用户名: 密码: 验证码:
金川矿区地质特征、时空演化及深边部找矿研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国经济的高速发展,对资源的需求越来越大。目前我国铜、镍、铂族金属资源保障形势日趋严峻,如何提高该类矿产资源的研究程度,创新铜镍硫化物矿床的成矿理论,完善成矿演化模式认识,指导已知矿床深边部找矿工作,也就显得越来越重要。
     赋存于超镁铁质岩的金川矿床,是目前世界第三大在采硫化铜镍矿床;金川矿区也成为我国最大的Ni、Cu、PGE金属资源供应基地,其Ni产量占全国88%,PGE占90%,Cu占13%以上。经过近五十年的开采,金川部分富矿体已逐渐被开采殆尽,资源危机已开始显露端倪,如何在金川矿区深边部找到新的接替资源问题已成为当务之急。本文以金川超基性岩浆侵位期次、岩浆演化模式为研究主线索,以金川铜镍硫化物矿床的成矿时代、成矿作用机制、就位机制、岩浆演化—成矿模型、Ⅰ-⑥富铜隐伏矿体地质特征及成因研究为重点内容,以预测矿区深边部找矿靶区服务矿山生产为目的。这无论对指导金川矿区深部和边部找矿,扩大资源储量,延长矿山服务年限,还是对完善成矿理论认识应用于其他类似矿区找矿,都具有重要的现实意义。
     论文的主要研究内容及成果如下:
     (1)在收集和综合分析大量地质资料的基础上,利用Surpac软件,建立了矿床三维可视化模型,明晰、直观地表现了矿床含矿超基性岩体、主矿体、矿区主要构造之间的三维空间关系。通过对超基性岩体空间关系、形态特征的分析,认为:金川超基性岩体分为东、西两段和东、中、西三个成矿富集块段。东段岩体以出现大量的含斜长石岩相为主要特征,西段岩体以不出现或只局部出现斜长二辉橄榄岩异离体与东段岩体相区别。从东、西成矿富集块段往中富集块段,岩体和赋存矿岩相的基性程度增高,形成矿体的成矿元素富集程度增高。
     (2)在对Ⅰ-⑥隐伏矿体同位素测年数据的基础上,系统收集前期同位素测年资料,综合分析,试用发展的、联系的态度来解释,初步认为:金川矿床主矿体的形成时间为8~10亿年;Ⅰ-⑥等富铜隐伏矿体一般侵位于8亿年左右:镍特富矿体侵位时间为8亿年前。这对矿床所在区域成矿环境演化以及指导深边部找矿具有重要指导意义。
     (3)从矿体特征、矿石特征和矿石特殊地球化学特性等方面,与Ⅱ-①主矿体进行对比,总结了Ⅰ-⑥隐伏矿体的矿化规律,并指出其既有岩浆熔离作用的特点,又有后期改造作用的特征,其形成经历了三个阶段:富含Cu、PGE岩浆深部熔离-脉动贯入、构造活化富集和后期热液叠加。探讨了来源于地幔深部的高镁玄武岩浆,在深部岩浆房和阶段岩浆房熔离分异时,富(镍)矿岩浆和矿浆之间存在富(铜)矿岩浆。此外,Pb、S同位素表明,该矿体岩浆主要来源于地幔,但曾被少量地壳物质混入。
     (4)岩(矿)体的定位受含矿岩浆、矿液活动中心的控制,而最关键的控制因素还是与岩浆、矿液活动中心相连接的岩浆通道的出口。通过对比分析各矿区主矿体的主要地质特征和研究Cu、Ni、Pt、Pd、Au、Ag等元素的富集规律,指出:Ⅱ矿区Ⅱ-①矿体6~8行深部可能为含矿岩浆、矿液活动的富集中心:Ⅰ矿区与Ⅱ矿区结合地段、Ⅱ矿区1号矿体与2号矿体结合地段、Ⅲ矿区南侧等三片为重点找矿预测区。
     (5)在评价物、化探、遥感技术和新技术方法等勘查技术方法的基础上,根据金川铜镍矿山的实际情况,建立了分别适用于金川铜镍矿山深部和边部寻找矿产资源的综合勘查技术方法组合。
With the rapid development of Chinese economy,the demand for resources would increase intensively.At present,the situation for metal resources guarantee of nickel, copper and PGE in China is increasingly serious.How to improve the research degree of these mineral resources,innovate the metallogenic theory of Cu-Ni sulfide deposits, perfect the ore-forming evolution model,and guide the prospecting in the depth and border of known deposits,become more and more important.
     The Jinchuan deposit,hosted by olivine-rich ultramafic rocks,is the world's third largest magmatic Cu-Ni sulfide deposit being currently exploited.Jinchuan is also the largest supply base of Ni-Cu-PGE in China,whose Ni output is 88%of that in the whole China,PGE is 90%,and Cu is more than 13%.It has been prospected and exploited for more than fifty years since it was discovered in 1952.Part of high-grade orebodies has almost been depleted.The resource crisis begins to appear.Therefore how to discover alternative resources in the depth and border of Jinchuan Deposit becomes very urgent.
