用户名: 密码: 验证码:
基于闸片结构的列车盘形制动温度和应力的数值模拟及试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
盘形制动器具有结构紧凑、制动效率高、制动功率大等优点而被用于高速列车。随列车速度的提高,制动所消耗的能量增加,制动盘处于温度高、波动程度大的状态,导致制动盘热裂纹损伤矛盾突出,成为制约制动盘寿命的主要因素。影响制动盘温度和应力分布的一个重要因素是闸片结构形式。因此,研究高速制动条件下制动盘温度和应力分布规律以及与闸片结构的关系,对提高列车行车安全具有重要意义。
     针对高速列车用锻钢制动盘与铜基粉末冶金闸片所组成的摩擦副,基于数值模拟方法和1:1制动动力制动试验,进行了最高速度达350km/h的制动试验,结合红外热像技术,研究了制动速度和制动压力对盘面温度和应力的影响规律,并从闸片结构的角度,探讨闸片结构形式对接触压力和温度分布的影响,得到如下结论:
     (1)基于闸片几何形状和排布形式决定制动盘各点摩擦功率的角度,探讨了制动闸片结构的表征方法,提出了闸片结构形函数的概念,并推导出了圆形摩擦块闸片的闸片结构形函数表达式。闸片结构形函数描述了闸片与制动盘的摩擦接触关系,成为移动热源模型的基础,使移动热源与摩擦块几何特征相关联。通过这个参数,客观地描述了闸片的结构特点,并可用于评价制动闸片对制动盘温度和应力分布均匀性的影响程度。
     (2)针对四种排布方式不同的圆形摩擦块的闸片,分别计算了相应的闸片结构形函数值,通过对制动过程制动盘的温度及应力的模拟,验证了闸片结构形函数与制动盘表面温度及应力的变化规律,两者具有较好的一致性。随着闸片结构形函数数值的增加,制动盘表面温度及应力增加。减小闸片结构形函数数值的变化的范围则可改善制动盘温度及应力的分布。结构形函数的提出为改善制动盘温度及应力提供了参考依据,对闸片结构的设计具有指导意义。
     (3)针对六边形和三角形摩擦块结构,模拟计算了制动盘温度和应力。在制动速度为120km/h、制动时间为10s的条件下,六边形摩擦块的闸片对应的制动盘峰值温度为103℃,最大峰值应力为212MPa,三角形摩擦块的闸片对应的制动盘峰值温度为206℃,最大峰值应力为433MPa,两者相比,后者的应力高于前者一倍,这缘于六边形摩擦块闸片的结构形函数值的分布较三角型摩擦块闸片的结构形函数值的分布具有更好的均匀性。
     (4)针对圆形摩擦块结构闸片,以结构形函数值最小为目标,对闸片结构进行优化设计,优化前后的结构相比,优化后制动盘表面峰值温度最大下降了141℃,峰值应力最大下降了383MPa。
     (5)采用红外热像技术,测试了1:1试验条件下制动盘温度的变化过程。随制动速度的增加,盘面温度增加,制动速度达350km/h时,盘面温度超过550℃。盘面温度差随着制动速度增加而增加,制动速度为350km/h与制动速度120km/h相比,盘面的温差增加了一倍。盘面最大温差出现在制动的初始阶段,随制动时间的增加,盘面温度梯度降低。
     (6)盘面温度分布变化情况测试表明,盘面温度经历了升温-稳定-降温过程。在升温阶段,高温区呈环状优先在制动盘摩擦面内、外侧区域形成,并随制动时间的增加向制动盘摩擦面中间偏移,并达到温度最高值。在降温阶段,高温区沿径向扩展、周向缩减,使环状高温区分割为不连续的“孤岛”,构成斑块形态。高温区的这种演化规律归因于盘面的摩擦速度、压力分布的不均匀性。盘的旋转运动导致摩擦速度随摩擦半径的增加而增加,闸片的燕尾结构导致摩擦面内、外侧区域压力偏高,这种速度和压力的综合作用决定了摩擦半径大的高温区优先磨损,磨损的不均匀性改变了压力分布而使高温区随制动过程而发生移动。
Disc brake has been widely used in high-speed train brake for its simple structure, high brakeefficiency and large brake power. With the speed of train rising, energy to be consumedincreases during braking, and the brake disc is in state of high and volatility temperature,leading to severe thermal crack damage of brake disc, which has become a major factorrestricting the life of the brake disc. One of the important factors effects distributions of thebrake disc temperature and stress is the structure of brake pads. Therefore, to improve traintraffic safety, it is important to study on distributions of the brake disc temperature and stressand its relation to the brake pads structure under the conditions of high-speed braking.Using friction pair of forged steel brake disc and copper-based powder metallurgy brake padsfor high-speed train, by the numerical simulation method and full scale braking test with topspeed of350km/h, and by infrared thermal imaging technology, the influence of brakingspeed and braking pressure on the disk temperature and stress have been studied, and theinfluence of the brake pads structure on contact pressure and temperature distribution hasbeen discussed on view of the brake pads structure. Conclusions obtained as follows:
     (1) Based on the view that friction power on the brake disc surface is determined by thegeometry and arrangement of the brake pads, characterization methods of the brake padsstructure have been discussed, concept of brake pads structure function has been proposed,and expressions of brake pads structure function for circular friction pad has been developed.The brake pads structure function describes contact relation between the brake pads and brakedisc which is the basis of the mobile heat source model, and associates mobile heat sourceswith the friction pad geometric features. This parameter objectively describes the structuralcharacteristics of the brake pad, and can be used to evaluate the degree of influence of thebrake pads on uniformity of the brake disc temperature and stress distribution.
