用户名: 密码: 验证码:
湖北某原生矿铜、铁、钴、金、银多金属回收选矿工艺试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文对湖北某原生矿进行了详细研究,查明了该矿石的主要矿物组成及矿物含量、矿石嵌布特征及共生关系。根据该矿石性质制定了铜硫混浮,铜硫分离,粗选尾矿磁选的分选流程。按照此流程进行粗选条件试验,粗选条件试验包括磨矿细度试验,捕收剂种类及用量试验、2#油用量试验。并进行了调整剂种类及用量试验、捕收剂混合用药试验、铜硫混浮粗精再磨和铜硫混浮粗精精选后精矿再磨试验,确定了合理用药制度和分选流程。依据前面确定最佳试验条件,进行开路试验和闭路全流程试验,对闭路全流程进行数质量计算,并对最终精矿产品进行了分析。
     试验结果表明:采用阶段磨矿流程不能大幅度提高铜精矿铜回收率及伴生金、银回收率,且与常规磨矿流程相比,阶段磨矿流程较复杂,成本较高,故不宜采用。
     采用常规磨矿流程,在原矿磨矿细度-75μm占85%试验条件下,可以获得较好试验指标。该原生矿采用两次铜硫混合粗选,两次粗精精选,混精浓缩脱药,铜硫分离粗选,两次铜精选,两次硫扫选;铜硫混浮粗选尾矿经两段磁选选铁。由原生矿获得铜精矿含铜16.80%,含金6.40克/吨,含银18.83克/吨,铜、金回收率分别为91.11%、74.57%、76.58%;获得硫钴精矿含硫38.69%,含钴0.267%,硫、钴回收率分别为60.70%及52.44%;获得铁精矿含铁67.48%,含硫0.294%,铁回收率为88.84%。
In this thesis, a primary ore in Hubei was studied in detail, the major mineral composition and mineral content of the ore, the embedment characteristics and symbiotic relations between ores were identified. According to the nature of this ore, a flowsheet includes Cu-S bulk flotation, Cu-S separation is introduced. On the basis of the flowsheet designed, the roughing condition tests were carried out, which includes grinding fineness test, the variety and amount of different collectors test as well as the amount of 2#oil test, at the same time, the variety and amount of different regulators tests, mixed collectors tests, rough concentrate of Cu-S bulk flotation regrinding and twice cleaning concentrate of Cu-S bulk flotation regrinding tests were carried out too, all of those were studied in order to find out the a proper ore separation flow and appropriate pharmaceutical systems, at the same time, not only the quantity and quality of closed circuit calculations are researched in this thesis, But the analysis of final concentrate.
     The test results show that in the stage grinding flowsheet, the Cu recovery of Cu concentrate can’t be raised significantly, at the same time, it is more complicated and have a high cost, so it is not proper to be adopted.
     On the conditions of the grinding fineness of -75μm is 85%, by adopting the regular grinding flowsheet of twice Cu-S mixed roughing, twice cleaning separation of roughing Cu-S concentrate, dewatering and removing reagents residue of roughing concentrate, Cu-S separation roughing, twice Cu cleaning, twice S scavenging, twice low-intensity magnetic separation of floatation tailings, a better test result is got. with the Cu concentrate with Cu grade of 16.80%, Au grade of 6.40g/t, Ag grade of 18.83 g/t, the respective recovery of Cu、Au、Ag is 91.11%、74.57%、76.58%; A cobalt sulfide concentrate with the sulfur grade of 38.69%and cobalt grade of 0.267%, the respective recovery of sulfur and cobalt is 67.48% and 52.44%; the iron concentrate with iron grade of 67.48% and sulfur grade of 0.294%, the recovery of iron is 88.84%.
引文
[1]焦玉书,周伟.世界铁矿资源开发利用和我国进口铁矿石的发展态势[J].中国冶金, 2004, (11): 13~18.
    [2]松权衡,刘忠,杨复顶等.国内铁矿外资源简介[J].吉林地质, 2008, 27(3): 5~8.
    [3]陈亮亮.世界铁矿资源分布对我国钢铁工业发展的影响[J].经济研究导刊, 2010, (5): 35~37.