     The main clues of the study are the emplacing stage of Jinchuan ultrabasic magma and the evolutional model of magma.Its main research contents are the metallogenic epoch,the ore-forming mechanism,the emplacement mechanism,the magma evolutional-metallogenic model of Jinchuan Cu-Ni sulfide Deposit,the geological characteristics and genesis ofⅠ-⑥Concealed Cu-rich orebody.Its purpose are to predict the prospecting target area in the depth and border of Jinchuan Deposit and serve the Jinchuan mine.It has very practical significance for guiding the prospecting in the Jinchuan Deposit, increasing its mineral resources,prolonging its Mine Service Life and serving other similar deposits for prospecting by using this perfect metallogenic theory.
     The main research contents and results are as follows:
     (1) Based on much geological data and the Surpac software,the three-dimensional visual model of Jinchuan Deposit had been built.It would distinctly and visually demonstrate the three-dimensional relationship among the Jinchuan ore-bearing ultrabasic rockbodies,the Jinchuan main orebodies and the Jinchuan main structure.Through analysis of spatial relationship and morphological characteristics of Jinchuan ultrabasic rockbody,it is realized that the Jinchuan ultrabasic rockbody is divided into two parts (East Part and West Part) and three concentrative segments(East,Middle and West).The main lithofacies feature of East Part rockbody contains large plagioclase,while there locally exists little(or doesn't exist) plagioclase-bearing lherzolite in the West Part rockbody.The basicity of rockbody and ore-beating lithofacies becomes gradually higher, and the enrichment degree of main ore-forming elements increases accordingly,from the East concentrative segment and the West concentrative segment to the Middle one.
     (2) On the basis of isotope dating data ofⅠ-⑥Concealed Cu-rich orebody,the previous isotope dating data were systematically collected,synthetically analyzed,then explained with the attitude of development and inter-relation.The preliminary conclusions could be drawn out,which are that the forming age of Jinchuan main orebodies was 800-1000Ma,theⅠ-⑥Concealed orebody formed at 800-1000 Ma,and the emplacement age of massive Ni-rich orebodies was earlier than 800 Ma.The view is of great significant to the study on the evolution of regional metallogenic environment and guidance the prospecting in the depth and border of Jinchuan Deposit.
     (3) By comparing the characteristics of orebody,ore and special geochemistry between theⅠ-⑥Concealed orebody and neighboringⅡ-①main orebody,theⅠ-⑥'s mineralization characteristic was summed up.It is concluded that theⅠ-⑥Concealed orebody has the feature of both magmatic liquation and late reformation.Meanwhile,it is implied that there existed a Cu-rich magma between ore-bearing Ni-rich magma and ore pulp during differentiation by liquation of High MgO Basalts magma derived from mantle in the deep staging chambers.The magma ofⅠ-⑥Concealed orebody experienced three stages:first,the deep liquation and pulsatory injection of the Cu- and PGE-rich magma; second,the concentration of tectonic activation;third,the later magma hydrothermal superposition.In addition,Pb and S isotope data indicate the magma ofⅠ-⑥concealed orebody predominantly originates from mantle,but is contamined by a small crustal component.
     (4) The location of rockbody and orebody is controlled by the activity center of ore-bearing magma and ore pulp,among which the most critical controlling factor is the magma conduits connecting with the activity center of ore-bearing magma and ore pulp. Through contrastive analysis on the geological characteristics of main orebodies of each Mining Area and study on the enrichment law of such elements as Cu,Ni,Pt,Pd,Au and Ag etc.,it is pointed out that there might be a activity center in Exploration Line 6-8 of JinchuanⅡ-①main orebody;the junction between Mining Area-Ⅰand Mining Area-Ⅱ, the junction betweenⅡ-①main orebody andⅡ-②main orebody,and the south of Mining Area-Ⅲare the critical prospecting targets.
     (5) Based on evaluation of geophysical exploration,geochemical exploration, remote sensing technology and other geo-exploration technology etc.,the rational and synthetical combination of prospecting techniques for exploring in the depth and border of Jinchuan Deposit are respectively established according to the actual conditions of Jinchuan Deposit.
引文
[1] Albarede F, Juteau M. Unscrambling the lead model ages [J]. Geochim. Cosmochim. Acta. 1984,48:207-212.
    
    [2] Andersen T. Correction of common Pb in U-Pb analyses that do not report ~(204)Pb [J]. Chem. Geol.2002, 192:59-79.
    [3] Barnes SJ, Zientek ML, Severson MJ. Ni, Cu, Au and platinum-group element contents of sulphides associated with intraplate magmatism [J]. Canadian Journal Earth Sciences. 1997, 34:337-351.
    [4] Barnes SJ, Tang ZL. Chrome spinel from the Jinchuan Ni-Cu sulfide deposit, Gansu province,Peoples Republic of China [J]. Economic geology. 1999,96:343-356.
    [5] Barnes SJ, et Maier WD. The fraction of Ni, Cu and the noble metals in silicate and sulfide liquids [J]. In Dynamic Processes in Magmatic Ore Deposits and their application in mineral exploration Editsd par Keays, Lesher RR, Lightfoot CM, et Farrow PC, CEG. Geological Association of Canada, Short Course. 1999,13:69-106.