     (2) The values of brake pads structure functions of four brake pads with different arrangementof circular friction pad have been calculated. By simulating the brake disk temperature andstress during the braking process, the variations of the brake pads structure function and thebrake disc surface temperature and stress have been verified, showing a good agreement ofthe two. With increase of the brake pads structure function value, the brake disc temperatureand stress increase. The distribution of the brake disc temperature and stress can be improvedby reducing the changing range of the brake pads structural function value. The brake padsstructural function provides a reference for improving the brake disc temperature and stress,whichis significant for the design of brake pads.
     (3) The brake disc temperature and stress have been simulated with brake pads of hexagonaland triangular friction pad structure. Under conditions of braking speed of120km/h and braking time of10s, the maximum peak temperature and peak stress of the brake disc, whichcouple with brake pads of hexagonal friction pad structure, are103°C and212MPa,respectively, and those, which couple with brake pads of triangular friction pad structure,206°C and433MPa, respectively. The stress of the latter is double of that of the former, which isdue to that the distribution of structure function value of the hexagonal friction pad has betteruniformity than that of the triangular friction pad.
     (4) For target of minimum value of the brake pads structure function, the structure of brakepads of circular friction pad has been optimized. When braking with the optimized brake pads,the brake disc peak temperature and peak stress decrease by141°C and383MPa,respectively.
     (5)The evolutions of the brake disc temperature under the1:1test conditions have been doneby infrared thermal imaging technology. The brake disc temperature increases when brakespeed increases and the temperature exceeds550°C when the braking speed is350km/h. Thedifference of the brake disc temperature increases with increasing of braking speed, and thedifference of temperature under the speed of350km/h is doubled of that under the speed of120km/h. The maximum temperature difference appears in the initial braking stage, andtemperature gradient reduces with the increase of the braking time.
     (6) The study of variation of the brake disc temperature distribution shows that the brake disctemperature experiences a process of warming-stability-cooling. In the warming stage, thehigh temperature zones appear in priority at both the inner and the outer locations of the brakedisc friction surface, and offset to the middle of the brake disc friction surface with theincrease of the braking time, reaching the highest value of temperature. In the cooling stage,the high temperature zones expanse along the radial direction and reduction in circumferentialdirection, which divides the high temperature zone into discontinuous spots. The evolution ofthe high temperature zone is due to the uneven distribution of friction speed and pressure ofthe brake disc. The rotational motion of the brake disc results in the increasing friction speedwith the enlargement of the friction radius. The structure of brake pads dovetail leads to thatthe inner and the outer locations’ pressure of the brake disc friction surface is higher than thatof other zones’. The combined effects of speed and pressure result in that high temperaturezone with lager friction radius wear in priority. The uneven wear changes the pressuredistribution makes the high temperature zone moving during the braking process.
