用户名: 密码: 验证码:
硅纳米孔柱阵列的电子跃迁特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硅纳米孔柱阵列(Silicon nanoporous pillar array,Si-NPA)是一种典型的多孔材料和硅纳米晶(Silicon nanocrystallites, nc-Si)/氧化硅(SiOx)纳米复合体系,研究其在光学过程中的电子跃迁特性有助于进一步了解Si-NPA各种物理特性的内在机制,为未来设计和制备基于Si-NPA的不同功能纳米异质结器件提供基础性的理论支持。本文综合利用了表面光电压(Surface photovoltage, SPV)谱、光致发光(Photoluminescence, PL)谱等对水热法和染色腐蚀法制备的Si-NPA、经过不同温度热处理的Si-NPA和基于Si-NPA制备的聚乙烯咔唑(PVK)/Si-NPA有机-无机复合结构进行了研究,得到了一下主要结论:
     一、Si-NPA多孔层中nc-Si/SiOx纳米结构的电子跃迁特性
     对比单晶硅和Si-NPA的SPV谱发现,Si-NPA多孔层中nc-Si/SiOx纳米结构在~580nm-~300nm的波长范围内具有明显的SPV响应。在外加不同电场时,nc-Si/SiOx纳米结构的SPV响应完全不同于单晶硅层SPV响应的变化规律,说明nc-Si/SiOx纳米结构的SPV被nc-Si/无定形SiOx界面上某种界面局域电子态所主导。
     对Si-NPA在空气中进行退火氧化,随着退火温度从100℃升至500℃时,位于~580nm到~300nm之间来自多孔层的SPV响应会逐渐减弱直至几乎完全消失;同时,位于红光区的单PL带在200℃时分裂为两个PL带,500℃时大幅减弱直至完全消失;位于红光-近红外区的PL带则逐渐增强。与此同时,在紫光-蓝光区内出现一新的PL带形成并逐渐增强。Si-NPA经过两年空气中自然氧化后,来自于单晶硅层的SPV完全消失,仅表现出多孔层nc-Si/SiOx纳米结构的光吸收特征。分析表明,Si-NPA样品中多孔层nc-Si/SiOx纳米结构的SPV和红光PL都是来自于nc-Si与无定形SiOx结构的界面上Si-O结构相关的界面局域电子态所主导的电子跃迁,而位于红光-近红外区域的PL来源于与Si=O结构相关的局域电子态所诱导的复合发光,紫光-蓝光PL来自于nc-Si表面上所形成的O缺陷所诱导的复合发光。
     二、Si-NPA电子跃迁特性在不同制备过程中的变化
     水热法制备的不同腐蚀时间的SEM照片表明只有当腐蚀时间超过25分钟以上时在多孔层中才能形成规则的纳米多孔硅阵列结构。比较各个样品的SPV谱,发现当腐蚀时间从10分钟增加到45分钟的过程中各个样品的光吸收特征发生了很大的变化,这主要归因于nc-Si粒径尺寸分布在不同腐蚀时间样品中的不同。在~5800nm到~300nm的波长区间内出现的SPV响应带的强度会随着水热腐蚀时间从10分钟变化到45分钟的过程逐步减弱,而且位于~550nm-~800nm波长区间内的PL带的强度也会随着减弱,这些结果都说明在水热腐蚀时间增加的过程中多孔层nc-Si/无定形SiOx结构的界面上的氧化程度在逐步下降,并且导致了界面上与Si-O结构相关的界面局域电子态的数量也在逐步下降。
     染色法制备不同腐蚀时间的Si-NPA样品的SEM照片表明只有当腐蚀反应在30小时以上时才有规则纳米多孔硅柱结构形成,但是其硅柱的尺寸要远大于水热制备Si-NPA样品中的多孔硅柱。对比所有染色腐蚀Si-NPA样品及在空气中500℃退火氧化后样品的SPV谱,可以发现它们的多孔层nc-Si/SiOx纳米结构的光吸收特性远不同于水热腐蚀Si-NPA样品,说明染色腐蚀Si-NPA样品的多孔层中有更多大粒径的nc-Si生成;而30小时、40小时和50小时染色腐蚀Si-NPA样品的SPV谱在~500nm到~300nm的波长范围内都有一个非常强的SPV响应带,而且它们的PL谱中都有很强的可见光PL,但是这些样品的SPV响应强度和PL强度对于不同腐蚀时间没有表现出规律性,最终表明,利用染色腐蚀法无法实现像水热法那样对于Si-NPA样品光学特性某种程度上的可控。
     三、PVK/Si-NPA复合结构
     对比PVK/Si-NPA复合结构和Si-NPA样品的SPV谱及PVK薄膜的吸收光谱,可以发现PVK/Si-NPA复合结构的光吸收特性和光发射特性出现了很多新的现象,这些新的现象都可能来源于复合结构中PVK分子与Si-NPA中多孔层nc-Si/SiOx纳米结构之间的相互作用,而且基于复合结构而制备得到的Ag/c-Si/PS/PVK/Ag结构器件的I-V特性则进一步证实了PVK分子与Si-NPA中多孔层nc-Si/SiOx纳米结构之间的相互作用的可能性。
Silicon nanoporous pillar array (Si-NPA) is a typical porous silicon material anda special type of the nc-Si/SiOxnanostructures. Study on the electronic transitionmachanisms during the optical processes can afford the detailed principles of thephysical properties of Si-NPA, and can provide the fundamental theorical surpportsfor designing and constructing the Si-NPA based nanocomposite devices with thedifferent physical properties. In this dissertation, the optical and electric properties ofSi-NPA samples (prepared by hydrothermal method and stain method) and thepoly(N-vinylcarbazole)(PVK)/Si-NPA nanocomposite are investigated by usingsurface photovoltage (SPV) spectroscopy, photoluminescence (PL) spectroscopy andcurrent-voltage (I-V) characteristics. The main achieved results in this dissertation arelisted as the followings:
     1. Electronic transition machanisms of the porous layer in Si-NPA
     By comparing the SPV spectra of single crystal silicon (sc-Si) with that ofSi-NPA, the silicon nano-crystallites (nc-Si)/SiOxnanostructure in the Si-NPA couldproduce SPV in the wavelength range of580–300nm. And580nm (~2.14eV) wasconsidered as the absorption edge of the nc-Si/SiOxnanostructure. And the SPV forthe sc-Si layer and the nc-Si/SiOxnanostructure show some contrary characters in thedifferent external electric field. Through analysis, some kind of localized states at henc-Si/SiOxnanostructure interface are believed having dominated the SPV for thenc-Si/SiOxnanostructure.
     After the sample was annealed and oxidized in air, and when the annealingtemperature was increased from100to500°C, both the SPV in the wavelength rangeof580–300nm and the PL emission band around690nm for the nc-Si/SiOxnanostructure were weakened and disappeared at high temperatures. But both thered–infrared PL band in the wavelength range from710nm to higher wavelength andthe violet-blue PL band were enhanced by increasing the annealing temperature. After2years of natural oxidation in air, the SPV features for sc-Si disappeared completely, and the SPV characteristics were clearly observed in the nc-Si/SiOxnanostructures.After analysis, the Si-O structure related localized states at the nc-Si/SiOxinterfacedominated the electronic transitions during the red PL emission and the SPV for thenc-Si/SiOxnanostructure in Si-NPA, the red–infrared PL was due to the Si=Ostructure related electronic transitions, and the violet-blue PL emission could attributeto the oxygen-related defect related recombination of the photoinduced carriers.