    [6] Barnes SJ, Lightfoot PC. Formation of magmatic nickelsulfide ore deposits and processses affecting their copper and platinum-group element contents [C]. In: Hedenquist JW, Thompson JFH, Goldfarb RJ, Richards JP, Economic geology, 100th anniversary volume[A]. 2005,179-213.
    [7] Chai G, Naldrett AJ. Petrology and geochemistry of the Jinchuan ultramafic intrusion: Cumulate of a high-Mg basaltic magma [J]. Journal of Petrology. 1992a, 33:1-27.
    [8] Chai G and Naldrett AJ. PGE mineralization of the Jinchuan Ni-Cu sulfide deposit, N.W.China [J]. Economic geology. 1992b, 87:1475-1495.
    [9] Chen JF, Foland KA, Xing F, Xu X and Zhou TX. Magmatism along the southeastmargin of the Yangtze block: Precambrian collision of the Yangtze and Cathaysia blocks of China [J].Geology. 1991,19:815-818.
    [10] Chen YL, Yang ZF, Zhao DZ. Isotopic Geochronology and Geochemistry [J]. Beijing:Geological Publishing House. 2005, P78-96. (in Chinese with English abstract).
    
    [11] Coleman ML. Sulphur isotopes in petrology [J]. Journal of the Geological Society. 1977,133:593-608. DOI: 10.1144/gsjgs.133.6.0593.
    
    [12] De Waal SA, Xu ZH, Li Ch, Hassina M. Emplacement of viscous mushes in the Jinchuan ultramafic intrusion, western China [J]. Canadian Mineralogist. 2004,42:371-392.
    [13] Doe BR, Stacey JS. The application of lead isotopes to the problems of ore genesis and ore prospect evaluation[J].a review.Economic Geology.1974,69:757-776.
    [14]Du AD,Sun YL,Zou XQ,et al.Study on Rhenium-Osmium isotope system by inductively coupled plasma mass spectrometry and its application to copper-nickel sulfide and molybdenite to copper-nickel sulfide and molybdenite dating[J].Rock and Mineral Analysis,1996,15(4):263-266.
    [15]Durazzo A and Taylor LA.Exsolution in the Mss-Pentlandite System:Textural and Genetic Implication for Ni-Sulfide Ores[J].Mineral Deposita.1982,17:313-332.
    [16]Fan YX and Zhang MJ.Progress on the study of super-large Ni-Cu sulphide deposit[J].Acta Geologica Gansu.1999,8(2):47-52(in Chinese with English abstract)
    [17]Fleet ME,Chryssoulis SL,Stone WE,Weisener CG.Partitioning of platinum-group elements and Au in the Fe-Ni-Cu-S system:Experiments on the fractional crystallization of sulphide melt.Contrib Mineral Petrol.1993,115:36-44.
    [18]Fleet ME,Crocket JH,Liu M,Stone WE.Laboratory partitioning of platinum-group elements (PGE) and gold with application to magmatic sulfide-PGE deposits[J].Lithos.1999,47:127-142.
    [19]Gao YL,Tang ZL,Zhang MJ,et al.Geochemical Characteristics,Genesis of Concealed Cu-,PPGE-rich ore body and Its Prospecting in Depth of Jinchuan Deposit,Northwestern China[J].Acta geologica sinica-english edition.2009.(has already been received).
    [20]Keays RR,Ihlenfeld C,McInnes BIA,Zhou MF.Re-Os isotope dating of the Jinchuan Ni-Cu-PGE sulfide deposit,China[C].In Recent Advances in Magmatic Ore Systems of Mafic-Ultramafic Rocks,Proceedings of the IGCP 479[A],(eds.J.G.Shellnutt,M.F.Zhou and K.N.Peng),2004:41-42.
    [21]Kullerud G,Yund RA,Moh GH.Phase relations in the Cu-Fe-S,Cu-Ni-S,and Fe-Ni-S systems [J].Economic geology monograph 4.1969:323-343.
    [22]Lehmann Jeremie,Nicholas arndt,et al.Field Relationships and Geochemical Constraints on the Emplacement of the Jinchuan Intrusion and its Ni-Cu-PGE Sulfide Deposit,Gansu,China[J].Economic Geology.2007,102:75-94.
    [23]Li Ch,X Zh,de Waal SA,Ripley EM,Maier WD.Compositional variations of olivine from the Jinchuan Ni-Cu sulfide deposit,western China:Implications for ore genesis[J].Mineralium Deposita.2004,39:159-172.
    [24]Li XH,Su L.Shrimp U-Pb zircon age of the Jinchuan ultramafic intrusion and its geological significance[J].Chinese Science Bulletion.2004,49(4):420-422.
    [25]Li XH,Su L,Chung S,Li Z,Liu Y,Song B.Liu DY.Formation of the Jinchuan ultramafic intrusion and the world's third largest Ni-Cu sulfide deposit:Associated with the~825 Ma south China mantle plume?[J].Geochemistry,Geophysics,Geosystems(G3).2005,6(1):1-16.