引文
[1]孙彤,孙翔译.采用高新技术的德国铁路ICE高速列[M].西南交通大学出版社,1992:3
    [2]沈志云.关于高速铁路及高速列车的研究振动测试与诊断.1998,18(1):1-7
    [3]吴礼本,王其利.国外铁路高速列车[M].北京,中国铁道出版社,1994:1
    [4]赵振辉,秦四平.试论中国发展高速铁路的必然性[J].市政与路桥,2000:182
    [5]何华武.快速发展的中国高速铁路[J].中国铁路,2006:24-33
    [6]张曙光.京沪高速铁路系统优化研究[M].北京,中国铁道出版社,2009:26
    [7]饶中.列车制动[M].中国铁道科学出版社,1998
    [8]殳企平.城市轨道交通车辆制动技术[M].北京,中国水利水电出版社,2009:12
    [9]王涛,朱文坚.摩擦制动器原理结构设计[M].华南理工大学出版社,1992:1-2
    [10]黄志辉,吕换小.高速动力车制动盘、制动闸片结构设计及材料选择[J].内燃机车,1997,8
    [11]钱立新.高速铁路论文集(第一辑).北京:铁道部科技情报所,1992,143
    [12]林枯亭.“中华之星”电动车组制动系统[J].机车电传动,2003.5,80-84
    [13]李和平,林枯亭.高速列车基础制动系统的设计研究[J].中国铁道科学,2003.2:8-13
    [14]于军.车辆制动[M].北京,中国铁道出版社,2003.8:101-105
    [15]博科.列车制动的几种方式[J].铁道知识,2003(3):34-35.
    [16]陈大名.铁道车辆制动[M].北京,中国铁道出版社,2005:291
    [17]梁爽.车辆制动摩擦特性及摩擦颤振的研究.西南交通大学硕士学位论文[D].2005,12:3
    [18]孙新海,吕换小,卜华娜等.盘形制动及其配套技术[M].北京,中国铁道出版社,1998:2-4
    [19]杨成美.高速列车制动方式的比较研究[J].上海铁道科技.2005,(6):37-39
    [20] Moriaki Gouya, Massaki Nishiwaki.Study on Disc Brake Groan.SAE paper.900007,
    [21]王文龙.铝基复合材料制的摩擦磨损性能.金属学报.
    [22]马大炜.关于高速列车制动系统的思考[J].铁铁道车辆.2000,38(1):12-16
    [23] W. Wiebelhaus.铁道车辆制动技术的新发展[J].国外铁道车辆.1996,(2):8-14
    [24]刘美玲.摩擦材料的温度场及其摩擦性能研究[D].中南大学硕士学位论文,2007.5
    [25]韩建民.高速列车SiC<,p>/A356制动盘制造关键技术及摩擦特性研究.北京交通大学博士学位论文[D].2004:2
    [26]王文静.SiCp_A356复合材料制动盘温度场应力场数值模拟及热疲劳寿命预侧[D].北京交通大学博士论文,2003:10
    [27]吴萌岭.准高速客车制动盘温度场与应力场的计算与分析(下)[J].铁道车辆1995,33(9):35-38
    [28]平修二.应力与热疲劳[M].北京,国防工业出版社.198
    [29]赵华.制动盘温度的有限元计算与实验研究[J].石油机械.1998,26(9):15-18
    [30]张建宏.城轨车制动盘的发热验算[J].铁道车辆,2002(2):28-29.
