用户名: 密码: 验证码:
西秦岭金属矿床成矿地球化学场研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全文以造山带成矿学、地球化学及自组织临界成矿理论为指导,以前人对区内的基础地质及矿床地质研究成果、西秦岭区域地球化学资料、矿床地球化学资料为依据,系统论述了本地区各地质单元的物质组成、金属矿床成矿规律、成矿地球化学过程、矿床地球化学场结构、矿床区域地球化学成矿预测模式及典型矿床的大中比例尺成矿地球化学预测模式。取得了一系列成果。
     1.区域成矿地质背景
     1.1地层物质成份
     秦岭群、蓟县系、青白口系、丹凤群、中志留统舟曲组、中泥盆统舒家坝组、中石炭统下加岭-东扎口组物质组成相对复杂,包含了深源基性元素、陆源碎屑岩元素及热水沉积元素组合;中秦岭的晚古生代地层富集蒸发盐建造的元素组合,其中的Pb、Hg、Cd具有临界沉积特征;南秦岭的Fe、Mn、Zn、Mo、Ba等有临界沉积特征;新元古代以来,生物及热水沉积作用参与了部分地层的沉积过程。
     1.2侵入岩物质成份
     晋宁期中基性侵入岩富集Cu、Pb、Zn、Ni、Fe等成矿元素。加里东期中性侵入岩富集相容元素。海西期侵入岩均富集气水热液蚀变岩元素,大部分岩体富集高场强元素,部分岩体富集相容元素。印支期侵入岩石英二长闪长岩及温泉花岗岩等岩体富集相容元素,柏家庄等二长花岗岩富集偏碱性元素Nb、K、Y等。燕山期,中秦岭西段的岩体富集铁族元素和亲硫元素,东段富亲石元素和亲硫元素。
     1.3地壳演化与深部构造
     据对地层的以惰性元素为变量的Q型聚类分析、La/Th比值、La/Y—La/Co图解,花岗岩类的R1-R2和Nb-Y图解,岩石圈结构,及前人观点,认为加里东期以来至泥盆纪的花岗岩类可能是对早晋宁期扬子板块与华北板块碰撞过程的延续性响应,早泥盆世后随着勉略洋的消减,扬子与华北开始汇聚造山,碰撞点历经自东向西迁移,直至中生代陆内造山。中生代以来中秦岭的岩浆活动及有关的成矿作用与断离、拆沉的松潘-甘孜地块发生的构造热侵蚀有关。碧口群中的蓟县系阳坝组和秧田坝组,是在印支运动后才出露的。
     2.成矿规律
     2.1成矿年龄
     统计结果显示,沉积成矿作用成矿峰期为志留纪和泥盆纪,并且主要集中于中晚志留世和中泥盆世;热液成矿作用仅显示于石炭纪以后,成矿峰期为三叠纪和侏罗纪。相对岩脉,成矿并不总是滞后的,但发生于断裂剧烈活动开始10Ma之后。
     2.2矿床空间分布
     利用矿床的空间信息定量地圈定出夏河、临潭、宕昌、武都、李子园、成县及伐子坝等7个矿床集中区,其中以成县集中区呈现金属矿床集中区的面积及强度为最,其次为临潭集中区和夏河集中区。以中秦岭所占比例相对较高。
     有相当一部分矿床处于距离深断裂0-10km的范围内,大部分金属矿床分布于距离侵入体5km的距离以内,具有多(五)标度分形特征;大多数矿床(点)之间的距离集中于小于6km的范围内,具有面型分布。均具有多标度分形特征,多因素协同作用特征。
     2.3金属矿床成矿系列与成矿系统
     在陈毓川等所界定的成矿系列概念的基础上,本文根据具体情况制定了划分原则,进而将西秦岭金属矿床划分为10个成矿系列、13个亚系列、30个矿床式,其中铁成矿系列3个、铁铜多金属成矿系列2个、铜(钼)成矿系列2个、铅锌成矿系列1个、汞锑成矿系列1个、金成矿系列1个。
     在翟裕生所界定的成矿系统概念的基础上,本文根据具体情况制定了划分原则,进而将该区的成矿系统划分为6个成矿系统大类、9个成矿系统类、11个成矿系统。
     2.4矿床资源量生长过程
     矿床资源量的吨品位关系能用指数函数或直线方程更好地拟合,吨品位的双对数图由三条线段组成,k矿体资源量双对数图由四条线段组成等事实及数学推导证明,矿床吨-品位关系方程应表述为由非线性增殖过程线性叠加而实现的指数函数。
     3.成矿地球化学过程
     3.1成矿物理化学条件
     次火山热液亚系列钼矿处于100-420℃之间;热水沉积铅锌矿系列和热液金矿系列较为接近,处于60-480℃之间,其中沉积铅锌矿系列集中于80-120℃,热液金矿系列集中于150-300℃;沉积改造锰矿系列的成矿温度为25-32℃。
     利用CO_2体系的MRK方程和NaCl-H_2O体系的盐度、密度、温度等和压力的关系估计的所有矿种的压力值均处于1km以内。改造型铅锌矿床形成的压力普遍高于沉积型铅锌矿床,但改造成矿作用有伴随压力突然降低的减压和不混溶过程。各矿种产出的Eh-pH条件范围的大小,基本与相应矿种的矿产地数量正相关。
     3.2成矿地球化学过程
     根据矿石物质成份、成矿流体成份、成矿物理化学条件,以文字及化学方程的形式描述了区内不同成因的铁、锰、铜、铅锌、金、汞、锑等金属的成矿过程。不同矿种、不同成矿亚系列的成矿过程不尽相同。
     矿床地球化学场具有多重分形特征。按双对数曲线的拐点数,将39种元素的地球化学场分为单富集、两重富集、三重富集、四重富集、五重富集等5个类型。大中型矿床与三重以上富集过程有关。
     4.金属矿床的区域地球化学场结构
     从线性和非线性两种角度描述了铁、锰、铜、铅锌、金、汞、锑等矿床的区域地球化学场结构。总体看来,尽管各矿床地球化学场的组份特征不同,但主要成矿元素的结构参数有一定的相似性。如矿床所处部位一般为中等含量的异常区,除少数矿床外,一般与峰值不对应;半变异函数的变程一般为0.7—0.9,具有明显的随机场特征;南北向静态斑图熵小于东西向静态斑图熵,南北向布朗分数维大于东西向布朗分数维,指示南北向的变化程度相对复杂;除极少数铁矿外,几乎所有矿床均处于奇异指数小于2.0的地带,铅锌、金、汞锑矿床的奇异指数一般小于1.8,该指数对圈定不同矿种的成矿区域确实具有成效。
     对部分金属矿床的地球化学场,求解的Lyapunov指数表明,Pb、Zn等成矿元素的区域地球化学场具有临界特征,但表生条件下的活动性元素Cu、Mo趋于稳定结构,人工采矿污染使Hg、Sb等的区域地球化学场具有明显的混沌特征。
     5.区域地球化学场成矿预测模式
     建模方法有效性评估结果表明,线性回归效果相当好,可以很好地区分出不同规模等级的矿床;其次为逻辑信息法,再次为本文提出的因子计量模型重构法,证据权法显示的元素组合看起来很合理,但模型的应用结果很不理想。进一步以线性回归法为主建立了区内沉积改造型铁矿、沉积变质型铁矿、风化淋滤型铁矿、沉积改造型锰矿、矽卡岩型铜矿、斑岩型铜矿、热液型铜矿、VMS型铜矿、沉积型铅锌矿、改造型铅锌矿、岩浆热液型金矿、沉积改造型金矿、汞矿、锑矿等14个区域地球化学成矿预测模式。
     6.大比例尺成矿地球化学模型及矿产勘查中的重正化问题
     6.1代家庄铅锌矿床原生晕
     沉积成矿作用形成的原生晕分带是:
     自中心向外Fe-Au-Bi-Sr-W-Cr-Pb-Hg-Co-Sb-Ni-V-Mo,由中心的热水沉积物过渡到外侧的还原环境下的正常沉积组份;
     改造成矿作用形成的原生晕分带是:
     自中心向外Cu-Zn-Mo-Pb-Sn-W-Hg-Ni-Co,由中心的多金属硫化物过渡到外侧的热水沉积建造的组份。
     Lyapunov指数显示,中低温热液成矿组份Hg等具有时空自组织临界性:中高温热液成矿组份Cu、Zn、Bi等仅具频率域的自组织临界性,在空间域表现为稳定的地球化学场结构。
     采用其组合指标[PB*W]/Cu~2及幂函数拟合得到的深部资源量预测模型,其方差贡献达99.526%,拟合精度较高。
     6.2代家庄铅锌矿床土壤地球化学晕
     利用分带指数法计算得到的测向分带顺序是:由里向外Sn-Cu-W-Mo-Ag-Zn-Pb-As-Sb,与热液矿床中元素的分带顺序基本一致。
     Lyapunov指数显示,成土作用使大部分成矿元素的地球化学场趋于稳定结构。但元素在土壤中的功率谱特征对岩石具有继承性。
     建立了以土壤Ag异常面积为变量的数学模型,验证效果较为理想。
     6.3 1∶5万水系沉积物晕地球化学晕
     Lyapunov指数、频率域的1/f现象指示,地表流水的冲刷会使一些原生晕中处于稳定结构的元素趋于临界或混沌状态,从而产生一些可能与矿化无关的异常,使水系沉积物的找矿应用复杂化。成矿元素及其亲硫指示元素在频率域的低频段普遍呈现相对1/f现象的偏移,而个别元素Cu则在频率域表现为混沌无序。
     多元素组合异常图显示出以Pb为中心的元素分带,自中心向外为Pb-Cu-Zn-Mo-As-Hg-Ag;而铅的单元素异常图则表现为以代家庄铅锌矿床为中心且与地层走向近于垂直的近NEE向的环状分带模式表明,这些近环状分布的铅异常主要由改造成矿作用形成。
     依据成矿及指示元素表生条件下的地球化学性质,及自组织临界现象的论述,选择与成矿元素关系密切、且稳定性相对较高的Pb、Zn、As、Sb、Hg等元素的异常面积为建模变量,建立了预测模型,验证结果较为理想。