    [26]Liang YB,Liu TY,Song GR and Jin ZM.Platinum-group elements deposits in China[M].Beijing:Metallurgical Industry Press.1998,14-88(in Chinese with English abstract).
    [27]Liang YB,Zhu WF,et al.Geology and geochemical characteristics of Jinchuan Cu-Ni-PGE Deposite.Mining and Geology[J].1997,11:1-13(in Chinese with English abstract).
    [28]Lv GX,Deng,et al.Research on metallogenetic theory of tectonio-physicochemistry[J].Geotectonia et Metallogenia.2003,27(3):250-263.(in Chinese with English abstract).
    [29]Lightfoot PC,Naldrett AJ.The Geology and Geochemistry of the Waterfall Gorge Section of the Insizwa Complex with Particular Reference to the Origin of the Nickel Sulfide Deposits[J].Economic Geology.1984,79:1857-1879.
    [30]Naldrett AJ.Magmatic sulphide deposits[M].New York:Oxford Univ.Press,1989,1-186.
    [31]Naldrett AJ.Key factors in the genesis of Noril'sk,Sudbury,Jinchuan,Voisey's Bay and other world class Cu-Ni-PGE deposits:Implication for exploration[J].Australian Journal of Earth Sciences.1997,44:281-351.
    [32]Naldrett AJ.World-class Ni-Cu-PGE deposits:Key factors in their genesis[J].Mineralium Deposita.1999,34:227-240.
    [33]Naldrett AJ.Magmatic Sulfide Deposits;Geology,Geochemistry and Exploration[J].Springer-Verlag,Berlin,2004,727.
    [34]Ohmoto H.Systematics of sulfur and carbon in hydrothermal ore deposits[J].Econ.Geol.1972,67:551-579.
    [35]Ripley EM,Arindam Sarkar,Li Ch.Mineralogic and stable isotope studies and hydrothermal alteration at the Jinchuan Ni-Cu deposit,China[J].Economic Geology.2005,100:1349-1361.
    [36]Russell RD,Farquhar RM.Lead Isotopes in Geology[M].Interscience Publish.1960,243.
    [37]S.G.T.(The Sixth Geological Team of Gansu Geological Survey China).Geology of Cu-Ni sulfide deposit in Baijiazuezhi[R].Geological Publication Bureau,China.1984.225(in Chinese).
    [38]Smith JW.Isotopic fractionations accompanying sulfur hydrolysis[J].Geochemical Journal.2000,34:95-99.
    [39]Song XY,Zhou MF,et al.Role of crustal contamination in formation of the Jinchuan intrusion and its world-class Ni-Cu-(PGE) sulfide deposit,NW China[J].Int.Geol.Rev.2006,48:1113-1132.
    [40]Stephen JB,Martin JC,Robin ET.The Agnew Nickel Deposit,Western Australia:Part Ⅰ.Structure and Stratigraphy[J].Economic Geology.1998,83:524-536.
    [41]Su,SG,Deng JF,Tang ZL,Liu ML,Lou DB.Mineralization characteristics of platinum group elements in Jinchuan Cu-Ni-PGE deposit[C],Proceedings of the IGCP 479 Hong Kong Workshop,Recent Advances in Magmatic Ore Systems in Mafic-ultramafic Rocks[A],2004: 43-47.
    [42] Su SG, Li Ch, Zhou MF, Ripley EM, Qi L. Controls on variations of platinum-group element concentrations in the sulfide ores of the Jinchuan Ni-Cu deposit, western China [J]. Miner Deposita. 2008,43:609-622.
    [43] Tang ZL, Bai YL, Li ZL. Geotectonic settings of large and superlarge mineral deposits on the southwestern margin of the North China Plate [J]. Acta Geologica Sinica (English edition). 2002,76(3):367-377.
    [44] Tang ZL, Bai YL. The tectonics frame and metallogenic systems [J]. Earth Science Frontiers.1999, 6(2):271-284(in Chinese with English abstract).
    [45] Tang ZL, Li WY. Metallogenic Regularities and Geological Correlation on Jinchuan Copper-Nickel Deposit, China [M]. Beijing: Geological Publishing House. 1995,1-20. (in Chinese with English abstract).
    [46] Tang ZL, Qian ZZ, Jiang CY, et al. Chinese Nickel-Copper (PGE) Sulfide Deposits and metallogenic prognosis [M]. Beijing: Geological Publishing House, 2006. (in Chinese with English abstract).
    [47] Tu GZ. Superimposition and reformation—A neglected ore-fprming process [J]. Information of Geoscience and Technology of Hunan Province. 1975,76-83 (in Chinese).
    [48] Tu GZ. Superlarge ore deposits of China [M]. Beijing: Geological Publishing House. 2000. (in Chinese).
    [49] Wang CY and Zhou MF. Genesis of the Permian Baimazhai magmatic Ni-Cu-(PGE) sulfide deposit, Yunnan, SW China [J]. Miner Deposita. 2006,41: 771-783.
    [50] Wang JC, Shi J. Occurences feature of Au-Ag in the Copper-Ores in Jinchuan [J]. Bulletin of Mineralogy, Petrology and Geochemistry. 1999,18:358-361.