    [4]刘军,靳淑韵.中国铁矿资源的现状与对策[J].中国矿业, 2009, 18(12): 17~20.
    [5]魏志江.铁矿资源开发利用分析与预测[J].中国矿业, 2010, 19(3): 10~12.
    [6]王颖.我国铁矿资源形势分析与其可持续供给的策略[J].金属矿山, 2008, (1): 12~14.
    [7]王永生.铁矿石中低品位伴生有价金属回收利用实践[C].第五届全国矿山采选技术进展报告会, 2006: 194~199.
    [8]雷时益,张俞明.大厂锡石多金属硫化矿的合理选矿工艺[J].国外金属矿选矿, 2008, (12): 2~6.
    [9]王耀.大乌苏沟地区超低品位伴生磁铁矿选矿综合利用试验研究[J].中国矿业, 2006, 15(11): 61~64.
    [10]孙炳泉.我国复杂难选铁矿石选矿进展[J].金属矿山, 2005, 31~34.
    [11]胡熙庚.有色金属硫化矿选矿[M].北京:冶金工业出版社, 1987.
    [12]黑色金属矿石选矿试验[M].北京:冶金工业出版社, 1978.
    [13]孙晓刚.世界钴资源的分布和应用[J].世界有色金属, 2000, 15( 1): 38 ~ 41.
    [14]李春雷.钻渣的综合回收生产工艺探讨[J].新疆有色金属, 2007, (2): 26~28.
    [15]卿波.尿素均匀沉淀法制备单分散四氧化三钴粉末[D].长沙:中南大学, 2007.
    [16]潘彤.我国钴矿矿产资源及其成矿作用[J].矿产与地质, 2003, 14(4): 516~518.
    [17]王永利,徐国栋.钴资源的开发和利用[J].河北北方学院学报, 2005, 21(3): 18~21.
    [18]曹异生.我国钻工业现状及前景展望[J].冶金经济分析, 1991, (1): 1~4.
    [19]张一敏,宋少先.固体物料分选理论与工艺[M].北京:冶金工业出版社, 2006.
    [20]徐宪国,刘艳丽.利用自然电场法寻找金的探索[J]. 2010, (6): 63~65.
    [21]张友联,谷志成,杨璐露.中国黄金资源开发利用现状及远景分析[ J ].黄金科学技术, 1995, 3(5): 17~25.
    [22]侯宗林.中国黄金资源潜力与可持续发展[J].地质找矿论丛, 2006, 21(3): 25-28.
    [23]李洪奎,杨锋杰.山东金矿类型划分及其主要特征[J].上海地质, 2006, (4):64~68.
    [24]李艺,梁有彬.我国铜矿床中伴生金(银)的赋存特征及提高其回收率的途径[ J ]. 2003, (4): 12~15.
    [25]杨秀华,王少波.世界银矿资源及主要银矿床特征[J].地质与勘探, 1990, 26(12): 1~4.
    [26]徐国钰,解晓冬,朱安云等.白银市场开放的回顾与展望[J].世界有色金属, 2000, (5): 27~29.
    [27]胡为柏.浮选[M].北京:冶金工业出版社, 1983.
    [28]陈家模.多金属硫化矿浮选分离[M].贵阳:贵州科技出版社, 2001.
    [29]吴熙群,李成必,罗琳.开发冬瓜山铜矿资源选矿原则方案探讨[J]. 2003, (5): 1~6.
    [30]陈慧杰.石英脉型复杂多金属矿选矿试验研究[J].武汉理工大学学报, 2009, (3): 34~37.
    [31]魏明安,孙传尧.硫化铜、铅矿物浮选分离研究现状及发展趋势[J].矿冶工程, 2008, 17(2): 6~9.
    [32]王珩.高硫铜矿石分步优先浮选中矿再磨再选工艺研究及探讨[J].有色金属, 2003, (5): 10~13.
    [33]王玉娟,代淑娟,胡志刚.某铜矿石中铜硫的选别回收[J].有色金属, 2009, (5): 4~7.
    [34]刘雁鹰,杨秦莉.金堆城钼尾矿中铜硫的综合回收[J].中国矿业工程, 2004, 33(3): 15~17.