     6.4矿产勘查中的重正化群问题
     通过矿产勘查中的重正化群问题研究表明,对于1/20万、1/5万和1/1万等三种勘查尺度,在进行勘查工程的布置时,在不考虑其它因素的情况下,应该在已圈定的异常的基础上,向外分别扩延6.5km、0.16km和0.002km。当异常点的频率小于10%时,异常频率对异常的关联长度影响不大,对关联长度起决定作用的是工作比例尺。
Under the guidances of Orogenic Metallogeny, Geochemistry, and Self-Organized Criticality, and on the basis of previously basic geology, geology of mineral resources, and the data of regional geochemistry and mineral geochemistry, this paper had given a systematic state and acquired a number of results about a series of topics in west Qinling, such as composition of all geological units, metallogenic regularities, geochemical processes of ore-forming, patterns of geochemical fields of metallic deposits, geochemically metallogenic forecast models of mineral deposits, and large-middle scale of forecast models of typical ore deposits.
     1. Regionally geological backgrounds
     1.1 The compopsitions of strata
     Some strata, such as Qinling Gr, Jixian System, Qinbaikou System, Danfeng Gr, meso-Silurian Zhouqu Fm, meso-Devonian Shujiaba Fm, meso-Carbonaceous combined Xiajialing-Dongzakou Fm, have diversified compositions in which there are basic elements from depth, clastic elements from continents, and the elements from hydrothermal sediments. Upper Palaeozoic Erathem in mid-Qinling is richer in the assemblage of evaporate, and has characteristics of critical mineralization of the element Pb, Hg, and Cd. South Qinling has that of the element Fe, Mn, Zn ,Mo, and Ba. Since Neoproterozoic Era, organism had anticipated in the processes of part of strata.
     1.2 The compositions of intrusive rocks
     Jinning intermediatie-basic intrusive rocks are rich in the metallogenic elements Cu, Pb, Zn, Ni, and Fe. Caledonian intermediate rocks are rich in the elements from hydrothermal alteration, most of which are rich in HFSE, and part of which are rich in compatible elements. Indosinian quartz monzonite and Wenquan granites are rich in compatible elements, and the monzonitic granites of the same ages such as Baijiazhuang rock mass are rich in alkaline elements as Nb, K, and Y. The Yanshanian rock mass in western section of mid-Qinling are rich in Ferrous group elements, and that in the eastern section are rich in lithophile elements and thiophile elements.
     1.3 The crustal evolvement and deep structures
     On account of the strata with their diagram of claster analysis from immobile element, their diagram of La/Y—La/Co, and their ratio of La/Th, the intrusive rocks with their diagrams of R1-R2 and Nb-Y , the lithospheric tectonic, and previous points of view, it was thought that, the granitoid formed from Caledonian to Devonian were probably the durative responses to early Jinning convergency of Yangtse plate and north China plate. From early Devonian to Mesozoic, Yangtse plate and north China plate had gradually converged companied by shrinking of Mianlue ocean, the collided point had migrated from east of Devonian to west of Mesozoic until incontinental orogenesis of Mesozoic occurred. The magmatism in mid-Qinling and involved mineralization since Mesozoic were related to tectono-thermal erosion from subducted and ruptured Songpan plate. The Yangba Fm of Jixian System and Yangtianba Fm of Qinbaikou System in Bikou Gr didn't outcropped there until Indosinian movement.
     2.Metallogenic regularities
     2.1 Metallogenic ages
     The statistics about metallogenic ages showed that, the peak period of sedimentary mineralization was Silurian and Devonian, in which was principally meso-late Silurian and meso Devonian. The hydrothermal mineralizations occurred mainly after Carbonaceous in which peak period of mineralization was Triassic and Jurassic. Behind veins mineralizations didn't always lagged, but lagged 10 Ma later behind faults functioned.