    [51 ] Yan HQ, Su SG, Jiao JG and Tang H. Metallogenetic epoch of Jinchuan Cu-Ni-(PGE) magmatic sulfide deposit [J]. Earth Science Frontiers. 2005. 12(2): 309-315 (in Chinese with English abstract).
    [52] Yang G, Du AD, Qu WJ, et al. Pt-Os and Re-Os dating of ores from the Jinchuan Ni-Cu-PGE deposit,a world class Ni deposit. Shellnutt J G,Zhou M F,Pang K N.Recent Advance in Magmatic Ore Systems In mafic-Ultramafic Rocks [C]. Hong Kong SAR China: Procceedings of the IGCP479 HONG KONG Workshop [A]. 2004, Abstract Volume, 40.
    [53] Yang HQ, Tang ZL, Su L, et al. Discussion on characters of minerogenic magma and source area in Jinchuan Cu-Ni sulphide deposite [J]. Acta Geologica Gansu. 1997,6:44-52(in Chinese with English abstract).
    [54] Yang SH, Chen JF, Qu WJ. Yang G and Du AD. Re-Os"ages"of Jinchuan copper-nickel sulfide deposit and their significance [J]. Geochimica. 2007,36(1): 27-36 (in Chinese).
    [55]Yang XZ,An SY,et al.The REE characteristics and the genesis significance of the Jinchuan ore-bearing uitrabasic intrusive Gansu Province China[J].Journal of Xi'an College of Geology.1991,13:15-22.(in Chinese with English abstract).
    [56]Yang XZ,Ishihara S,Zhao DH.Genesis of the Jinchuan PGE deposit,China:evidence from fluid inclusions,mineralogy and geochemistry of precious elements[J].Mineral Petrol 2006,86:109-128.
    [57]Zhai YS,Lv GX.Transition of tectonic and dynamicregime and mineralization[J].Acta Geoscientia Sinica.2002,23(2):97-102(in Chinese with English abstract).
    [58]Zhai YS.Regional metallogenic features and some important ore-forming environments of China.Geology of China[J].2003,30(4):337-342(in Chinese with English abstract).
    [59]Zhang ZQ,Du AD,Tang SH,Lu JR,Wang JH and Yang G.Age of the Jinchuan copper nickel deposit and isotopic geochemical feature of its source[J].Acta Geologica Sinica.2004,78(3):359-365(in Chinese with English abstract).
    [60]Zhao LS,Zhang BR.Geochemistry[M].Beijing:Geological Publishing House.1987(in Chinese).
    [61]Zhou MF,Yang Z,Song XY,Keays RR,Lesher CM.Magmatic Ni-Cu-(PGE) sulfide deposits in China[J].Canadian Institute of Mining,Metallurgy and Petroleum.2002,Special V.54,p.619-636.
    [62]Zhou MF,Yang ZX,Song XY,Lesher CM and Keays RR.Magmatic Ni-Cu-(PGE) sulfide deposits in China[C].In:Cabri,L.J.(Ed.),The Geology,Geochemistry,Mineralogy,Mineral Beneficiation of the Platinum-Group Elements[A].Canadian Institute of Mining,Metallurgy and Petroleum.2002d,54:619-636.
    [63]World Bureau of Metal Statistics.World Metal Statistics Yearbook[R].2001.
    [64]В·И·斯米尔诺夫.矿床地质学[M].北京:地质出版社.1981.
    [65]#12
    [66]白云来,范育新,汤中立,等.超大型金川岩浆熔离镍铜矿床深部首次发现辉锑矿[J].地学前缘.2003,10(3):290-290.
    [67]白云来,范育新,汤中立,等.关于中国西部龙首山、祁连山成矿区(带)进一步找矿问题的思考[J].地球科学进展.2005,20(1):36-41.
    [68]查仁荣,卢建全.甘肃省金川公司龙首矿深部地球化学找矿研究[J].地质地球化学.1995,(6):1-4.
    [69]陈浩硫,吴水波,傅德彬,等.镍矿床[M].地质出版社.1993.
    [70]陈毓川等.中国矿床成矿模式[M].北京:地质出版社.1993.
    [71]陈源.硫化铜镍矿床热液成因论再认识[M].矿产与勘查,1989(5):17-21
    [72]陈岳龙,杨忠芳,赵志丹,等.同位素地质年代学与地球化学[M].北京:地质出版社.2005(3):78-96.
    [73]成杭新,李应桂.铜镍矿床地球化学异常特征及研究的一些新进展[J].地质地球化学.1994(3总211):64-68
    [74]董显扬,曾河清.龙首山西段发现科马提岩[J].中国地质科学院西安地质矿产研究所所刊.1990,(30):136-139.
    [75]杜安道,何红蓼,殷宁万,等.辉钼矿的铼-锇同位素地质年龄测定方法研究[J].地质学报.1994,68(4):339-347.
    [76]杜安道,赵敦敏,王淑贤,孙德忠,刘敦一.Carius管溶样和负离子热表面电离质谱准确测定辉钼矿铼-锇同位素地质年龄[J]岩矿测试.2001,20(4):247-252.