    [35]柏少军,文书明,刘殿文等.云南某高磷褐铁矿石选冶联合工艺研究[J].金属矿山, 2010, (1): 54~58
    [36]曾志飞,李茂林.从硫铁矿烧渣中回收铁的试验研究[J].矿业工程, 2006, 26(5): 29~32.
    [37]李崇德,孙传尧.铜硫分离研究进展[J].国外金属矿选矿, 2000, (8): 2~7.
    [38] Castro, S. Goldfarb. Sulphidizing reactions in the floatation of oxidized copper minerals [J]. Mineral Processing, 1974 (1):141~149.
    [39] Bulatovic Srdjan, F. Jackson James. Depressant for flotation separation of polymetallic sulphide ores[J]. Minerals Engineering, 1998,11(5): 485~486.
    [40] Forrest K, Yan D, Dunne R., Optimization of gold recovery by selective gold flotation for copper–gold–pyrite ores. Minerals Engineering 2001,14 (2):227~241.
    [41] Monte, M.B.M., Lin, F.F., Oliveira, J.F., 1997. Selective floatation of gold from pyrite under oxidizing conditions [J] International Journal of Mineral Processing 51, 255~267.
    [42] Jiang C.L, Wang B.K., Parekh B.K. 1998. The surface and solution chemistry of pyrite floatation with xanthate in the presence of iron ions. Colloids and Surface, 1998, 136(7):51~62.
    [43]钱鸣,殷召阳,徐德洲.江苏某矿山矿石中铜、硫综合回收工艺研究[J].现代矿业, 2010, (6): 32~36.
    [44]谭欣.铜硫浮选分离新工艺的研究与实践[J].有色金属, 1999, 51(3): 40~44.
    [45]于雪.铜锌硫化矿难以分离的可能原因及解决途径[J].国外金属矿选矿, 2004 (9): 4~8.
    [46]顾帼华,王淀佐,刘如意等.硫化矿电位调控浮选及原生矿电位浮选技术[J].有色金属, 2000, 52(2):18~21.
    [47] S. Chander, D.W.Fuerstenau. Electrochemical flotation separation of chalcocite from molybdenite [J]. Int. J. Miner. Process., 1982 (10): 89~94.
    [48]王景双.大厂多金属硫化矿混合浮选新型捕收剂研究[D].南宁:广西大学, 2009.
    [49] A.M.Desiator, et.a1. A method for selection of copper-molybdenum concentrates with low-molecular organic depressors[J]. flotation reagents,1986 , (4):99~100.
    [50]刘斌,周源.铜硫分离有机抑制剂选择的试验研究[J].现代矿业, 2009, (5): 51~53.
    [51]黄礼煌.低碱介质铜硫分离与原浆选硫新工艺研究[J].有色金属, 1997, (2): 2~8.
    [52]胡西嘉,郑建中,王静.碳酸钙矿物表面润湿性的控制机理[J].江苏地质, 2007, 31(4): 329~334.
    [53] Gordon E Agar. Copper sulphide depression with thioglycollate or trithiocarbonate [J]. 1984, 77(872): 43~47.
    [54]张剑锋,胡月华,邱冠周.浮选有机抑制剂研究的进展[J].有色矿业, 2000, 16(2): 14~17
    [55]熊道陵,胡岳华,贺治国.有机抑制剂在硫化矿浮选中抑制砷黄铁矿的研究进展[J]. 2004, 24(2): 42~44.
    [56]陈建华,冯其明,欧乐明.低碱度铜硫分离新工艺工业试验研究[J].矿业工程, 1997, 17(4): 24~27.
    [57]李杰,钟宏,刘广义.硫化铜矿石浮选捕收剂的研究进展[J].铜业工程, 2004, (4): 15~18.
    [58]吴熙群,李成必,杨菊.高效选择性捕收剂AP的应用[J].有色金属, 2002, (2): 36~40.
    [59]孙小俊,顾帼华,李建华.捕收剂CS U3 1对黄铜矿和黄铁矿浮选的选择性作用[J].中南大学学报, 2010, 41(2):406~409.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700