    [31]孔祥谦.有限单元法在传热学中的应用图[M].北京,科学出版社,1998
    [32]栾霖,栾云飞.循环对称非线形瞬态温度场的变分解法[J].核科学与工程,1999,19(3):241-247
    [33]王勛成,邵敏编.有限单元法墓本原理和数值方法(第二版)[M].清华大学出版社,1992,2
    [34]迁村太郎(日本).制动材料开发的动向[J].国外内燃机车,1993(6):30-34
    [35]乐永康,张迎元.颗粒增强铝基复合材料的研究现[J].材料开发与应用,1997(5):33-39
    [36] Gérard Degallaix,Philippe Dufrénoy,Jonathan Wong.et.al. Failure mechanisms of TGV brakediscs.Key Engineering Materials,2007,345-346:697-700
    [37] Iombriller,S. F. Análise térmicae dinanica do Sistema de Freio a Disco de Veículos ComerciaisPesados.Dissertation (doctorate in Mechanical Engineering),S o Carlos: USP-Universidade de S o Paulo:177-2002.
    [38]管原繁夫[日].轮对的设计[J].国外铁道车辆,1983,(1):17
    [39] P. Dufrénoy, D. Weichert.a thermomechanical model for the analysis of disc brake fracturemechanisms.Journal of Thermal Stresses,2003,26:815-828
    [40] P Litos,M Honner,V Lang,et al.. A measuring system for experimental research on thethermo-mechanical coupling of disc brakes.Proc. IMechE Vol. Part D: J. Automobile Engineering,2008,222:1247-1257
    [41] Anderson AE,Knapp RA.Hot spotting in automotive friction systems.Wear,1990,135:319-37
    [42] S. Panier,P. Dufrénoy,D. Weichert.An experimental investigation of hot spots in railway discbrakes[J].Wear,2004,256:764-773
    [43] Stéphane Panier,Philippe Dufrénoy,Pierre Brémondc.Infrared characterization of thermal gradientson disc brakes.Proceedings of SPIE,2003,5073:295-302
    [44] Dufrénoy P.,Weichert D.Prediction of railway disc brake temperatures taking the bearing surfacevariations into account. Proc IMechE Part F: J Rail Rapid Transit,1995,209:67-76.
    [45] P. Dufrénoy,G. Bodovillé,G. Degallaix.Damage mechanisms and thermomechanical loading in brakediscs.Temperature-Fatigue interaction,L. Rémy&J. Petit,2001:167-176
    [46] T. Kao,J.W. Richmond,A. Douarre.Brake disc hot spotting and thermal judder: an experimental andfiniteelement study.Int. J. Of Vehicle Design,2001,23:276-296
    [47]庄光山,王成国,王海庆等.盘形制动摩擦表面温升研究.机械工程学报,2003,39(2):150-154
    [48]刘金朝,卜华娜,刘敬辉等.整体制动盘应力有限元仿真分析.中国铁道科学,2007,28(2):80-83
    [49]赵文清.高速列车“中华之星”制动盘温度场及应力.兵工学报,2006,27(1):132-135
    [50] Sung-Keun Cho,Jung-Hun Choi.Life evaluation of a disk brake of railway vehicles consideringpressure distributions at a frictional surface.Key Engineering Materials,2007,353-358:303-306
    [51] Xaver Wirth.High performance brake pad ISOBAR.European conference on braking-JEF’98,Lille-France,December9-10th1998
    [52]陈德玲,张建武,周平.高速轮轨列车制动盘应力有限元研究.铁道学报,2006,28(2):39-43
    [53] M. Eltoukhy,S. Asfour,M. Almakky,C. Huang.Thermoelastic instability in disk brakes: simulationof theheat generation problem.Excerpt from the Proceedings of the COMSOL Users Conference,Boston,2006
    [54] S Missori,A Sili.Optimizing proportions of railway brake discs by temperature transientsevaluation.Proc Instn Mech Engrs,202(2):91-99
    [55]刘建秀,杨改云,韩长生等.铜基粉末冶金闸瓦刹车仿真计算[J].机械,2004,31(1):55-57
    [56]刘建秀,邵建敏,韩长生等.铜基粉末冶金闸瓦温度场分布[J].煤矿机械,2003,10:34-36
    [57] Evtushenko O.O.,et al..Analytic methods for thermal calculation of brakes(review)[J].MaterialsScience,2000,36(6):857-862
    [58] Kennedy F E Jr.Surface tanperatures in sliding systems-A finite element analysis[J].ASME Journal ofTribology,1981,103:90-96.