    [77]范育新,张铭杰.超大型铜镍硫化物矿床研究进展[J].甘肃地质学报.1999,8(2):47-52.
    [78]符增有.金川龙首矿银镍黄铁矿硫砷铱矿锑铜含硒方铅矿的发现[J].甘肃有色金属.1992,(4):1-3.
    [79]傅德彬.基性—超基性岩硫化铜镍矿床深成矿浆贯入成因论[J].地质与勘探.1986,22(4总238):12-21.
    [80]傅德彬.硫化铜镍矿床矿浆成矿的基本问题[J].吉林地质.1988(1总25):9-21
    [81]甘肃省地质矿产局第六地质队.白家咀子硫化铜镍矿床地质[M].北京:地质出版社,1984.
    [82]甘肃省第六地质队.甘肃某硫化铜镍矿床中有益伴生元素的分布富集规律铬镍钴铂地质矿产专辑,第三集[M].北京:地质出版社,1974.
    [83]甘肃省区域地质志[M].北京:地质出版社,1982.
    [84]高强祖,黄满湘.金川铜镍硫化物矿床成因探讨[J].西部探矿工程.2006,18(6):113-115.
    [85]国家统计局.中国统计年鉴[M].北京:中国统计出版社.1992-1999.
    [86]国土资源部规划司,中国地质调查局和中国国土资源经济研究所.西部地区矿产资源勘察与开发潜力与规划研究[M].北京:地质出版社.2001,1-30.
    [87]侯鸿启.隐伏深熔-贯入式硫化铜镍矿床地球化学找矿标志—以金川矿床二矿段为例[J].甘肃地质科技情报.1987(3总46):2-5.
    [88]胡能高.甘肃东大山地区龙首山岩群地球化学特征及其构造环境[J].长安大学学报(地球科学版).2003,25(4):32-39.
    [89]贾恩环.甘肃金川硫化铜镍矿床地质特征[J].矿床地质.1986,5(1总15):26-38.
    [90]贾恩环.金川铜—镍硫化物矿床成矿模式和成矿系列[J].地质论评.1986,32(3):276-286.
    [91]江荣伏.金川矿区深部成矿规律与找矿方向[J].有色矿山.2002,31(4):4-7.
    [92]江荣伏.金川矿区深部找矿方向探讨[J].地质与勘探.2003,39(5):35-38.
    [93]金川公司信息中心.世界镍矿资源现状[R].内部资料.2000.
    [94]???.金川铜镍矿床硫同位素地球化学[J].西北地质.1989(2总44):20-23.
    [95]李国华,王大伟.甘肃龙首山超基性岩带含矿岩体主造岩矿物化学特征研究[J].大地构造 与成矿学.2000,24(2):170-174.
    [96]李文渊,汤中立,郭周平,等.阿拉善地块南缘镁铁-超镁铁岩形成时代及地球化学特征[J].岩石矿物学杂志.2004,23(2):117-126.
    [97]李文渊,杨鹏飞.甘肃龙首山新元古代烧火筒群沉积特征及其构造意义[J].沉积学报.2004,22(1):142-147.
    [98]李文渊.中国铜镍硫化物矿床成矿系列与地球化学[M].西安:西安地图出版社.1996,1-49.
    [99]李文渊.Re-Os同位素体系及其在岩浆Cu-Ni-PGE矿床研究中的应用[J].地球科学进展.1996,11(6):580-584.
    [100]李文渊.深断裂不导岩——论含铜镍硫化物镁铁—超镁铁岩成岩地质背景[J].甘肃地质学报.1997,6(A00):22-22.
    [101]李献华,苏犁,宋彪,刘敦一.金川超镁铁侵入岩SHRIMP锆石U-Pb年龄及地质意义[J].科学通报.2004,49(4):402.
    [102]李应桂,成杭新.铜镍矿床勘查中岩体含矿性的地球化学评论[J].物探与化探.1995,19(4):241-252.
    [103]梁有彬,刘同有,宋国仁,金在淼.中国铂族元素矿床[M].北京:冶金工业出版社.1998,14-88.
    [104]梁有彬,朱文凤,宋国仁,宋恕夏.金川铜镍型铂族元素矿床地质地球化学特征[J].矿产与地质.1997,11(1总57):1-13.
    [105]刘凤山,傅学明.西北地区基性—超基性岩含矿(铬、镍)性闭合相关分析[J].兰州大学学报(自然科学版).1991,27(1总91):99-106.
    [106]刘光海.矿产预测的综合方法及应用实例[M].北京:地质出版社.1994.
    [107]刘民武,赫英.金川铜镍硫化物矿床深熔-就地成矿作用过程研究[J].矿床地质.2003,22(3):301-308.
    [108]刘月星,唐红松,吴厚泽.中国铜镍硫化物矿床类型及控矿条件[J].矿产与地质.1998,12:86-90.
    [109]刘月星.铜镍硫化物矿床成矿作用及成矿模式研究[J].矿产与地质.1997,11:225-231.
    [110]吕古贤,邓军,倪师军,李晓波.构造物理化学成矿理论问题探讨[J].大地构造与成矿学.2003,27(3):250-263.