     2. Evolutions of the electronic transition properties of Si-NPA during thedifferent preparing methods
     Scanning electron microscopy (SEM) images of Si-NPA samples, which areprepared by hydrothermal method with the different etching time, show that theregular nanoporous silicon pillars only can be well formed when the etching time islonger than25min. By comparing SPV spectra of the prepared samples, the changesof the photon absorption features of the nc-Si/SiOxnanostructure in the porous siliconlayer can be found with the etching time increasing, and this result can attribute to theformation of lots of nc-Si with larger diameter. When the etching time increasescontinuously, the SPV for the nc-Si/SiOxnanostructure in the wavelength range from~580nm to~300nm was weakened obviously, and the PL emission band in thewavelength range from~550nm to~800nm was also been weakened. These changesof SPV and PL properties all can attribute to decreasing of the native oxidation degreeat the nc-Si/SiOxinterface when the etching time increases from10min to45min.
     SEM images of Si-NPA samples which are prepared by stain method with thedifferent etching time show that regular nanoporous silicon pillars only can be wellformed when the etching time is longer than30h, but the pillars are much bigger thanthose in the hydrothermal prepared Si-NPA samples. By comparing SPV spectra ofthe stain etched Si-NPA samples and the annealed stain etched samples to those ofsc-Si and hydrothermal prepared Si-NPA sample, the photon absorption features ofthe nc-Si/SiOxnanostructure in the porous silicon layer also show great differences tothose of the hydrothermal prepared Si-NPA sample. This result can attribute to theformation of a lot of bigger nc-Si in the nc-Si/SiOxnanostructure of stain etchedSi-NPA samples. All of30h,40h and50h stain etched Si-NPA samples show the strong PL emission in the wavelength range from~550nm to~800nm and the strongSPV in the wavelength range from~500nm to~300nm. But the PL and SPV intensitydo not show regular relationship with the stain etching time.
     3. PVK/Si-NPA composite
     By comparing to the photon absorption and PL emission properties of PVK andSi-NPA, the PVK/Si-NPA composite shows the obvious differences, and thesedifferences may come from the interactions between PVK molecules and nc-Si/SiOxnanostructure in Si-NPA. And I-V characteristic of the Ag/c-Si/PS/PVK/Ag devicewhich is based on the PVK/Si-NPA composite also shows the possibility of theinteractions between PVK molecules and nc-Si/SiOxnanostructure in Si-NPA.
引文
[1]《国家中长期科学和技术发展规划纲要(2006-2020)》,2006年1月26日颁布实施。
    [2] Ashby M F, Ferreira P J, Schodek D L. Nanomaterials, Nanotechnologies andDesign [M]. Amsterdam: Elsevier,2009.1~3
    [3]张立德,牟季美.纳米材料与纳米技术[M].北京:科学出版社,2001.
    [4]王占国,陈涌海,叶小玲,等.纳米半导体技术[M].北京:化学工业出版社,2006.
    [5]邓志杰,郑安生.半导体材料[M].北京:化学工业出版社,2004.
    [6] Miller D A B. Silicon Sees the light [J]. Nature,1995,378:238
    [7] Canham L T. Silicon quantum wire array fabrication by electrochemical andchemical dissolution of wafers [J]. Appl Phys Lett,1990,57:1046-1048
    [8] Takagi H, Ogawa H, Yamazaki Y, et al. Quantum size effects inphotoluminescence in ultrafine Si particles [J]. Appl Phys Lett,1990,56:2379-2381
    [9] Cullis A G, Canham L T, Calcott P D. The structural and luminescence propertiesof porous silicon [J] J Appl Phys,1997,82:909-965
    [10]Uhlirs A. Electrolytic shaping of germanium and silicon [J]. Bell Syst Tech J,1956,35:333-347
    [11]Bettotti P, Cazzanelli M, Dal Negro L, et al. Silicon nanostructures for photonics[J]. J Phys: Condens Matter,2002,14:8253-8281
    [12]Bisi O, Ossicini S, Pavesi L. Porous silicon: a quantum sponge structure forsilicon based optoelectronics [J]. Surface Science Reports,2000,38:1-126
    [13]Rossow U. Optical characterization of porous materials [J]. Phys Stat Sol,2001,184:51-58
    [14]Fathauer R W, George T, Ksendzov A, et al. Visible luminescence from siliconwafer subjected to stain etches [J]. Appl Phys Lett,1992,60:995-997
    [15]Tomioka K, Adachi S. Strong and stable ultraviolet emission from porous siliconprepared by photoetching in aqueous KF solution [J]. Appl Phys Lett,2005,87:251920
    [16]Li X J, Zhu D L, Chen Q W, et al. Strong-and nondegrading-luminescent poroussilicon prepared by hydrothermal etching [J]. Appl Phys Lett,1999,74:389-341
    [17]Chen Q W, Li X, Zhang Y. Improvement mechanism of photoluminescence iniron-passivated porous silicon [J]. Chem Phys Lett,2001,343:507-512
    [18]Chen Q, Zhang Y, Qian Y T. Carrier band-to-band recombination in Mn-passivated porous silicon [J]. J Phys: Condens Matter,2001,13:5377-5385
    [19]Zhang Y H, Li X J, Zheng L, et al. Nondegrading photoluminescence in poroussilicon [J]. Phys Rev Lett,1998,81:1710-1713
    [20]Noguchi N, Suemune I. Luminescent porous silicon synthesized by visible lightirradiation [J]. Appl Phys Lett,1993,62:1429-1431
    [21]Cho I H, Kim D H, Noh D Y. X-ray photochemical wet etching of n-Si (100) inhydrofluoric solution [J]. Appl Phys Lett,2006,89:054104
    [22]Chazalviel J N. Porous Silicon Science and Technology [M]. Berlin: Springer,1995.