    [59] Tian Xuefeng,Kennedy Franci e. Jr..Contact surface temperature models for finite bodies in dry andboundary lubricated sliding[J].ASME Journal of Tribology,1993,115:411-418.
    [60]高诚辉,黄健萌,林谢昭.盘式制动器摩擦磨损热动力学研究进展[J].中国工程机械学报,2006,4(1):83-88
    [61] B.B.格利布[苏],孟宪堂,宋琦译.数值法解摩擦学技术问题[M].机械工业出版社出版,1989
    [62] P. Zagrodzki,K.B. Lam,E.AI Bahkali,J.R. Barber.Nonlinear ransient behavior of a sliding systemwith frictionally excited thermoelastic instability [J].Journal of Tribology,2001,123(10):699-708
    [63] P. Zagtodzki.Analysis of thermomechanical phenomena in mufti-disc clutches and brakes [J].Wear,1990,140(2):291-308.
    [64] Chung Kim,Boo-Yong Sung.Finite element analysis on the thermal behaviors of a disk-pad brake fora high-speed train.roceedings of the first Asia international conference on tribology,Beijing China,1998:95-102.
    [65]吴萌岭.准高速客车制动盘温度场及应力场的计算与分析(上)[J].铁道车辆,1995,33(9):6-8
    [66]易茂中,冉丽萍.制动盘温度的有限元计算与实验研究[J].石油机械,1998,26(9):15-18
    [67] Floquet A.Thermomechanical behavior of mulitilayered media[J].ASME J of Tribo,1989,11(1):538-545.
    [68]李继山,林枯亭,李和平.高速列车合金锻钢制动盘温度场仿真分析[J].铁道学报,2006,28(4):45-48
    [69]丁群,谢基龙.基于三维模型的制动盘温度场和应力场计算[J].铁道学报,2002,24(6):34-38
    [70]杨莺,王刚.机车制动盘三维瞬态温度场与应力场仿真[J].机械科学与技术,2005,24(10):1257-1260
    [71]郑剑云,郭晓晖,包子赛等.提速客车制动盘应力有限元分析[J].机车车辆工艺,2002,3:4-6
    [72] Gao Chen-hui,Lin Xie-zhao.Transient temperature field analysis of brake in nonaxisymmetricthree-dimensional model [J].Journal of aterials Processing Tech,2002,129(13):513-517.
    [73]林谢昭,高诚辉.紧急制动过程制动盘表面非轴对称温度场的数值模拟[J].摩擦学学报,2002,22(4):366-369.
    [74]林谢昭,高诚辉.盘式制动器非轴对称温度场的有限元模型.2002疲劳与断裂工程设计论文集,西安,2002:404-407.
    [75]张海泉,赵海燕,汤晓华等.快速列车盘型制动热过程有限元分析.清华大学学报(自然科学版),2005,45(5)
    [76]赵海燕,徐济民,陈强等.高速列车制动盘寿命评估.清华大学科技研究报告,2003.