    [111]罗照华,AA马拉库舍夫,等.矿床的成因—以诺里尔斯克(俄罗斯)和金川(中国)为例[J].矿床地质.2000,19(4):330-339.
    [112]Makapob,BH,锁林(译).铜镍矿床的成因类型[J].国外地质科技.1990(7总103):53-58.
    [113]宋恕夏.论金川二矿区细脉浸染型矿体与贯入型特富矿[J].矿山地质.1992,13:296-301.
    [114]庞春勇.硫化铜镍矿床及岩石成因分类简述[J].国外矿产地质.1990(3-4):68-72.
    [115]钱壮志,汤中立,李文渊,等.秦祁昆成矿域古生代区域成矿规律[J].西北地质.2003,36(1):34-40.
    [116]秦德先,燕永锋,洪托,田毓龙.矿床数学经济模型[M].昆明:云南科技出版社,2001.
    [117]石应骏,张朝文.龙首山推覆构造的发现及其地质意义[J].科学通报.1995,40(9):812-813.
    [118]宋恕夏.金川硫化铜镍矿床—矿区铂富集体的发现及其赋存状态研究[J].地质与勘探.1986,22(3):36-39.
    [119]苏尚国,邓晋福,汤中立,等.镁铁质-超镁铁质岩浆作用与成矿作用的新进展[J].现代地质.2004,18(4):454-459.
    [120]孙桂玉.脆—韧性剪切带控矿的初步探讨:对金川铜镍矿控岩控矿构造的新见解[J].矿床地质.1990,9(4):352-362.
    [121]汤中立,李文渊.金川铜镍硫化物(含铂)矿床成矿模式及地质对比[M].北京:地质出版社.1995.
    [122]汤中立,杨杰东,徐士进,等.金川含矿超镁铁岩的Sm-Nd法定年[J].科学通报.1992,37:918-920.
    [123]汤中立,白云来,等.华北板块西南边缘大型、超大型矿床的地质构造背景[J].地质学报.2002,76(3):432-432.
    [124]汤中立,白云来.华北古大陆西南边缘构造格架与成矿系统[J].地学前缘.1999,6(2):271-283.
    [125]汤中立.华北古陆西南边缘(龙首山-祁连山)成矿系统及成矿构造动力学[M].北京:地质出版社.2002.
    [126]汤中立,李文渊.中国硫化镍矿床成矿规律的研究与展望[J].矿床地质.1991,10(3):193-203.
    [127]汤中立,李文渊.中国与基性—超基性岩有关的Cu—Ni(Pt)矿床成矿系列类型[J].甘肃地质学报.1996,5(1):50-64.
    [128]汤中立,李小虎.甘肃矿产资源开发中的问题与思考[J].西部论丛.2004,(9):16-18.
    [129]汤中立,钱壮志,姜常义.中国镍铜铂岩浆硫化物矿床与成矿预测[M].北京:地质出版社.2006.
    [130]汤中立.超大型Ni—Cu(Pt)岩浆矿床的划分与找矿[J].地质与勘探.2002,38(3):1-7.
    [131]汤中立.中国的小岩体岩浆矿床[J].中国工程科学.2002,4(6):9-12.
    [132]汤中立.中国镁铁、超镁铁岩浆矿床成矿系列的聚集与演化[J].地学前缘.2004,11(1):113-119.
    [133]汤中立.中国岩浆硫化物矿床的主要成矿机制[J].地质学报.1996,70(3):237-243.
    [134]汤中立.中国岩浆硫化物矿床的主要类型[J].甘肃地质学报.1996,5(1):45-49,64.
    [135]唐红松,刘月星.我国铜镍硫化物矿床的稀土元素地球化学特征[J].矿产与地质.1998,12(4):225-229.
    [136]涂光炽.叠加与再造——被忽视了的成矿作用[J].湖南地质科技情报.1975,76-83.
    [137]涂光炽.中国超大型矿床[M].北京:地质出版社.2000.
    [138]王静纯,施晶.金川富铜矿体金银赋存特征.矿物岩石地球化学通报[J].1999,18:358-361.
    [139]王瑞廷,毛景文,赫英,等.金川超大型铜镍硫化物矿床的铂族元素地球化学特征[J].大地构造与成矿学.2004,28(3):279-286.
    [140]中国地质矿产信息研究院.我国急缺矿产找矿突破的途径与对策[R].1994.
    [141]吴健生,王仰麟,曾新平,等.三维可视化环境下矿体空间数据插值[J].北京大学学报(自然科学版).2004,40(4):635-641.
    [142]夏林圻.北祁连山构造-火山岩浆—成矿动力学[M].北京:中国大地出版社.2001,131-222.
    [143]谢永章.金川镍矿找矿预测[J].金川科技.2001,(4):10-14.
    [144]修群业,于海峰,李铨,等.龙首山岩群成岩时代探讨[J].地质学报.2004,78(3):366-373.
    [145]徐章华,汤中立.金川铜、镍(含PGE)岩浆硫化物矿床母岩浆成分的估计[J].现代地质.1998,12(4):506-514.