     2.2 Mineral distribution in space
     By making use of mineral space information, 7 concentrational areas, such as Xiahe, Lintan, Dangchang, Wudu, Liziyuan, Chengxian, and Faziba, are delineated, of which the Chengxian area presents itself as the maximum in area and intensity, and subsequently the Lintan and Xiahe. In tectonic units, the mid-Qinling takes the maximum of concentrational areas.
     A large amount of deposits or occurences stand in the range of 0-10Km away from deep faults, most of which in the range of 5Km away from intrusive masses, and most of which occur in the range of 6Km away from each other and has a plannar distribution model. The distances from deep faults, intrtusive masses to deposits or occurences, and from deposits or occurences each other are respectively characterized by multifractals.
     2.3 Metallogenic series and metallogenic system of metal mineral deposits
     A rule for compartmentalizing metallogenic series was concretely set up on the basis of concept of metallogenic series defined by Chen Yuchuan, and eventually all metallic mineral deposits were divided into 10 metallogenic series, 13 sub-metallogenic series, and 30 types, in which there are 3 for iron, 2 for iron, copper, and multimetals, 2 for copper or molybdenum, 1 for lead and zinc, 1 for mercury and antimony, and 1 for gold.
     Also was concretely set up a rule for compartmentalizing metallogenic system on the basis of concept of metallogenic system defined by ZHAI Yusheng, and finally the metallogenic system in west Qinling were divided into 6 big clasters of metallogenic system, 9 clasters of metallogenic system, and 11 metallogenic system.
     2.4 The growing processes of mineral resources
     The facts of tonnage to grade of mineral resources can be fitted by exponential and linear functions, double logarithm plots of tonnage to grade and that of orebody resources consist of 3 or 4 line sections, and deductive results from maths born out that, the equation of tonnage to grade of mineral deposits can be described as exponential equation from linear addition of nonlinear multiplication processes.
     3. Geochemical processes of ore-forming
     3.1 Physical and chemical qualifications of ore-forming
     The metallogenic temperatures of subvolvanic hydrothermal subseries of molybdenum ores were 160-180℃; those of hydrothermal sediment series of lead-zinc ores and hydrothermal series of gold ores were all between 60℃and 480℃, but the concentrative temperatures of lead-zinc series of ores and hydrothermal series of gold ores were 80-120℃and 150-300℃respectively; and those of sedimentary manganese ore series were 25-32℃.
     With the help of MRK equation of CO_2 system, and the relation of salty, density, and temperature to pressure of NaCl-H_2O system, the lithostatic pressures estimated are all within 1 Km, that of reconstructed ores were generally higher than that of sedimentary ores but reconstructed ores acompanied by abrupt decompression and exsolution processes. The ranges of pH and Eh of diversified ore deposits are positively correlative to their amount of ore deposits or occurrences.
     3.2 Geochemical processes of ore-foming
     From the composition of ore and metallogenic fluids, and the physical and chemical qualifications of minerlalization, the geochemical processes of mineralization of different genesis of metallic ore deposits, concretely, that of iron, manganese, copper, leadand zinc, gold, mercury, and antimony, had been described. The metallogenic processes varied with metals and metallogenic subseries.
     The geochemical fields of 39 elements are characterized by their multifractals, which wre further divided into single concentration, double concentrations, triple concentrations, fourfold concentrations, and quintupling concentrations, and the large-mid size of deposits were all from more than triple concentrating processes.
     4.Patterns of regionally geochemical fields
     The patterns of metallic geochemical fields, i.e. that of iron, manganese, copper, lead and zinc, gold, mercury, and antimony, were depicted from the angles of linearity and nonlinearity. Generally, though the compositions of geochemical fields vary with elements, the pattern parameters of which present themselves analogous to each other, for examples, the places where ore deposits stand are anomalous areas of moderate contents, and don't correspond to anomalous peaks except few ore deposits; the varied extents of semivariogram are between 0.7 to 0.9 with the characteristics of random fields; the static pattern entropies in the orientation from south to north are less than that from east to west, and Brown Fractal Dimensions are just inverse, that indicate the variations from south to north are more complicated; almost all ore deposits locate in the zones where the singular indexes are less than 2.0, especially that of lead, zinc, gold, mercury, and antimony are generally less than 1.8, and that proved the singular index is effecvtive to contour metallogenic areas of different kinds of mineral resources.
     The Lyapunov indexes of geochemical fields of part of metallic deposits showed that, the regionally geochemical fields of Pb and Zn are characterized by their criticalities, that of soluble elements as Cu and Mo tended to be stabilized patterns, and man-made pollutions made geochemical fields of Hg and Sb have the characteristics of chaos.
     5.Regioinally geochemical Models for metallogenic prognosis
     About effective estimation of modeling methods showed that linear regression is quite effective, with capability of discriminating of different size ore deposits, the secondary is logical information method, the third is reconstruction of factor model method, and the Evident Weight method gave a reasonable metallogenic assemblage but gave a bad verified result. Finally, 14 regionally geochemical models for prospecting were found by the method of linear regression, they are that of sedimentary iron deposits, sedimentary and metamorphosed iron deposits, weathering and leaching iron deposits, sedimentary and reconstructed manganese deposits, skarn copper deposits, porphyry copper deposits, hydrothermal copper deposits, VMS copper deposits, sedimentary lead-zinc deposits, reconstructed lead-zinc deposits, magmatic hydrothom type of gold deposits, sedimentary and reconstructed gold deposits, mercury deposits, and antimony deposits.
     6. Large scale of geochemical models and the problems of renormalization for prospecting
     6.1 Primary halos of Daijiazhuang lead-zinc ore deposit
     The zoning formed in sedimentary mineralization is, from centre to outside, Fe-Au-Bi-Sr-W-Cr-Pb-Hg-Co-Sb-Ni-V-Mo, respectively that means from hydrothermal sediments to normal sediments under reduction.
     The zoning formed in reconstructed mineralization is, from centre to outside, Cu-Zn-Mo-Pb-Sn-W-Hg-Ni-Co, respectively that means from multi-metallic elements to hydrothermal construction composition.
     Lyapunov indexes showed that, Hg from meso-low temperature mineralization has self-organized criticality in both time and space, and meso-high temperature composition as Cu, Zn, and Bi have self-organized criticality while behave stabilized geochemical pattern.
     With the combined index [PB*W]/Cu~2, and its fitted power function, deep resources prediction model, which has a high proportion of variance and a high fitted level, was acquired.
     6.2 Pedogeochemistrical halos of Daijiazhuang lead-zinc deposit
     The zoning calculated by zoning index method is, from centre to outside, Sn-Cu-W-Mo-Ag-Zn-Pb-As-Sb, which is consistent with hydrothermal deposits.
     Lyapunov index showed that, the processes of soil-forming made geochemical fields of most of metallogenic elements stabilized, but the power spectrum of elements in soils inherited to that in rocks.