    [77]苏海赋.盘式制动器热机耦合有限元分析[D].华南理工大学硕士学位论,2011:3
    [78]张天孙.传热学[M].北京,中国电力出版社,2006:2-4
    [79]陈兴祥,赵培炎.传热与变形基础[M].湖南大学出版社,1988:21-22
    [80] D. Majcherczak,P. Dufrenoy,Y. Berthier.Tribological,thermal and mechanical coupling aspects ofthe dry sliding contact.Tribology International,2007,40:834–843
    [81] T. C. Kennedy.Transient heat partition factor for a sliding railcar wheel.Wear.2006,251:932-936
    [82]李继山.高速列车合金锻钢制动盘寿命评估研究[D].铁道科学研究院博士学论文,2006.6
    [83]戴振动.摩擦体系热力学引论[M].北京,国防工业出版社,2002:90
    [84]何君毅,林祥都.工程结构非线性问题的数值解法.北京,国防工业出版社,1994:68-72
    [85]庄茁,张帆等.ABAQUS非线性有限元分析与实例[M].北京,科学出版社,2005:312-313
    [86]王涛,朱文坚.摩擦制动器原理结构设计[M].华南理工大学出版社,1992:1-2
    [87] Omar Maluf,Jéferson Aparecido Moreto,Maurício Angeloni,et al..Thermomechanical andisothermal fatigue behavior of gray cast iron for automotive brake discs.New Trends and Developments inAutomotive System Engineering,147-166
    [88] N. Benseddiq, J. Seiderrnann. Optimization of design of railway disc brake pads. Proc Instn MechEngrs,1996,210:51-61
    [89] S.J.Kwon, B.C. Goo. A study on the friction and wear characteristics of brake pads al mmc brake disc.Key Engineering Materials,2000,187:1225-1230
    [90] P Litos, M Honner, V Lang, et al.. A measuring system for experimental research on thethermomechanical coupling of disc brakes. Proc. IMechE Part D: J. Automobile Engineering,2008,222:1247-1257
    [91]齐文娟.发射率对红外测温精度的影响.长春理工大学硕士学位论文,2005:1
    [92]齐海波,樊云昌,籍凤秋.高速列车制动盘材料的研究现状与发展趋势.石家庄铁道学院学报,2001,14(1):52-57
    [93]李继山,李和平,林祜亭.高速列车制动盘裂纹现状调查分析[J].铁道机车车辆,2005,25(6):3-5
    [94]乐永康,张迎元.颗粒增强铝基复合材料的研究现状[J].材料开发与应用,1997,12(5):33-39
    [95] T.W克莱因,P.J.威瑟斯著,余永宁,房志刚译,贾成厂校.金属基复合材料导论[M].北京:冶金工业出版社,1996
    [96] VVBhanuprasad,et al.,YR.Mahajan.Fractography of Metal Matrix Composites [J].Key EngineeringMaterials,1995,2:495-506
    [97]欧阳柳章,罗承萍,隋贤栋等.外加颗粒增强金属基复合材料的现状及展望[J].中国铸造装备与技术,2000,1:3-6
    [98]王文龙,吴军华,张国定.铝基复合材料的摩擦磨损性能[J].金属学报,1998,(34)11:1178-1182
    [99]陈跃,刑建东,张永振等.增强颗粒对铝基复合材料摩擦学性能的影响[J].摩擦学学报,2001,21(4):251-255
    [100]杨智勇.高速客车铝基复合材料制动盘热损伤和结构设计研究.北京交通大学博士学位论文,2008:16
    [101] Haruo Sakamoto, Kenji Hirakawa. Fracture analysis and material improvement of brakediscs[J].JSME International Journal,Series A,2005,48(4):458-464
    [102] D.F.Russell等,于学辉译.高速列车制动盘的设计与研制[J].国外铁道车辆,1992,1:17-22
    [103]赵田臣.高速列车铜基复合材料闸片研制方案研究.石家庄铁道学院学报.2001,14(4):11-13
    [104] D. Majcherczak, P. Dufr′enoy. Dynamic analysis of a disc brake under frictional andthermomechanical internal loading.Arch Appl Mech,2006,75:497-512
    [105] S. Panier,et al..An experimental investigation of hot spots in railway disc brakes[J].Wear,2004,256:764-773
    [106] N. Audebert,J.R. Barber, P. Zagrodzki.Buckling of automatic transmission clutch plates due tothermoelastic/plastic residual stresses [J].Thermal Stresses,1998,21:309-326.
    [107] X. Fan,H. Lippmann.Elastic–Plastic Buckling of Plates under Residual Stress: Advances inEngineering Plasticity and its Applications.Pergamon Press,Amsterdam,1996
    [108] Kia-Moh Teo,Khalid Lafdi.Thermal diffusivity mapping of friction surface using photo-thermaltechnique[J].Journal of Tribology,2001,123:785-790
    [109] H Jacobsson.Aspects of disc brake judder. Proc.Instn Mech. Engrs Part D: J. AutomobileEngineering,2003,217:419-430
    [110] V. Hegadekatte,N. Huberb,O. Kraft.Modeling and simulation of wear in a pin on disc tribometer.Tribology letters,2006,24(1):51-60
    [111] S ren Andersson.Wear simulation.Advanced knowledge application in practice.1992:15-36

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700