    [23]Koshida N, Matsumoto N. Farication and quantum properties of nanostructuredsilicon [J]. Mater Sci Eng R,2003,40:169-205
    [24]Lehmann V, Stengl R, Luigart A. On the morphology and the electrochemicalformation mechanism of mesoporous silicon [J]. Mater Sci Eng B,2000,69-70:11-22
    [25]Beale M I J, Benjamin J D, Uren M J. An experimental and theoretical study ofthe formation and microstructure of porous silicon [J]. J Cryst Growth,1985,73:622-636
    [26]Witten T A, Sander L M. Diffusion-limited aggregation, a kinetic criticalphenomenon [J]. Phys Rev Lett,1981,47:1400-1403
    [27]Witten T A, Sander L M. Diffusion-limited aggregation [J]. Phys Rev B,1983,27:5686-5697
    [28]Bower R W, Collins S D. Fractal transition in diffusion-limited cluster formation[J]. Phys Rev A,1991,43:3165-3167
    [29]Lehmann V, Gosele U. Porous silicon formation: A quantum wire effect [J]. ApplPhys Lett,1991,58:856-858
    [30]Strehlke S, Bastide S, Levy-Clement C. Optimization of porous siliconreflectance for silicon photovoltaic cells [J]. Sol Energy Mater Sol Cells,1999,58:399-409
    [31]Lipinski M, Bastide S, Panek P, et al. Porous silicon antireflection coating byelectrochemical and chemical methods for silicon solar cells manufacturing [J].Phys Sta. Sol A,2003,197:512-517
    [32]Vezin V, Goudeau P, Naudon A, et al. Characterization of photoluminescentporous Si by small-angel scattering of x-rays [J]. Appl Phys Lett,1992,60:2625-2627
    [33]Maruska H P, Namavar F, Kalkhoran N M. Energy bands in quantum confinedsilicon light-emitting diodes [J]. Appl Phys Lett,1993,63:45-47
    [34]Tsai C, Li K H, Kinosky D S, et al. Correlation between silicon hydride speciesand the photoluminescense intensity of pouous silicon [J]. Appl Phys Lett,1992,60:1700-1702
    [35]Porkes S M, Glembocki O J, Bermudez V M et al. SiHx excitation: An alternatemechanism for porous silicon photoluminescence [J]. Phys Rev B,1992,45:13788-13791
    [36]Robinson M B, Dillon A C, Haynes D R, et al. Effect of thermal annealing andsurface converage on porous silicon photoluminescence [J]. Appl Phys Lett,1992,61:1414-1417
    [37]Koch V P, Muschik T, Kux A. Rapid-thermal-oxidized porous Si-The superiorphotoluminescent Si [J]. Appl Phys Lett,1992,61:943-945
    [38]汪开源,唐洁彬.多孔硅发光机制的分析[J].固体电子学研究进展,1994,14:317-322
    [39]Qin G G, Li Y J. Photoluminescence mechanism model for oxidized poroussilicon and nanoscale-silicon-particle-embedded silicon oxide [J]. Phys Rev B,2003,68:085309
    [40]Duan J Q, Song H Z, Yao G Q, et al. Variation of double-peak structure inphotoluminescence spectra from porous silicon with excitation wavelength [J].Superlattices Microstruct,1994,16:55-58
    [41]Qin G G, Song H Z, Zhang B R, et al. Experimental evidence for luminescencefrom silicon oxide layers in oxidized porous silicon [J]. Phys Rev B,1996,54:2548-2555
    [42]秦国刚,李宇杰.氧化多孔硅和纳米硅粒镶嵌氧化硅光致发光机制模型分析[J].南京大学学报(自然科学),2005,41:14-22
    [43]何宇亮,余明斌,吕燕武, et al.纳米硅薄膜中的量子点特征[J].自然科学进展,1996,6:700-704
    [44]Hu G Y, O’Connel R F, He Y L. Electronic conductivity of hydrogenatenanocrystalline silicon films [J]. J Appl Phys,1995,78:3945-3950
    [45]Futagi T, Matsumoto T, Katsuno M, et al. Visible light emission from a pnjunction of porous silicon and microcrystalline silicon carbide [J]. Appl Phys Lett,1993,63:1209-1210
    [46]Zhang F L, Hou P H, Shi G, et al. Improvement of electroluminescence propertiesof light-emitting porous silicon [J]. Semicond Sci Techn,1993,8:2015-2517
    [47]Steiner P, Kozlowsiki F, Wielinska M, et al. Enhanced blue-light emission froman indium-treated porous silicon devices [J]. Jpn J Appl Phys,1994,33:6075-6077
    [48]Namavar F, Maruska H P, Kalkhoran N M. Visible electron-luminescence fromporous silicon np heterojunction diodes [J]. Appl Phys Lett,1992,60:2514-2516
    [49]Steiner P, Kozlowski F, Lang W. Blue and green electroluminescence from aporous silicon devices [J]. IEEE Electron Device Letters,1993,14:317-319
    [50]Loni A, Simons A J, Cox T I, et al. Electro-luminescenct porous silicon devicewith external quantum efficiency greater than0.1%under CW operation [J].Electronics Letters,1995,31:1288-1289
    [51]Reece P J, Lerondel G, Zheng W H, et al. Optical microcavities withsubnanometer linewidths based on porous silicon [J]. Appl Phys Lett,2002,81:4895-4897
    [52]Pellegrini V, Tredicucci A, Mazzoleni C, et al. Enhanced optical properties inporous silicon microcavities [J]. Phys Rev B,1995-Ⅱ,52: R14328-R14331
    [53]Ghulinyan M, Oton C J, Bonetti G, et al. Free-standing porous silicon single andmultiple optical cavities [J]. J Appl Phys,2003,93:9724-9729
    [54]Chen H, Zou Z, Cao C, et al. High differential efficiency (>16%) quantum dotmicrocavity [J]. Appl Phys Lett,2002,80:350-352
    [55]许海军,李新建.多孔硅微腔的光学特性研究[J].科学技术与工程,2004,4:2352-2357
    [56]王燕,但亚平,岳瑞峰, et al.硅基法布里-伯罗微腔的室温发光[J].半导体学报,2003,24:68-70
    [57]Pavesi L, Mulloni V. All porous silicon microcavities: growth and physics [J]. JLuminescence,1999,80:43-52
    [58]徐少辉,熊祖洪,顾岚岚, et al.电化学脉冲腐蚀法制备窄峰发射的多孔硅微腔[J].半导体学报,2002,23:272-275
    [59]Najar A, Charrier J, Ajlani H, et al. Optical properties of erbium-doped poroussilicon waveguides [J]. J. Luminescence,2006,121:245-248
    [60]Vorozov N, Dolgyi L, Yakovtseva V, et al. Self-aligned oxidized porous siliconoptical waveguides with reduced loss [J]. Electronics Letters,2000,36:722-723
    [61]Bondarenko V P, Bogatirev Y V, Colinge J P, et al. Total gamma dosecharacteristics of CMOS devices in SOI structures based on oxidized poroussilicon [J]. IEEE Transaction on Nuclear Science,1997,44:1719-1723
    [62]Hirschman K D, Tsybeskov L, Duttagupta S P, et al. Silicon-based visible lightemitting devices integrated into microelectronics circuits [J]. Nature,1996,384:338-341
    [63]Zhang P, Kim P S, Sham T K. Nanostructured CdS prepared on porous siliconsubstrate: structure, electronic, and optical properties [J]. J Appl Phys,2002,91:6038-6043
    [64]Gokarna A, Pavaskar N R, Sathaye S D, et al. Electroluminescence fromheterojunctions of nanocrystalline CdS and ZnS with porous silicon [J]. J ApplPhys,2002,92:2118-2124
    [65]Gros-Jean M, Herino R, Chazalviel J N, et al. Formation and characterization ofCdS/methyl-grafted porous silicon junction [J]. Mater Sci Eng B,2000,69-70:77-88
    [66]Zhang P, Kim P S, Sham T K. XANES studies of CdS nano-structure on poroussilicon [J]. Journal of Electron spectroscopy and Related Phenomenon,2001,119:229-233