     A mathematic prediction model which is varying with the area of Ag anomalies, was set up, and ideally verified.
     6.3 Geochemical halos of stream sediments in the scale of 1:50000
     Lyapunov indexes, and 1/f phenomina in frequent domain indicated that, fluviation in the surface would make some elements with stabilized pattern in primary halos tend to be ctritical or of chaos, bring about anomalies irrespective to mineralization, and complex stream sedimentary anomalies for prospecting. Metallogenic elements and their indicator elements present excursion to 1/f phenomena in the low frequency, individual element as Cu behaves out-of order in frequent domain, all these show us its complicated genesis and unreliable of applying its data to resources evaluation.
     The combined anomalous map of multi-elements showed a zoning centered on Pb, and from centre to outside is Pb-Cu-Zn-Mo-As-Hg-Ag. The Pb anomalies presents a ringed zoning model with centering on Daijiazhuang lead-zinc ore deposit and being vertical to the trend of strata in NEE orientation, that imply these ringed anomalies were derived from reconstructed mineralization.
     On the states of geochemistry and self-organized criticalities of metallogenic elements and their indicator elements under the surface, selecting areas of Pb, Zn, As, Sb, and Hg as variables, which are affinitive to mineralization and more stable, prediction model for prospecing was set up, and well verified.
     6.4 The problems of renormalization in mineral exploration
     By research of the problems of renormalization in mineral exploration, we thought that, in the 3 explorative scales of 1/200000, 1/50000, and 1/10000, the explorative engineering should be extended respectively to about 6.5Km, 0.16Km, and 0.002Km. While the frequency of anomalous data is less than 10%, which has few influences on correlative length, and it is the scale that play a decive role to correlative lengths.
引文
[1]温志坚,毛景文,超临界流体的研究进展及其对成矿地球化学研究的启示,地质论评,2002,48(1):106-112。
    [2]郑大中,郑若锋,钦迁移成矿地球化学模式新探索,化工矿产地质,2003,25(1):13-23。
    [3]杨立强,熊章强,邓军等,构造应力场转换的成矿地球化学响应,大地构造与成矿学,2003,27(3):243-249。
    [4]杨晓勇,王奎仁,孙立广等,沙溪斑岩型铜(金)矿床成矿地球化学研究及靶区圈定,大地构造与成矿学,2002,26(3):263-270。
    [5]沙德铭,金成洙,董连慧等,西天山阿希金矿成矿地球化学特征研究,地质与资源,2005,14(2):118-126。
    [6]耿文辉,王滋平,姚金炎,中国东部中生代陆相次火山岩型铜银矿床成矿地球化学特征,地质与勘探,2000,36(1):10-13。
    [7]贺转利,许德如,陈广浩等,湘东北燕山期陆内碰撞造山带金多金属成矿地球化学,矿床地质,2004,23(1):39-51。
    [8]翟裕生,区域构造、地球化学与成矿,地质调查与研究,2003,26(1):1-7。
    [9]阮天健,朱有光编,地球化学找矿,地质出版社,1985,13-16。
    [10]Chalmer A F.What is This Thing Called Science?(3rd)[M].Buckingham:Open University Press,1999
    [11]姚书振,丁振举,周宗桂,初论造山带成矿学,地质科技情报,2002,21(4):1-6。
    [12]於崇文,大型矿床和成矿区(带)在混沌边缘,地学前缘,1999,6(1):85-102。
    [13]於崇文,地质系统的复杂性-地质科学的基本问题(Ⅰ)地球科学-中国地质大学学报,2002,27(5):509-519。
    [14]冯益民,曹宣铎,张二朋等,西秦岭造山带的演化、构造格局和性质,西北地质,2003,36(1):1-10。
    [15]曾佐勋,赖旭龙,胡以铿等,陕甘川邻接区复合造山带与成矿,中国地质大学出版社,2005,56-67。
    [16]杨志华,姜常义,赵太平,秦岭造山带成矿作用概述,大地构造与成矿学,2000,24(1):44-50。
    [17]杨志华,郭俊锋,苏生瑞,秦岭造山带基础地质研究新进展,中国地质,2002,29(3):246-256。
    [18]刘淑文,王涛,薛春纪等,南秦岭古生代隐伏基底分布特征及对金属成矿的控制,长安大学学报(地球科学版),2003,25(3):12-15。
    [19刘淑文,薛春纪,魏宽义等,南秦岭前寒武纪基底构造运动形式与矿床分布规律研究,陕西师范大学学报(自然科学版),2005,33(3):109114。
    [20]姚书振,周宗桂,吕新标,秦岭成矿域成矿特征和找矿方向,西北地质,2006,39(2):156-174。
    [21]林兵著,西秦岭泥盆系层控铅锌矿带成矿地球化学模式及其预测系统的建立,中国地质大学出版社,1993.2,p2。
    [22]林丽,拉尔玛金矿生物-有机质成矿作用,矿物岩石地球化学通报,2001,20(2):79-83。
    [23]徐九华、谢玉玲、杨竹森等,安徽铜陵矿集区海底喷流沉积体系的流体包裹体微量元素对比,矿床地质,2004,23(3):344-352.
    [24]林舸,王岳军等,含矿流体混合反应与成矿作用的动力平衡模拟研究,岩石学报,19(2):275-282。
    [25]欧阳宗圻 李惠,典型有色金属矿床地球化学异常模式[M],北京:科学出版社,1998,1-98。
    [26]邹光华,欧阳宗圻,李惠等,中国主要类型金矿床找矿模型[M],北京:地质出版社,1996,1-199。
    [27]吴承烈,徐外生,刘崇民,中国主要类型铜矿勘查地球化学模型[M],北京:地质出版社,1998,2-4,192-193。
    [28]史长义,福建紫金山陆相火山岩型金矿田区域地质地球化学异常结构模式[J],物探与化探,1996,20(3):190-188。
    [29]何进中,白银厂型铜矿区域地球化学场预测模式,矿产与勘查,1994.No:3。
    [30]Xie Xuejing,Liu Dawen,Xiang Yunchuan etc.,Geochemical blocks for predicting large ore deposits-concept and methodology.Journal of Geochemical Exploration 84(2004)77-91.
    [31]成秋明,应用复杂性、非线性理论开展成矿预测,矿床地质,2006,25(增刊):463-466。
    [32]何进忠,蚀变围岩指示元素在党河南山区域金成矿预测中的应用,物探与化探,2005,NO:1.
    [33]何进忠,姚书振,彭德启,矿床的地球化学图色区统计预测法,地球科学,2006,31(增刊):67-71。
    [34]何进中,西秦岭铜矿区域地球化学研究,物探与化探,2003.No:3。
    [35]Mark D.Hannington,Ingrid M.Kjarsgaard,Alan G.Galley,Mineral-chemical studies of metamorphosed hydrothermal alteration in the Kristineberg volcanogenic massive sulfide district,Sweden,Mineralium Deposita,2003,38:423-442.
