005.
    [163]中国环境与发展国际合作委员会能源战略与技术工作组.能源与可持续发展[M].北京:中国环境科学出版社, 2003.
    [164]中国科学院能源战略研究组编.中国能源可持续发展战略专题研究[M].北京:科学出版社, 2006. pp415.
    [165]中国农村能源年鉴编辑委员会.中国农村能源年鉴(1997)[M].北京:中国农业出版社, 1998.
    [166]中国社会科学院工业经济研究所.中国工业发展报告. 2006:科学发展观与经济增长方式转变[M].北京:经济管理出版社, 2006, pp684.
    [167]中国现代化战略研究课题组,中国科学院中国现代化研究中心.中国现代化报告. 2006:社会现代化研究[M].北京:北京大学出版社, 2006. pp451.
    [168]赵旭. 2007.中国铁元素物质流账户分析[D].上海交通大学博士学位论文.
    [169]周德群. 2003.工业生态学述评[J].南京航空航天大学学报(社会科学版), 5(4): 31-36.
    [170]周鸿.人类生态学[M].北京:高等教育出版社, 2001, pp251.
    [171]周震峰. 2006.基于MI叭的区域物质代谢研究——以青岛市城阳区为例[D].中国海洋大学博士学位论文。
    [172]朱成章. 2006a.关于国内生产总值能源消耗的计算方法[J].煤炭经济研究,(3): 14-16.
    [173]朱成章. 2006b.能源效率及其计算[J].电力需求侧管理, 8(3): 63-64.
    [174]朱成章. 2006c.从美国的预测看中国的能源结构和能效水平[J].煤炭经济研究, (6): 16-20.
    [175]朱越中. 2002.我国能源与经济增长关系现状分析[J].经济研究参考, (72): 26-32.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700