    [67]Missaoui A, Saadoum M, Boufaden T, et al. Characterization of GaN layersgrown on porous silicon [J]. Mater Sci Eng B,2001,82:98-101
    [68]Chouket A, Elhouichet H, Oueslati M, et al. Energy transfer inporous-slicon/laser-dye composite evidenced by polarization memory ofphotoluminescence [J]. Appl Phys Lett,2007,91:211902
    [69]Koshida N, Koyama H, Yamamoto Y, et al. Visible electroluminescence fromporous silicon diodes with an electropolymerized contact [J]. Appl Phys Lett,1993,63:2655-2656
    [70]Nguyen T P, Le Rendu P, Lakehal M, et al. Poly(p phenylene vinylene): poroussilicon composites [J]. Mater Sci Eng B,2000,69-70:177-181
    [71]Shen Y, Wan M. Heterojunction diodes of soluble conducting polypyrrole withporous silicon [J]. Synthetic Metals,1998,98:147–152
    [72]Das J, Hossain S M, Chakraborty S. Role of parasitics in humidity sensing byporous silicon [J]. Sensors and Actuators A,2001,94:44-52
    [73]Hadobas K, Kirch S, Carl A, et al. Reflection properties of nanostructure-arrayedsilicon surfaces [J]. Nanotechnology,2000,11:161-164
    [74]Li X J, Chen S J, Feng C Y, Characterization of silicon nanoporous pillar array asroom-temperature capacitive ethanol gas sensor [J]. Sensors and Actuators B,2007,123:461-465
    [75]Jiang W F, Xiao S H, Feng C Y, et al. Resistive humidity sensitivity of arrayedmulti-wall carbon nanotube nests grown on arrayed nanoporous silicon pillars [J].Sens Actuators B,2007,125:651-658
    [76]Pavesi L, Negro L D, Mazzoleni C, et al. Optical gain in silicon nanocrystals [J].Nature,2000,408:440-444
    [77]Park J H, Gu L, von Maltzahn G, et al. Biodegradable luminescent porous siliconnanoparticles for in vivo applications [J]. Nature Mater,2009,8:331
    [78]Timmerman D, Izeddin I, Stallinga P, et al. Space-separated quantum cutting withsilicon nanocrystals for photovoltaic applications [J]. Nat Photonics,2008,2:105
    [79]Jurbergs D, Rogojina E, Mangolini L, et al. Silicon nanocrystals with ensemblequantum yields exceeding60%[J]. Appl Phys Lett,2006,88:233116
    [80]Meier C, Gondorf A, Lüttjohann S, et al. Silicon nanoparticles: Absorption,emission, and the nature of the electronic bandgap [J]. J Appl Phys,2007,101:103112
    [81]Takeda E, Fujii M, Nakamura T, et al. Enhancement of photoluminescence fromexcitons in silicon nanocrystals via coupling to surface plasmon polaritons [J]. JAppl Phys,2007,102:023506
    [82]Li Q S, Zhang R Q, Lee S T, et al. Optimal surface functionalization of siliconquantum dots [J]. J Chem Phys,2008,128:244714
    [83]Lockwood R, McFarlane S, Rodriguez Nunez J R. Photoactivation of siliconquantum dots [J]. Journal of Luminescence,2011,131:1530–1535
    [84]Khriachtchev L, Ossicini S, Iacona F, et al. Silicon Nanoscale Materials: FromTheoretical Simulations to Photonic Applications [J]. Int J Photoenergy,2012,2012:872576
    [85]Khriachtchev L, Nikitin T, Velagapudi R, et al. Light-emission mechanism ofthermally annealed silicon-rich silicon oxide revisited: What is the role of siliconnanocrystals?[J]. Appl Phys Lett,2009,94:043115
    [86]Ray M, Sarkar S, Bandyopadhyay N R, et al. Silicon and silicon oxide core-shellnanoparticles: Structural and photoluminescence characteristics [J]. J Appl Phys,2009,105:074301
    [87]Ray M, Basu T S, Jana A, et al. Luminescent core-shell nanostructures of siliconand silicon oxide: Nanodots and nanorods [J]. J Appl Phys,2010,107:064311
    [88]Rinnert H, Jambois O, Vergnat M. Photoluminescence properties ofsize-controlled silicon nanocrystals at low temperatures [J]. J Appl Phys,2009,106:023501
    [89]Soulairol R, Cleri F. Interface structure of silicon nanocrystals embedded in anamorphous silica matrix [J]. Solid State Sci,2010,12:163-171
    [90]Godefroo S, Hayne M, Jivanescu M, et al. Classification and control of the originof photoluminescence from Si nanocrystals [J]. Nature Nanotech,2008,3:174
    [91]Khriachtchev L, Novikov S, Lahtinen J. Thermal annealing of Si/SiO2materials:Modification of structural and photoluminescence emission properties [J]. J ApplPhys,2002,92:5856-5862
    [92]Nikitin T, Aitola K, Novikov S, et al. Optical and structural properties ofsilicon-rich silicon oxide films: Comparison of ion implantation and molecularbeam deposition methods [J]. Phys Status Solidi A,2011,208:2176-2181
    [93]Moreno J A, Garrido B, Pellegrino P, et al. Size dependence of refractive index ofSi nanoclusters embedded in SiO2[J]. J Appl Phys,2005,98:013523
    [94]Zhuravlev K S, Gilinsky A M, Kobitsky A Yu. Mechanism of photoluminescenceof Si nanocrystals fabricated in a SiO2matrix [J]. Appl Phys Lett,1998,73:2962-2964
    [95]Mirabella S, Agosta R, Franzo G, et al. Light absorption in silicon quantum dotsembedded in silica [J]. J Appl Phys,2009,106:103505
    [96]Iacona F, Franzo G, Spinella C. Correlation between luminescence and structuralproperties of Si nanocrystals [J]. J Appl Phys,2000,87:1295-1303
    [97]Trwoga P F, Kenyon A J, Pitt C W. Modeling the contribution of quantumconfinement to luminescence from silicon nanoclusters [J]. J Appl Phys,1998,83:3789-3794
    [98] üt S, Chelikowsky J R, Louie S G. Quantum Confinement and Optical Gaps inSi Nanocrystals [J]. Phys Rev Lett,1997,79:1770-1773
    [99]Wilson W L, Szajowski P F, Brus L E. Quantum Confinement in Size-Selected,Surface-Oxidized Silicon Nanocrystals [J]. Science,1993,262:1242-1244
    [100] Allan G, Delerue C, Lanno M. Nature of Luminescent Surface States ofSemiconductor Nanocrystallites [J]. Phys Rev Lett,1996,76:2961-2964
    [101] Ledoux G, Gong J, Huisken F, et al. Photoluminescence of size-separatedsilicon nanocrystals: Confirmation of quantum confinement [J]. Appl Phys Lett2002,80:4834
    [102] Pradeep J A, Agarwal P. An alternative approach to understand thephotoluminescence and the photoluminescence peak shift with excitation inporous silicon [J]. J Appl Phys,2008,104:123515
    [103] Kuntermann V, Cimpean C, Brehm G, et al. Femtosecond transientabsorption spectroscopy of silanized silicon quantum dots [J]. Phys Rev B,2008,77:115343
    [104] Vasiliev I, Chelikowsky J R, Martin R M. Surface oxidation effects on theoptical properties of silicon nanocrystals [J]. Phys Rev B,2002,65:121302
    [105] Wolkin M V, Jorne J, Fauchet P M, et al. Electronic States and Luminescencein Porous Silicon Quantum Dots: The Role of Oxygen [J]. Phys Rev Lett,1999,82:197-200