    [36]X.Luoa,R.Dimitrakopoulos,Data-driven fuzzy analysis in quantitative mineral resource assessment,Computers & Geosciences 29(2003)3-13。
    [37]M.Viladevall_,X.Font,J.M.Carmona,Multidata set analysis for gold-deposit exploration criteria:application in the Catalonian Coastal Ranges(NE Spain),Journal of Geochemical Exploration 66(1999)183-197。
    [38]T.Wagner,N.J.Cook,Late-Variscan antimony mineralisation in the Rheinisches,Schiefergebirge,NW Germany:evidence for stibnite,precipitation by drastic cooling of high-temperature uid systems,Mineralium Deposita,2000,35:206-222.
    [39]Merce Corbella,Carlos Ayora,Esteve Cardellach,1ydrothermal mixing,carbonate dissolution and sulfide precipitation in Mississippi Valley-type deposits,Mineralium Deposita,2004,39:344-357.
    [40]Alireza Karimzadeh Somarin,Paul Ashley,Hydrothermal alteration and mineralisation of the Glen Eden Mo-W-Sn deposit:a leucogranite-related hydrothermal system,Southern New England Orogen,NSW,Australia,Mineralium Deposita,2004,39:282-300.
    [41]M.E.Barley,A.L.Pickard,S.G.Hagemann,S.L.Folkert,Hydrothermal origin for the 2 billion year old Mount Tom Price giant iron ore deposit,Hamerstey Province,Western Australia,Mineralium Deposita,1999,34:784-789.
    [42]M.JeA brak,EA.Marcoux,M.Nasloubi,M.Zaharaoui,From sandstone-to carbonate-hosted stratabound deposits:an isotope study of galena in the Upper-Moulouya District(Morocco),Mineralium Deposita,1998,33:406-415.
    [43]Roberto Oyarzun,Alvaro Marquez,Javier Lillo etc.,Giant versus small porphyry copper deposits of Cenozoic age in Northern chille:Adakitic versus normal calc-alkline magmatism,Mineralium Deposita,2001,36:794-798.
    [44]David Rhys,Jack DiMarchi,Moira Smith,Structural setting,style and timing of vein-hosted gold mineralization at the Pogo deposit,east central Alaska,Mineralium Deposita,2003,38:863-875.
    [45]R.Sommal,R.A.Ayuso,B.De Vivo,Major,trace element and isotope geochemistry(Sr-Nd-Pb)of interplinian magmas from Mt.Somma-Vesuvius(Southern Italy),Mineralogy and Petrology,2001,73:121-143.
    [46]C.W.Devey,C.HeA mond,P.Sto.ers,Metasomatic reactions between carbonated plume melts and mantle harzburgite:the evidence from Friday and Domingo Seamounts(Juan Fernandez chain,SE Paci(?)c),Contrib Mineral Petrol,2000,139:68-84.
    [47]B.L.Cousens,J.F.Allan,Nancy Van Wagoner,etc.,Mixing of magmas from enriched and depleted mantle sources in the northeast Pacific:West Valley segment,Juan de Fuca Ridge,Contributions to Mineralogy and Petrology,119(3-4):337-357.
    [48]S.Sindern,A.N.Zaitsev,A.Deme'ny,etc.,Mineralogy and geochemistry of silicate dyke rocks associated with carbonatites from the Khibina complex(Kola,Russia)-isotope constraints on genesis and small-scale mantle sources,Mineralogy and Petrology,2004,80:215-239.
    [49]Alfredo Mahar Francisco A.Lagmay etc.,A structural model guide for geothermal exploration in Ancestral Mount Bao,Leyte,Philippines,Journal of Volcanology and Geothermal Research 122(2003)133^141.
    [50]A.P.Reis,A.J.Sousab,E.Cardoso Fonseca,Application of geostatistical methods in gold geochemical anomalies identification(Montemor-O-Novo,Portugal),Journal of Geochemical Exploration 77(2003)45-63.
    [51]Changjiang Li,Tuhua Ma,Junfa Shi,Application of a fractal method relating concentrations and distances for separation of geochemical anomalies from background,Journal of Geochemical Exploration 77(2003)167-175o
    [52]R.Swennen,J.Van der Sluys,Zn,Pb,Cu and As distribution patterns in overbank and medium-order stream sediment samples:their use in exploration and environmental geochemistry,Journal of Geochemical Exploration 65(1998)27-45.
    [53]Jordan Kortenski,Anton Sotirov,Trace and major element content and distribution in Neogene lignite from the Sofia Basin,Bulgaria,International Journal of Coal Geology 52(2002)63-82.
    [54]InA aki Yusta,Francisco Velasco and JoseA-Miguel Herrero,Anomaly threshold estimation and data normalization using EDA statistics,Applied Geochemistry,Vol.13,No.4,pp.421-439,1998。
    [55]Cheng Q.M.,Agterberg F.P.,multifractal modeling and and spatial statistics,Math.Geol.28(1):1-16.
    [56]Mario A.Goncalves,Antonio Mateus,Vitor Oliveira,Geochemical anomaly separation by multifractical modeling,Journal of Geochemical Exploration 72(2001)91-114.
    [57]Changjiang Li,Tuhua Maa,Junfa Shi,Application ofa fractal method relating concentrations and distances for separation of geochemical anomalies from background,Journal of Geochemical Exploration 77(2003)167-175。
    [58]Qingmou Li,Qiuming Cheng,VisualAnomaly:A GIS-based multifractal method for geochemical and geophysical anomaly separation in Walsh domain,Computers & Geosciences 32(2006)663-672。
    [59]Pasi Eilu_,Edward J.Mikucki,Alteration and primary geochemical dispersion associated with the Bulletin lode-gold deposit,Wiluna,Western Australia,Journal of Geochemical Exploration 63(1998)73-103,
    [60]F.P.Bierlein,H.M.Waldron,D.C.Arne,1999,Behaviour of rare earth and high field strength elements during hydrothermal alteration of meta-turbidites associated with mesothermal gold mineralization in central Victoria,Australia,Journal of Geochemical Exploration 67:109-125.
    [61]姚书振,周宗桂,吕新彪,秦岭地区重大找矿疑难问题研究,2006,研究报告,7-15。
    [62]施锦,刘耀炜,西秦岭北缘深浅部流体通道特征,地震,2002,22(4):35-41。
    [63]高锐,松潘地块与西秦岭造山带下地壳的性质和关系,地质通报,2006,25(12):1361-1367。
    [64]姜晓玮,王江海,张会化,西秦岭断裂走滑与盆地的耦合-西秦岭-松甘块体新生代向东走滑挤出的证据,地学前缘,中国地质大学(北京),2003,10(3):201-208。
    [65]李曙光,李秋立,侯振辉,2005.大别山超高压变质岩的冷却史及折返机制.岩石学报,21(4):1117-1124.