    [106] Goguenheim D, Lannoo M. Theoretical calculation of the electron-capturecross section due to a dangling bond at the Si(111)-SiO2interface [J]. Phys Rev B,1991,44:1724-1733
    [107] Guerra R, Degoli E, Ossicini S. Size, oxidation, and strain in small Si/SiO2nanocrystals [J]. Phys Rev B,2009,80:155332
    [108] Harwell D E, Croney J C, Qin W, et al. Effects of Surface Passivation onSilicon Nanoparticle Photoluminescence [J]. Chem Lett,2003,32:1194-1195
    [109] Fojtik A, Henglein A. Surface Chemistry of Luminescent Colloidal SiliconNanoparticles [J]. J Phys Chem B,2006,110:1994-1998
    [110] Luppi E, Iori F, Magri R, et al. Excitons in silicon nanocrystallites: Thenature of luminescence [J]. Phys Rev B,2007,75:033303
    [111] Xu H J, Li X J. Silicon nanoporous pillar array: a silicon hierarchicalstructure with high light absorption and triple-band photoluminescence [J]. Opt.Express,2008,16:2933-2941
    [112] Xu H J, Li X J. Rectification effect and electron transport property of CdS/Sinanoheterostructure based on silicon nanoporous pillar array [J]. Appl phys lett,2008,93:172105
    [113] Xu H J, Jia H S, Yao Z T, et al. Photoluminescence and I–V characteristics ofZnS grown on silicon nanoporous pillar array [J]. J Mater Res,2008,23:121
    [114] Xu H J, Li X J. Three-primary-color photoluminescence from CdS/Sinanoheterostructure grown on silicon nanoporous pillar array [J]. Appl phys lett,2007,91:201912
    [115] Xu H J, Li X J. Preparation, structural and photoluminescent properties ofCdS/silicon nanoporous pillar array [J]. J Phys: Condens Matter,200719:056003
    [116] Xu H J, Li X J. Structure and photoluminescent properties of a ZnS/Sinanoheterostructure based on a silicon nanoporous pillar array [J]. Semicond SciTechnol,2009,24:075008
    [117]姚志涛,孙新瑞,许海军等.氧化锌与硅纳米孔柱阵列的结构及光致发光特性研究[J].物理学报,2007,56:6098-6103
    [118] Han C B, He C, Li X J. Near-Infrared Light Emission from a GaN/SiNanoheterostructure Array [J]. Adv Mater,2011,23:4811-4814
    [119] Han C B, He C, Meng X B, et al. Effect of annealing treatment onelectroluminescence from GaN/Si nanoheterostructure array [J]. Opt Express,2012,20:5636-5643
    [120] Fu X N, Li X J. Enhanced Field Emission from Well-Patterned SiliconNanoporous Pillar Arrays [J]. Chin Phys Lett,2006,23:2172-2174
    [121] Fu X N, Li X J. Enhanced Field Emission of Composite Au NanostructuredNetwork on Silicon Nanoporous Pillar Array [J]. Chin Phys Lett,2007,24:2335-2337
    [122] Jiang W F, Dong Y F, Xiao S H, et al. Field Emission from CopperNanocrystallites Electrolessly Deposited on Silion Substrate [J].人工晶体学报,2007,36:1142-1147
    [123] Li X J, Jiang W F. Enhanced field emission from a nest array of multi-walledcarbon nanotubes grown on a silicon nanoporous pillar array [J]. Nanotechnology,2007,18:065203
    [124] Jiang W F, Li L Y, Xiao S H, et al. Study on the vacuum breakdown in fieldemission of a nest array of multi-walled carbon nanotube/silicon nanoporouspillar array [J]. Microelectronics Journal,2008,39:763–767
    [125] Jiang W F, Yang X H, Li L Y, et al. Effect of growth temperature on fieldemission from an array of carbon nanotubes nested into a silicon nanoporouspillar array [J]. Thin Solid Films,2008,517:769–772
    [126] Fu X N, Chai H D, Li X J. Silicon nanoporous pillar array and its surfacecopper deposition [J]. Chinese Science bulletin,2005,50:1424-1428
    [127]富笑男,柴花斗,李新建.硅纳米孔柱阵列及其表面铜沉积[J].科学通报,2005,50:1684-1688
    [128]富笑男,李新建.一种自支撑金纳米薄膜的制备、结构和氮吸附特性[J].物理学报,2005,54:5257-5261
    [129]柴花斗,杨晓辉,富笑男等.沉积于硅纳米孔柱阵列上的铜纳米颗粒退火行为研究[J].科学技术与工程,2006,6:2728-2732
    [130]张焕云,姜卫粉,李新建.一种图案化镍/硅纳米复合体系的制备[J].科学技术与工程,2007,7:2767-2771
    [131]柴花斗,富笑男,李新建.银在硅纳米孔柱阵列上浸渍沉积的位置选择性[J].人工晶体学报,2008,37:739-743
    [132] Feng F, Zhi G, Jia H S, et al. SERS detection of low-concentration adenineby a patterned silver structure immersion plated on a silicon nanoporous pillararray [J]. Nanotechnology,2009,20:295501
    [133]许媛媛,何金田,李新建等.水热腐蚀铁钝化多孔硅的湿敏特性研究[J].传感器技术,2004,第23卷第3期:11-13
    [134] Xu Y Y, Li X J, He J T, et al. Capacitive humidity sensing properties ofhydrothermally-etched silicon nano-porous pillar array [J]. Sensors and ActuatorsB,2005,105:219–222
    [135]陈绍军,杨光,冯春岳等.硅纳米孔柱阵列的酒敏特性研究[J].传感器与微系统,2006,第25卷第12期:18-20
    [136] Li L Y, Dong Y F, Jiang W F, et al. High-performance capacitive humiditysensor based on silicon nanoporous pillar array [J]. Thin Solid Films,2008,517:948–951
    [137] Li L Y, Jiang W F, Xiao S H, et al. Effect of electrode configuration oncapacitive humidity sensitivity of silicon nanoporous pillar array [J]. Physica E,2009,41:621–625
    [138]王海燕,李新建.硅纳米孔柱阵列及其四氧化三铁复合薄膜的湿敏电容特性研究[J].物理学报,2004,54:2220-2225
    [139] Wang H Y, Li X J. Structural and capacitive humidity sensing properties ofnanocrystal magnetite/silicon nanoporous pillar array [J]. Sensors and ActuatorsB,2005,110:260–263
    [140]肖顺华,李隆玉,姜卫粉等. BST/Si-NPA复合薄膜的湿敏特性研究[J].无机化学学报,2007,23:1369-1374
    [141]李隆玉,肖顺华,董永芬等.基于Si-NPA的BaTiO3薄膜的电容湿敏特性研究[J].传感技术学报,2007,20:2658-2562
    [142]王海燕,李隆玉,董永芬等. γ-Fe2O3/硅纳米孔柱阵列湿敏元件的湿敏性能研究[J].传感技术学报,2008,21:1093-1096
    [143]陈绍军,冯春岳,李新建. SnO2/Si-NPA复合薄膜气敏传感材料的酒敏特性研究[J].科学技术与工程,2008,8:2169-2173
    [144]董永芬,李隆玉,冯春岳等.基于Si-NPA的WO3薄膜电容湿敏性能[J].功能材料与器件学报,2008,14:955-960
    [145] Dong Y F, Li L Y, Jiang W F, et al. Capacitive humidity-sensing properties ofelectron-beam-evaporated nanophased WO3film on silicon nanoporous pillararray [J]. Physica E,2009,41:711–714
    [1] Canham L T. Silicon quantum wire array fabrication by electrochemical andchemical dissolution of wafers [J]. Appl Phys Lett,1990,57:1046-1048
    [2] Zaremba-Tymieniecki M, Durrani Z A K. Schottky-barrier lowering in siliconnanowire field-effect transistors prepared by metal-assisted chemical etching [J].Appl Phys Lett,2011,98:102113
    [3] Akhavan N D, Afzalian A, Lee C W, et al. Effect of intravalley acoustic phononscattering on quantum transport in multigate silicon nanowiremetal-oxide-semiconductor field-effect transistors [J]. J Appl Phys,2010,108:034510
    [4] Huang W Q, Liu S R, Qin C J, et al. Nano-laser on silicon quantum dots [J]. OptCommun,2011,284:1992-1996
    [5] Tu C C, Tang L, Huang J D, et al. Visible electroluminescence from hybridcolloidal silicon quantum dot-organic light-emitting diodes [J]. Appl Phys Lett,2011,98:213102
    [6] Kuzma-Filipek I J, Duerinckx F, Kerschaver E V, et al. Chirped porous siliconreflectors for thin-film epitaxial silicon solar cells [J]. J Appl Phys,2008,104073529
    [7] Tsakalakos L, Balch J, Fronheiser J, et al. Silicon nanowire solar cells [J]. ApplPhys Lett,2007,91:233117
    [8] Cantley K D, Subramaniam A, Pratiwadi R R, et al. Hydrogenated amorphoussilicon nanowire transistors with Schottky barrier source/drain junctions [J]. ApplPhys Lett,2010,97:143509
    [9] Kim B H, Davis R F, Cho C H, et al. Effect of injection current density onelectroluminescence in silicon quantum dot light-emitting diodes [J]. Appl PhysLett,2009,95:153103
    [10]Khriachtchev L, Nikitin T, Velagapudi R, et al. Light-emission mechanism ofthermally annealed silicon-rich silicon oxide revisited: What is the role of siliconnanocrystals?[J]. Appl Phys Lett,2009,94:043115
    [11]Gritsenko V A, Nadolinny V A, Zhuravlev K S, et al. Quantum confinement andelectron spin resonance characteristics in Si-implanted silicon oxide films [J]. JAppl Phys,2011,109:084502
    [12]Mirabella S, Agosta R, Franzo G, et al. Light absorption in silicon quantum dotsembedded in silica [J]. J Appl Phys,2009,106:103505
    [13]Rinnert H, Jambois O, Vergnat M. Photoluminescence properties ofsize-controlled silicon nanocrystals at low temperatures [J]. J Appl Phys,2009,106:023501
    [14]Ray M, Basu T S, Jana A, et al. Luminescent core-shell nanostructures of siliconand silicon oxide: Nanodots and nanorods [J]. J Appl Phys,2010,107:064311
    [15]Ray M, Sarkar S, Bandyopadhyay N R, et al. Silicon and silicon oxide core-shellnanoparticles: Structural and photoluminescence characteristics [J]. J Appl Phys,2009,105:074301
    [16]Pradeep J A, Agarwal P. An alternative approach to understand thephotoluminescence and the photoluminescence peak shift with excitation inporous silicon [J]. J Appl Phys,2008,104:123515
    [17]Kuntermann V, Cimpean C, Brehm G, et al. Femtosecond transient absorptionspectroscopy of silanized silicon quantum dots [J]. Phys Rev B,2008,77:115343
    [18]Godefroo S, Hayne M, Jivanescu M, et al. Classification and control of the originof photoluminescence from Si nanocrystals [J]. Nature Nanotech,2008,3:174
    [19]Wolkin M V, Jorne J, Fauchet P M, et al. Electronic States and Luminescence inPorous Silicon Quantum Dots: The Role of Oxygen [J]. Phys Rev Lett,1999,82:197-200
    [20]Chen X B, Pi X D, Yang D R. Bonding of Oxygen at the Oxide/NanocrystalInterface of Oxidized Silicon Nanocrystals: An Ab Initio Study [J]. J Phys ChemC,2010,114:8774-8781
    [21]Seino K, Bechstedt F, Kroll P. Influence of SiO2matrix on electronic and opticalproperties of Si nanocrystals [J]. Nanotechnology,2009,20:135702
    [22] üt S, Chelikowsky J R, Louie S G. Quantum Confinement and Optical Gaps inSi Nanocrystals [J]. Phys Rev Lett,1997,79:1770-1773
    [23]Wilson W L, Szajowski P F, Brus L E. Quantum Confinement in Size-Selected,Surface-Oxidized Silicon Nanocrystals [J]. Science,1993,262:1242-1244
    [24]Allan G, Delerue C, Lanno M. Nature of Luminescent Surface States ofSemiconductor Nanocrystallites [J]. Phys Rev Lett,1996,76:2961-2964
    [25]Xu H J, Li X J. Silicon nanoporous pillar array: a silicon hierarchical structurewith high light absorption and triple-band photoluminescence [J]. Opt Express,2008,16:2933-2941
    [26] Feng F, Zhi G, Jia H S, et al. SERS detection of low-concentration adenine by apatterned silver structure immersion plated on a silicon nanoporous pillar array[J]. Nanotechnology,2009,20:295501
    [27]Li X J, Jiang W F. Enhanced field emission from a nest array of multi-walledcarbon nanotubes grown on a silicon nanoporous pillar array [J]. Nanotechnology,2007,18:065203
    [28]Jiang W F, Li L Y, Xiao S H, et al. Study on the vacuum breakdown in fieldemission of a nest array of multi-walled carbon nanotube/silicon nanoporouspillar array [J]. Microelectronics Journal,2008,39:763–767
    [29]Jiang W F, Yang X H, Li L Y, et al. Effect of growth temperature on fieldemission from an array of carbon nanotubes nested into a silicon nanoporouspillar array [J]. Thin Solid Films,2008,517:769–772
    [30]王海燕,李新建.硅纳米孔柱阵列及其四氧化三铁复合薄膜的湿敏电容特性研究[J].物理学报,2004,54:2220-2225
    [31]Wang H Y, Li X J. Structural and capacitive humidity sensing properties ofnanocrystal magnetite/silicon nanoporous pillar array [J]. Sensors and ActuatorsB,2005,110:260–263
    [32]王海燕,李隆玉,董永芬等. γ-Fe2O3/硅纳米孔柱阵列湿敏元件的湿敏性能研究[J].传感技术学报,2008,21:1093-1096
    [33]陈绍军,冯春岳,李新建. SnO2/Si-NPA复合薄膜气敏传感材料的酒敏特性研究[J].科学技术与工程,2008,8:2169-2173
    [34]董永芬,李隆玉,冯春岳等.基于Si-NPA的WO3薄膜电容湿敏性能[J].功能材料与器件学报,2008,14:955-960
    [35]Dong Y F, Li L Y, Jiang W F, et al. Capacitive humidity-sensing properties ofelectron-beam-evaporated nanophased WO3film on silicon nanoporous pillararray [J]. Physica E,2009,41:711–714
    [36]Xu H J, Li X J. Rectification effect and electron transport property of CdS/Sinanoheterostructure based on silicon nanoporous pillar array [J]. Appl phys lett,2008,93:172105
    [37]Xu H J, Jia H S, Yao Z T, et al. Photoluminescence and I–V characteristics ofZnS grown on silicon nanoporous pillar array [J]. J Mater Res,2008,23:121
    [38]Yao Z T, Sun X R, Xu H J, et al. Preparation, structural and electrical propertiesof zinc oxide grown on silicon nanoporous pillar array [J]. Chin Phys,2007,16:3108-3113
    [39]Xu H J, Li X J. Three-primary-color photoluminescence from CdS/Sinanoheterostructure grown on silicon nanoporous pillar array [J]. Appl phys lett,2007,91:201912
    [40]Xu H J, Li X J. Preparation, structural and photoluminescent properties ofCdS/silicon nanoporous pillar array [J]. J Phys: Condens Matter,200719:056003
    [41]Han C B, He C, Li X J. Near-Infrared Light Emission from a GaN/SiNanoheterostructure Array [J]. Adv Mater,2011,23:4811-4814
    [42]Han C B, He C, Meng X B, et al. Effect of annealing treatment onelectroluminescence from GaN/Si nanoheterostructure array [J]. Opt Express,2012,20:5636-5643
    [43]Kronik L, Shapira Y. Surface photovoltage spectroscopy of semiconductorstructures: at the crossroads of physics, chemistry and electrical engineering [J].Surf Interface Anal2001,31:954-965
    [44]Kronik L, Shapira Y. Surface photovoltage phenomena: theory, experiment, andapplications [J]. Surf Sci Rep,1999,37:1-206
    [45]Li L, Niu S Y, Jin J, et al. A series of M–M′heterometallic coordinationpolymers: syntheses, structures and surface photoelectric properties (M=Ni/Co,M′=Cd/Zn)[J]. J Solid State Chem,2011,184:1279-1285