    [66]邱瑞照,邓晋福,周肃,华北地区岩石圈类型:地质与地球物理证据,中国科学D辑地球科学,2004,34(8):698-711。
    [67]陈高,吴建生,于鹏,松潘-阿坝地区深部电性特征,地球科学-中国地质大学学报,2006,31(6):857-860。
    [68]杨晓松,马瑾,大陆岩石圈解耦及块体运动讨论--以青藏高原-川滇地区为例,地学前缘(中国地质大学,北京),2003,10(增刊):240-247。
    [69]张传林,董永观,郭坤一等,西秦岭东段构造演化及其成矿作用讨论,火山地质与矿产,2001,22(1):21-30。
    [70]薛春纪 祁思敬,南秦岭泥盆纪同生热水沉积环境的沉积学及地球化学信息,西北地质,1995,16(4):37-44。
    [71]裴先治,李勇,陆松年,西秦岭天水关子镇中基性岩浆杂岩体锆石U-Pb年龄及其地质意义,地质通报,2005,24(1):23-29。
    [72]杨志华,郭俊锋,苏生瑞等,秦岭造山带基础地质研究新进展,中国地质,2002,29(3):246-256。
    [73]杨军禄,冯益民,西秦岭吴家山隆起的隆升过程及时代,西北地质,1999,32(4):1-4。
    [74]卢欣祥,尉向东,肖庆辉,西秦岭发现奥长环斑花岗岩带,
    [75]杜远生,秦岭造山带泥盆纪古海洋研究。地球科学-中国地质大学学报,1995,20(6):617-623.
    [76]孙卫东,李曙光,Yadong Chen,等,2000。南秦岭花岗岩锆石U-Pb定年及其地质意义,地球化学,2000,29(3):209-216。
    [77]张本仁,秦岭地幔柱源岩浆活动及其动力学意义,地学前缘,2001,8(3)。
    [78]杜玉良 汤中立 蔡克勤等,秦岭-祁连造山带印支-燕山期构造与大型-超大型矿床的形成关系,矿床地质,2003.No:1.
    [79]刘淑文,薛春纪,魏宽义等,南秦岭前寒武纪基底构造运动形式与矿床分布规律研究,陕西师范大学学报(自然科学版),2005,33(3):109114。
    [80]杨志华,李勇,苏生瑞等,论陆内造山作用和陆内造山带,矿物岩石,2001,21(3):169-172。
    [81]夏萍,粤西长坑金银矿区的地质地球化学特征及其成因探讨,地球化学,1996,No:2。
    [82]李永军,陈永彬,李英等,西秦岭铁矿床成矿系列及其区域地质对比,长安大学学报(地球科学版),2003,25(1):11-14.
    [83]丁振举,姚书振,刘丛强等,碧口地块古海底热水喷流沉积及其成矿作用地球化学示踪,地质出版社,2003,8-12。
    [84]闫臻,王宗起,王涛等,西秦岭大草滩群的沉积环境及构造意义,地质通报,2002,21(8-9):505-515。
    [85]杜远生,西秦岭造山带泥盆纪沉积地址学和动力沉积学研究:古地理、地层层序及构造演化,岩相古地理,vol.16No:1,Feb.1996。
    [86]孙矿生 彭德启,甘肃省铅锌矿成矿系列及控矿因素,甘肃地质学报,2004.Vol.13,No:1。
    [87]王苹,付绍红,川西北微细浸染型金矿床矿石矿物组构特征及其示踪意义,地球科学-中国地质大学学报,1999,Vol.24,增刊,52-58。
    [88]赖旭龙,杜远生,熊伟等,西秦岭地区三叠系金矿床构造岩相组合研究,地球科学-中国地质大学学报,1999,Vol.24,增刊,59-65。
    [89]唐永忠,侯满堂,南秦岭古生代沉积盆地沉积-构造事件与热水沉积成矿,矿产与地质,2006,20(2):102-108。
    [90]张东旭 程或,西秦岭礼岷盆地构造演化及变形分析,矿产与勘查,2002.No:5,
    [91]闰臻,王宗起,王涛等,西秦岭大草滩群的沉积环境及构造意义,地质通报,2002,21(8-9):505-515。
    [92]路凤香,桑隆康主编,岩石学,地质出版社,2002,92-95。
    [93]徐克勤,华南不同时代的花岗岩及其与矿产的关系,北京:科学出版社,1981。
    [94]殷勇,赵彦庆,甘肃西秦岭金矿富集区花岗岩与金成矿作用之间的关系,甘肃地质,2006,15(1):37-41。
    [95]毕明波,李永军,杨俊泉,西秦岭柴家庄、八挂山和天子山花岗岩体地球化学特征,甘肃地质,2006,15(1):42-46。
    [96]李永军,李锁成,杨俊泉等,西秦岭党川地区花岗岩体的解体及同位素年龄证据,矿物岩石地球化学通报,2005,24(2):114-120。
    [97]李永军,谢其山,栾新东等,西秦岭糜署岭岩浆带成因及构造意义,新疆地质,2004,22(4):374-377。
    [98]徐克勤等,华南花岗岩成因与成矿,花岗岩地质和成矿的关系国际学术会议论文集,江苏科学技术出版社,1984,14。
    [99]殷先明主编,甘肃岩金地质,甘肃科学技术出版社,2000。
    [100]杨军禄,冯益民,西秦岭吴家山隆起的隆升过程及时代,西北地质,1999,32(4):1-4。
    [101]郑德文,张培震,万景林,西秦岭北缘中生代构造活动的40Ar/39Ar、FT热年代学证据,岩石学报,2004,20(3):697-706。
    [102]姜晓玮,王江海,张会化,西秦岭断裂走滑与盆地的耦合-西秦岭-松甘块体新生代向东走滑挤出的证据,地学前缘,中国地质大学(北京),2003,10(3):201-208。
    [103]赵彦庆,叶得金,李永琴等,西秦岭大水金矿的花岗岩成矿作用特征,现代地质,2003,(2):151-156.
    [104]钱祥贵,李志伟,柏坚,姚安金矿床成因机制研究,云南地质,2000,21(1):42-49。
    [105]陈衍景,Franco PIRJNO,赖永等,胶东矿集区大规模成矿时间和成矿环境,岩石学报,2004,20(4):907-923.
    [106]刘连登.同源成矿说[C].关广岳,朱奉三.岩浆热液金矿床成因新认识.沈阳:东北工学院出版社,1989:7981.
    [107]王非,朱日祥,李齐,秦岭造山带的差异隆升特征-花岗岩40Ar/39Ar年代学研究的证据,地学前缘(中国地质大学,北京),2004,11(4):445-469。
    [108]Henley R W,Berger B R.Self-ordering and complexity in epizonal mineral deposits[J].Annu.Rev.Earth Planet.Sci.,2,28:669-719.
    [109]方维萱,刘方杰,胡瑞忠,等,八方山大型多金属矿床热水沉积岩相特征与矿化剂组分关系,2003,1:75-81。
    [110]雷卞军,阙洪培,胡宁,鄂西古生代硅质岩的地球化学特征及沉积环境,沉积与特提斯地质,2002,22(2):70-79。
    [111]许文彬,现代海底热水对流核模式及其油气意义,福建水产,2006,(1):5-12.