    [46]Shi Z F, Li L, Niu S Y, et al. A series of dntransition metal coordinationcomplexes: Structures and comparative study of surface electron behaviors (n=9,8,7,6,5)[J]. Inorg Chim Acta,2011,368:101-110
    [47]Sun L P, Niu S Y, Jin J, et al. Crystal structure and surface photovoltage of aseries of Ni(II) coordination supramolecular polymer [J]. Inorg Chem Commun,2006,9:679-682
    [48]Wang W C, H. Zheng W, Liu X Y, et al. Surface photovoltage characterization ofsol–gel derived Bi4Ti3O12ferroelectric thin film on F-doped SnO2conductingglass [J]. Chem Phys Lett,2010,488:50-53
    [49]Beyreuther E, Thiessen A, Becherer J, et al. Probing electronic defect states inmanganite/SrTiO3heterostructures by surface photovoltage spectroscopy [J].Mater Sci Eng B,2011,176:446-452
    [50]Cavalcoli D, Fraboni B, Cavallini A. Surface photovoltage spectroscopy analysesof Cd1xZnxTe [J]. J Appl Phys,2008,103:043713
    [51]Lin X Z, Dittrich Th, Fengler S, et al. Correlation between processing conditionsof Cu2ZnSn(SxSe1x)4and modulated surface photovoltage [J]. Appl Phys Lett,2013,102:143903
    [52]Zhao Q D, Wang D J, Peng L L, et al. Surface photovoltage study ofphotogenerated charges in ZnO nanorods array grown on ITO [J]. Chem PhysLett,2007,434:96-100
    [53]Peng L L, Xie T F, Fan Z Y, et al. Surface photovoltage characterization of anoriented α-Fe2O3nanorod array [J]. Chem Phys Lett,2008,459:159-163
    [54]Chan C H, Wu J D, Huang Y S, et al. Photoluminescence and surfacephotovoltage spectroscopy characterization of highly strained InGaAs/GaAsquantum well structures grown by metal organic vapor phase epitaxy [J]. MaterChem Phys,2010,124:1126-1133
    [55]Chan C H, Wu J D, Huang Y S, et al. Temperature dependent surfacephotovoltage spectroscopy characterization of highly strained InGaAs/GaAsdouble quantum well structures grown by metal organic vapor phase epitaxy [J].J Appl Phys,2009,106:043523
    [56]Ivanov Ts, Donchev V, Wang Y, et al. Interdiffused InAs/InGaAlAs quantumdashes-in-well structures studied by surface photovoltage spectroscopy [J]. JAppl Phys,2007,101:114309
    [57]Donchev V, Kirilov K, Ivanov Ts, et al. A surface photovoltage spectroscopystudy of GaAs/AlAs complicated nanostructures with graded interfaces [J]. JAppl Phys,2007,101:124305
    [58]Sitarek P, Misiewicz J, Huang Y S, et al. Temperature dependent surfacephotovoltage spectra of type I GaAs1xSbx/GaAs multiple quantum wellstructures [J]. J Appl Phys,2013,113:073702
    [59]Chan C H, Kao C W, Hsu H P, et al. Surface photovoltage andphotoluminescence excitation spectroscopy of stacked self-assembled InAsquantum dots with InGaAs overgrown layers [J]. J Appl Phys,2008,103:084303
    [60]Chan C H, Chen H S, Kao C W, et al. Investigation of multilayer electronicvertically coupled InAs/GaAs quantum dot structures using surface photovoltagespectroscopy [J]. Appl Phys Lett,2006,89:022114
    [61]Chan C H, Chen H S, Kao C W, et al. Surface photovoltage spectroscopy andphotoluminescence study of vertically coupled self-assembled InAs/GaAsquantum dot structures [J]. J Appl Phys,2006,100:064301
    [62]Chan C H, Lee C H, Huang Y S, et al. Characterization of excitonic features inself-assembled InAs/GaAs quantum dot superlattice structures via surfacephotovoltage spectroscopy [J]. J Appl Phys,2007,101:103102
    [63]Patel B K, Rath S, Sahu S N. Surface photovoltage studies of Si nanocrystallitesprepared by electrochemical etching [J]. Physica E,2006,33:268-272
    [64]Cavalcoli D, Rossi M, Cavallini A. Defect states in nc-Si:H films investigated bysurface photovoltage spectroscopy [J]. J Appl Phys,2011,109:053719
    [65]Meier C, Gondorf A, Lüttjohann S, et al. Silicon nanoparticles: Absorption,emission, and the nature of the electronic bandgap [J]. J Appl Phys,2007,101:103112
    [66]Khriachtchev L, Ossicini S, Iacona F, et al. Silicon Nanoscale Materials: FromTheoretical Simulations to Photonic Applications [J]. Int J Photoenergy,2012,2012:872576
    [67]Ma Z, Liao X, Kong G, et al. Absorption spectra of nanocrystalline siliconembedded in SiO2matrix [J]. Appl Phys Lett,1999,75:1857
    [68]Aliberti P, Shrestha S K, Li R Y, et al. Single layer of silicon quantum dots insilicon oxide matrix: Investigation of forming gas hydrogenation onphotoluminescence properties and study of the composition of silicon rich oxidelayers [J]. J Cryst Growth,2011,327:84
    [69]Vasiliev I, Chelikowsky J R, Martin R M. Surface oxidation effects on the opticalproperties of silicon nanocrystals [J]. Phys Rev B2002,65:121302
    [70]Mahdouani M, Gardelis S,Nassiopoulou A G. Role of surface vibration modes inSi nanocrystals within light emitting porous Si at the strong confinement regime[J]. J Appl Phys2011,110:023527
    [71]Huang W Q, Huang Z M, Cheng H Q, et al. Electronic states and curved surfaceeffect of silicon quantum dots [J]. Appl Phys Lett2012,101:171601
    [72]Fojtik A, Henglein A. Surface Chemistry of Luminescent Colloidal SiliconNanoparticles [J]. J Phys Chem B2006,110:1994
    [73]Luppi E, Iori F, Magri R, et al. Excitons in silicon nanocrystallites: The nature ofluminescence [J]. Phys Rev B2007,75:033303
    [74]Guerra R, Ossicini S. High luminescence in small Si/SiO2nanocrystals: Atheoretical study [J]. Phys Rev B2010,81:245307
    [75]Huang W Q, Jin F, Wang H X, et al. Stimulated emission from trap electronicstates in oxide of nanocrystal Si [J]. Appl Phys Lett2008,92:221910
    [76]Guerra R, Degoli E, Ossicini S. Size, oxidation, and strain in small Si/SiO2nanocrystals [J]. Phys Rev B2009,80:155332
    [77]Tsybeskov L, Vandyshev Ju V, Fauchet P M. Blue emission in porous silicon:Oxygen-related photoluminescence [J]. Phys Rev B1994,49:7821
    [78] vr ek V, Sasaki T, Shimizu Y, et al. Blue luminescent silicon nanocrystalsprepared by nanosecond laser ablation and stabilized in electronically compatiblespin on glasses [J]. J Appl Phys2008,103:023101
    [79]Ray M, Jana K, Bandyopadhyay N R, et al. Blue violet photoluminescence fromcolloidal suspension of nanocrystalline silicon in silicon oxide matrix [J]. SolidState Commun2009,149:352
    [80]Valenta J, Fucikova A, Pelant I, et al. On the origin of the fast photoluminescenceband in small silicon nanoparticles [J]. New J Phys2008,10:073022
    [81]Uchino T, Kurumoto N, Sagawa N. Structure and formation mechanism ofblue-light-emitting centers in silicon and silica-based nanostructured materials [J].