    [112]肖荣阁,张汉城,陈卉泉,等。热水沉积岩及矿物岩石标志,地学前缘(中国地质大学,北京),2001,8(4):379-386。
    [113]武占祖,西成铅锌金矿化集中区成矿流体特征及矿床成因模型。中国地质大学工程硕士学位论文。导师:王苹。2005,43-47。
    [114]陈衍景,张静,张复新等,西秦岭地区卡林-类卡林型金矿床及其成矿时间、构造背景和模式,地质论评,2004,50(2):134-153。
    [115]Jost V.Lavric,Jorge E.Spangenberg,Stable isotope(C,O,S)systematics of the mercury mineralization at Idrija,Slovenia:constraints on fluid source and alteration processes[J],Mineralium Deposita,2003,38:886 -899.
    [116]J.Jochum,Variscan and post-Variscan lead±zinc mineralization,Rhenish Massif,Germany:evidence for sulfide precipitation via thermochemical sulfate reduction[J],Mineralium Deposita,2000,35:451-464。
    [117]张理刚著,稳定同位素在地质科学中的应用,陕西科学技术出版社,1983,24-25。
    [118]陈毓川,裴荣富,宋天锐,邱小平著,中国矿床成矿系列初论,地质出版社,1998,p1。
    [119]翟裕生,彭润民,王建平,成矿系列的结构模型研究。高校地质学报,2003,9(4):510-519。
    [120]王登红,陈毓川、朱裕生等,以矿床成矿系列构筑中国成矿体系及其运用,矿床地质,2006,25(增刊):43-46。
    [121]何进忠,姚书振,彭德启等,西秦岭铅锌矿区域地球化学成矿预测模式,物探与物探,2006,30(6):488-492。
    [122]李永军,陈永彬,李英等,西秦岭铁矿床成矿系列及其区域地质对比,长安大学学报(地球科学版),2003,25(1):11-14。
    [123]刘建宏,赵彦庆,张新虎,甘肃西秦岭地区成矿系列的初步厘定,甘肃地质学报,2005,14(1):31-39。
    [124]姚书振 秦岭-松潘成矿区成矿规律和找矿方向研究(演示文稿),2003。
    [125]王靖华,张复新,于在平等,秦岭金属矿床成矿系列与大陆造山带构造动力学背景,中国地质,2002,29(2):192-196。
    [126]翟裕生,邓军,彭润民等,成矿系统研究及其资源、环境意义,高校地质学报,2002,8(1):1-8。
    [127]翟裕生、邓军、汤中立等著,古陆边缘成矿系统,地质出版社出版,2002.12,11-12。
    [128]李永琴,赵建群,赵彦庆,西秦岭金成矿系统分析,甘肃地质,2006,15(1):46-52。
    [129]祁思敬,李英,南秦岭晚古生代海底喷气沉积成矿系统,地学前缘(中国地质大学,北京),1999,6(1):171-179。
    [130]姚书振,丁振举,周宗桂等,秦岭造山带金属成矿系统,地球科学--中国地质大学学报,2002,27(5):599-605。
    [131]高兰.1998.大水式金矿床-我国新发现的一种金矿成因类型.矿床地质,17(Sup.):389-392.
    [132]王安建,高兰,闫升好等.1998.大水式金矿床成因和分布规律探讨.矿床地质,17(Sup.):267-270.
    [133]闰升好,王安建,高兰等,2000a.大水式金矿床地质特征及成因探讨,矿床地质,19(2):126-137.
    [134]闫升好,王安建,高兰等,2000b.大水式金矿床稳定同位素、稀土元素地球化学研究.矿床地质,19(1):37-45.
    [135]Mao J.,Yumin Qiu,Richard J Goldfarb et al.2002.Geology,distribution,and classification of gold deposits in the western Qinlingbelt,central China.Mineralium Deposita,37:352-357.
    [136]刘晓春,王平安,董法宪等,2003.甘肃大水二长岩类特征、结晶条件与侵位深度.地质力学学报,2003,9(1):62-69.
    [137]陈衍景,张静,张复新等,2004.西秦岭地区卡林-类卡林型金矿床及其成矿时间、构造背景和模式.地质论评,2004,50(2):134-153.
    [138]杨建功,2001.我国矿产资源储量管理已与国际接轨.地质与勘探,37(2):9-11.
    [139]梅友松,汪东坡,黄浩等,1995.同位成矿概论.地质与勘探,31(5):3-14.
    [140]於崇文,2003a,地质系统的复杂性(下),北京:地质出版社,1061-1064.
    [141]陈彦光,刘继生2006.城市人口分布空间自相关的功率谱分析,地球科学进展,21(1):1-9.
    [142]魏民,赵鹏大,刘红光等,2001.中国岩金矿床品位-吨位模型研究.地球科学-中国地质大学学报,26(2):176-179.
    [143]罗建民,侯云生,张星虎等,2006.甘肃省金矿资源预测模型及潜力评价.矿床地质,25(1):53-58。
    [144]赵鹏大,陈永清,刘吉平等,1999.地质异常成矿预测理论与此同时实践.武汉:中国地质大学出版社,60-75.
    [145]陈彦光,刘继生,房艳刚,2002.效用最大化、logit变换和城市地理学的数量分析、模型.地理科学,22(5):581-586.
    [146]陈彦光,刘继生2001.城市等级体系分形模型中的最大嫡原理.自然科学进展,11(11):1170-1174.
    [147]Batty M.,2000.Less is more,more is different:complexity,morphology,cities,and emergence.Environment and Planning B:Planning and Design,2000 17:167-168.
    [148]段永民,余晓红,王汉林,2006.甘肃柴家庄金矿床地球化学特征及矿床成因.地质与勘探,42(1):21-25.
    [149]肖荣阁,张宗恒,陈卉泉等,地质流体自然类型与成矿流体类型,地学前缘,2001,8(4):245-251。
    [150]章雨旭,地质学研究中常见逻辑方面的问题分析,高校地质学报,2006,12(1):147-152。
    [151]程YU,张旺定等,西秦岭中川地区构造岩浆活动及微细浸染型金矿成矿作用分析,地质找矿论丛,2001,16(2):94-98。
    [152]张作衡,毛景文,王勇,西秦岭中川地区金矿床流体包裹体特征及地质意义,岩石矿物学杂志,2004,23(2):147-157。
    [153]闫升好,王安建,高兰等,大水式金矿床地质特征及成因探讨,矿床地质,2000,19(2):126-137。
    [154]张荣华,胡书敏,地球深部流体演化与矿石成因,地学前缘,2001,8(4):297-309.