    Phys Rev B2006,73:233203
    [1] Li X J, Hu X, Jia Y, et al. Tunable superstructures in hydrothermally etchediron-passivated porous silicon [J]. Appl Phys Lett,1999,75:2906-2908
    [2]李亚勤,孙新瑞,许海军等.制备条件对硅纳米孔柱阵列表面硅柱密度调制[J].科学技术与工程,2008,8:2806-2810
    [3] Xu H J, Li X J. Silicon nanoporous pillar array: a silicon hierarchical structurewith high light absorption and triple-band photoluminescence [J]. Opt Express,2008,16:2933-2941
    [4] Patel B K, Rath S, Sahu S N. Surface photovoltage studies of Si nanocrystallitesprepared by electrochemical etching [J]. Physica E,2006,33:268-272
    [5] Cavalcoli D, Rossi M, Cavallini A. Defect states in nc-Si:H films investigated bysurface photovoltage spectroscopy [J]. J Appl Phys,2011,109:053719
    [6] Meier C, Gondorf A, Lüttjohann S, et al. Silicon nanoparticles: Absorption,emission, and the nature of the electronic bandgap [J]. J Appl Phys,2007,101:103112
    [7] Rurali R. Colloquium: Structural, electronic, and transport properties of siliconnanowires [J]. Rev Mod Phys,2010,82:427-449
    [8] K nig D, Rudd J, Green M A, et al. Role of the interface for the electronicstructure of Si quantum dots [J]. Phys Rev B,2008,78:035339
    [9] Bruno M, Palummo M, Marini A, et al. From Si Nanowires to Porous Silicon:The Role of Excitonic Effects [J]. Phys Rev Lett,2007,98:036807
    [10]Avramov P V, Kuzubov A A, Fedorov A S, et al. Density-functional theory studyof the electronic structure of thin Si∕SiO2quantum nanodots and nanowires [J].Phys Rev B,2007,75:205427
    [1] Li A Y, Li Y Y, Cai W Z, et al. Realization of highly efficient white polymerlight-emitting devices via interfacial energy transfer from poly(N-vinylcarbazole)[J]. Organic Electronics,2010,11:529-534
    [2] D’Angelo P, Barra M, Cassinese A, et al. Electrical transport propertiescharacterization of PVK (poly N-vinylcarbazole) for electroluminescent devicesapplications [J]. Solid-State Electronics,2007,51:123-129
    [3] Ahn S I, Kim W K, Ryu S H, et al. OLED with a controlled molecular weight ofthe PVK (poly(9-vinylcarbazole)) formed by a reactive ink-jet process [J].Organic Electronics,2012,13:980-984
    [4] Araujo K A S, Guimar es P S S, Cury LA, et al. Avoiding trap states inpoly(n-vinylcarbazole) thin films [J]. Organic Electronics,2012,13:2843-2849
    [5] Kong F, Liu J, Li X F, et al. The broadened and red-shifted photoluminescencespectral emission of poly(N-vinylcarbazole) nanoparticles [J]. Dyes and Pigments,2010,84:165-168
    [6] Ogiwara T, Ikoma T, Akiyama K, et al. Spin dynamics of carrier generation in aphotoconductive C60-doped poly(N-vinylcarbazole) film [J]. Chemical PhysicsLetters,2005,411:378-383
    [7] Tsutsumi N, Ito Y, Sakai W. Effect of sensitizer on photorefractive nonlinearoptics in poly(N-vinylcarbazole) based polymer composites [J]. ChemicalPhysics,2008,344:189-194
    [8] Haldar I, Kundu A, Biswas M, et al. Preparation and evaluation of apoly(N-vinylcarbazole)–Fe3O4(PNVC–Fe3O4) nanocomposite [J]. MaterialsChemistry and Physics,2011,128:256-264
    [9] Ghosh D, Sardar P S, Biswas M, et al. Dielectric characteristics ofpoly(N-vinylcarbazole) and its nanocomposites with ZnO and acetylene black [J].Materials Chemistry and Physics,2010,123:9-12
    [10]Barlier V, Bounor-LegaréV, Boiteux G, et al. TiO2: polymer bulk-heterojunctionthin films made from a miscible new carbazole based TiO2precursor withpoly(N-vinylcarbazole) for enhanced charge transfer properties [J]. MaterialsChemistry and Physics,2009,115:429-433
    [11]Pérez-Gutiérrez E, Percino M J, Chapela V M, et al. Optical and morphologicalcharacterization by atomic force microscopy of luminescent2-styrylpyridinederivative compounds with Poly(N-vinylcarbazole) films [J]. Thin Solid Films,2011,519:6015-6020
    [12]Maity A, Ray S S. The effect of the carbon nanotubes surface oxidation on themorphology and properties of poly(N-vinylcarbazole) coated multi-walled carbonnanotube nanocables [J]. Synthetic Metals,2009,159:1158-1164
    [13]Hazra D K, Chatterjee R. In situ solid state polymerization and characterizationof poly (N-vinylcarbazole) encapsulated Keggin type polyoxometalatenanocomposite [J]. Journal of Molecular Structure,2013,1045:139-144
    [14]Cho B, Kim T W, Choe M, et al. Unipolar nonvolatile memory devices withcomposites of poly(9-vinylcarbazole) and titanium dioxide nanoparticles [J].Organic Electronics,2009,10:473-477
    [15]Zhang Q, Pan J, Yi X, et al. Nonvolatile memory devices based on electricalconductance tuning in poly(N-vinylcarbazole)–graphene composites [J]. OrganicElectronics,2012,13:1289-1295
    [16]Dkhil S B, Bourguiga R, Beyou E, et al. Synthesis and properties of aphotovoltaic cell based on polystyrene-functionalised Si nanowires filled into apoly(N-vinylcarbazole) matrix [J]. Materials Chemistry and Physics,2012,136:431-438
    [17]Sakai H, Itaya A, Masuhara H, et al. Fluorescence dynamics ofpoly(N-vinylcarbazole) in solution as revealed by multicomponent analysis ofpicosecond time-resolved fluorescence spectra: dependence on tacticity andmolecular weight [J]. Polymer,1996,37:31-43
    [18]Klimovic J, Savinov A. Excitation energy transfer in films ofPoly(N-vinylcarbazole)[J]. Journal of Luminescence,1997,72-74:505-507
    [19]Johnson G E. Emission properties of vinylcarbazole polymers [J]. J Chem Phys,1975,62:4697-4709
    [20]Tsuboi Y, Goto M, Itaya A. Thin films formation of poly(N-vinylcarbazole) bylaser ablation deposition [J]. Journal of Applied Physics,1999,85:4189-4195
    [21]Ghosh D, Chattopadhyay N. Characterization of the excimers ofpoly(N-vinylcarbazole) using TRANES [J]. Journal of Luminescence,2011,131:2207-2211

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700