    [155]肖荣阁,张宗恒,陈卉泉,等,地质流体自然类型与成矿流体类型,地学前缘(中国地质大学,北京),2001,8(4):245-231。
    [156]李荫清,我国主要斑岩铜(钼)矿床的包裹体演化机制及成矿PH条件,矿床地质,1985,4(3):51-61。
    [157]郑有业,高顺宝,张大权,等。西藏驱龙超大型斑岩铜矿床成矿流体对成矿的控制,地球科学--中国地质大学学报,2006,34(3):349-354。
    [158]真允庆,束乾安,中条山铜矿流体碳、氧同位素示踪,地质调查与研究,2006,29(1);30-37.
    [159]杨松年,厂坝-李家沟铅锌矿床地质特征,矿床地质,1986,5(2):
    [160]杨瑞琰,马东升,鲍征宇等,双扩散对流与成矿元素富集的机制,自然科学进展,2004,14(10):1135-1141.
    [161]杜远生,1996,西秦岭造山带泥盆纪沉积地址学和动力沉积学研究:古地理、地层层序及构造演化,岩相古地理,16(1)51-70。
    [162]李建中,高兆奎,西秦岭中泥盆世沉积环境及其与铅锌矿的关系,地质论评,1993,39(2):156-162
    [163]孙矿生 彭德启,2004,甘肃省铅锌矿成矿系列及控矿因素,甘肃地质学报,13(1):1-9.
    [164]武安斌,宋春晖,甘肃西成铅锌矿田中泥盆统铅锌碳酸盐沉积相的初步研究,甘肃地质学报,1993,2(1):34。
    [165]涂光炽等著,中国层控矿床地球化学,第一卷,科学出版社,1984,100-105。
    [166]Sakai H,Gamo T,Kim E S,et al.Venting of carbondioxide-rich fluid and hydrate formation in MidOkinawa Trough backarc basin[J].Science,1990,248:1093-1096
    [167]]罗德.任芙斯卡娅MN深埋层的含油气性[J].天然气地球科学,2001,12(4-5):48-51。
    [168]韩吟文,马振东主编,地球化学,地质出版社,2003,358-361。
    [169]张宏达,汪珊,武强,大洋多金属结核的成矿作用和模式,海洋地质与第四纪地质,2006,26(2):95-102。
    [170]陈祥军,周眉成,曲力群,微生物在锰的氧化富集过程中的作用,地质与勘探,2003,39(1):23-26.
    [171]张宏达,汪珊,武强,等,大洋多金属结核的成矿作用和模式,海洋地质与第四纪地质,2006,26(2):95-82。
    [172]张德会,关于成矿作用地球化学研究的几个问题,地质通报,2005,24(10-11):885-891。
    [173]郑明华等编著,矿床学原理,成都科技大学出版社,1992,386-392。
    [174]何进忠,地幔流体参与西秦岭铅锌矿床成矿的证据。陈毓川,毛景文,薛春纪主编,矿床学研究面向国家重大需求,新机遇与新挑战。地质出版社,100-103。
    [175]林丽,拉尔玛金矿生物-有机质成矿作用,矿物岩石地球化学通报,2001,20(2):79-83。
    [176]刘家军,郑明华,刘建明等,西秦岭寒武系金矿床中硫同位素组成及其地质意义,长春科技大学学报,2000,30(2):150-156。
    [177]郭俊华,齐金忠,孙彬等,甘肃阳山特大型金矿床地质特征及成因,黄金地质,2002,8(2):15-19。
    [178]段永民,余晓红,王汉林,甘肃柴家庄金矿床地球化学特征及矿床成因,地质与勘探,2006,42(1):21-25。
    [179]L.Fedelel,F.Raia,M.Sasaki,T.Sawaki3,Fluid inclusion study constraining the hydrothermal evolution of caldera-forming volcanic systems in the Sengan Area,Northern Honshu,Japan,Mineralogy and Petrology,2005,DOI 10.1007/s00710-005-0077-5.
    [180]谢淑云,鲍征宇,地球化学场的连续多重分形模式.地球化学,2002,31(2):191-200.
    [181]王靖华 张复新 于在平等,秦岭金属矿床成矿系列与大陆造山带构造动力学背景,中国地质,2002,29(2):192-196。
    [182]杨立行主编,自然辩证法概论,广西民族出版社,2001,31-34。
    [183]陈明,何凯涛,王全明等,地球化学场精细结构解析方案与应用,地质通报,2004,23(2):147-153.
    [184]史长义,张金华,黄笑梅,1996.福建紫金山陆相火山岩型铜金矿田区域地质地球化学异常结构模式,物探与化探,20(3):180-188.
    [186]成秋明,多重分形与地质统计学方法用于勘查地球化学异常空间结构和奇异性分析,地球科学-中国地质大学学报,2001,26(2):161-166.
    [187]王军,陈振楼,许世远,基于GIS的地质异常空间结构分析方法,地球学报,2003,24(4):367-370.
    [188]张本仁 谷晓明 蒋敬业,应用成矿环境指标于地质找矿研究,物探与化探,1989.No:2。
    [189]张西平,反映矿质沉淀环境的造岩元素地球化学异常-地球化学勘查盲矿预测的重要标志,物探与化探,1992,16(3):208-215。
    [190]陈彦光,刘继生,城市人口分布空间自相关的功率谱分析,地球科学进展,2006,21(1):1-9。
    [191]成秋明,空间模式的广义自相似性分析与矿产资源评价,地球科学-中国地质大学学报,2004,29(6):733-743。
    [192]杜乐天,地壳流体与地幔流体间的关系[J]。地学前缘,1996,3(4):172-183。
    [193]赵伦山、张本仁,地球化学,北京:地质出版社,1987,396-400。
    [194]E.J.Sides,Geological modelling of mineral deposits for prediction in mining,Geol Rundsch,1997,(86):342-353.
    [195]赵鹏大,胡旺亮,李紫金,矿床统计预测(第二版),北京:地质出版社,1994,179-197。
    [196]何进中,白银厂型铜矿区域地球化学场预测模式,有色金属矿产与勘查,1994,3(3):160-162。
    [197]何进忠,姚书振,彭德启,矿床的地球化学图色区统计预测法,地球科学,2006,31(增刊):67-71。
    [198]王世称,陈永良,夏立显,综合信息成矿预测理论与方法,科学出版社,2000,268-280。
    [199]B.B.波利卡尔波奇金著,吴传壁,邱郁文译,次生分散晕和分散流,北京:地质出版社,1981,1-30。
    [200]Smalley R F,Turcotte D L,Sara A Solla.A renormalization group approach to the stick-slip behavior of faults[J]J Geophys Res,1987,90(B2):1894-1900.
    [201]陈思辉,谭国焕,杨文柱,岩石脆性破裂的重正化研究及数值模拟,岩土工程学报,2002,24(2):183-187。
    [202]汤士杰,陈沉江,潘长良等,岩石蠕变破坏过程的自组织特征分析,勘察科学技术,2004,(1):15-20。
    [203]黄文字,孙业志,赵国彦,散体渗流的分形行为及其计算机模拟,矿业研究与开发,2002,22(1):13-16。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700