    [146]闫海卿,苏尚国,焦建刚,汤华.金川Cu,Ni(PGE)岩浆硫化物矿床成矿时代研究[J].地学前缘.2005,12(2):309-315.
    [147]杨刚,杜安道,卢记仁,屈文俊,陈江峰.金川镍-铜-铂矿床块状硫化物矿石的Re-Os(ICP-MS)定年[J].中国科学(D辑).2005,35(3):241-245.
    [148]杨合群.论金川硫化铜镍矿床中贵金属元素的分带机制.西北地质科学.1992,13(1):75-81.
    [149]杨合群,汤中立.金川硫化铜镍矿床成矿岩浆性质和源区特征讨论[J].甘肃地质学报.1997,6(1):44-52.
    [150]杨胜洪,陈江峰,屈文俊,杨刚,杜安道.金川铜镍硫化物矿床的Re-Os“年龄”及其意义[J].地球化学.2007,36(1):27-36.
    [151]杨轩柱,安三元,侯世军,巩志超,董显扬.金川岩体稀土元素特征及成因意义[J].西安地质学院学报.1991,13(1):15-22.
    [152]杨轩柱.硫化铜镍矿床的研究现状和发展趋势[J].西北地质.1990(1):43-47.
    [153]杨振德,潘行适,杨易福.阿拉善断块及邻区地质构造特征与矿产[M].北京:科学出版社.1988.
    [154]姚家栋.岩浆硫化铜镍矿床成矿中硫源的探讨[J].西南地质科技情报.1988(1):45-49.
    [155]姚家栋.岩浆硫化铜镍矿床中的矿浆作用与矿浆期的确定[J].中国地质科学院成都地质矿产研究所所刊.1988(9):53-68.
    [156]翟裕生,吕古贤.构造动力体制转换与成矿作用[J].地球学报.2002,23(2):97-102.
    [157]翟裕生.区域成矿学[M].北京:地质出版社.1999.
    [158]翟裕生.中国区域成矿特征及若干值得重视的成矿环境.中国地质.2003,30(4):337-342.
    [159]张建辉.金川铜镍矿床容矿岩体后期透镜化韧性剪切变形改造[J].金川科技(矿山专辑).2001.
    [160]张建辉.金川铜镍硫化物矿床深部勘探成果的地质意义[J].采矿技术.2005,5(1):87-90.
    [161]张宗清,杜安道,唐索寒,等.金川铜镍矿床年龄和源区同位素地球化学特征[J].地质学报.2004,78(3):359-365.
    [162]赵伦山,张本仁.地球化学[M].北京:地质出版社,1987.
    [163]赵振华.我国与寻找超大型矿床有关的基础研究进展[J].地球科学发展.2001,16(2),184-188.
    [164]中国科学院地球化学研究所.中国含铂地质体铂族元素地球化学及铂族矿物[M].北京:科学出版社,1981.
    [165]中国有色金属工业总公司.中国有色金属工业年鉴(1992-2004)[R].
    [166]中华人民共和国国家统计局.中国统计年鉴,总第20期[M].北京:中国统计出版社.2001,10-60.
    [167]朱文凤,梁有彬.金川铜镍硫化物矿床铂族元素的赋存状态及分布规律[J].地质与勘探.2000,36(1):26-28.
    [168]朱文凤,吕俊武.金川铜镍矿床铂族元素成矿作用探讨[J].矿物岩石地球化学通报.2000,19(4):328-332.
    [169]朱训主.中国矿情,第二卷.金属矿产[M].北京:科学出版社.1999.以下为主要基础地质资料:
    [170]北京大学.金川矿区地质构造研究中的几个问题[R].1984.
    [171]成都水利水电建设工程公司.金川硫化铜镍矿床龙首矿中、西采区1220、1160中段生产勘探报告[R].2002.
    [172]地矿部航空物探总队904队.甘肃省龙首山、潮水盆地西部地区航空磁测成果报告[R].1984.
    [173]地质部航测大队905队.甘肃北部地质航空磁测结果报告[R].1967.
    [174]第六地质队.白家咀子铜镍矿床第二矿区地质勘探储量报告[R].1972.
    [175]第六地质队.白家咀子铜镍矿床第二矿区六六年地质勘探总结报告[R].1966.
    [176]第六地质队.白家咀子铜镍矿床第三矿区地质勘探报告[R].1965.
    [177]第六地质队.白家咀子铜镍矿床第三矿区主矿体上盘交代型富矿补充勘探报告[R].1989.
    [178]第六地质队.白家咀子铜镍矿床第四矿区初步地质勘探报告[R].1974.
    [179]甘肃地质局第六地质队.甘肃永昌龙首山东大山—芨岭航磁异常带1/1万面积详查年度总结报告[R].1973.
    [180]甘肃地质局六队.甘肃省永昌县白家咀子地区F1断层活动性分析地质报告[R].1989.
    [181]甘肃省地矿局第六地质队.甘肃省龙首山地质区及祁连幅化探异常3级查证报告[R].1992.
    [182]甘肃省地矿局第六地质队.甘肃省龙首山红寺湖—红崖山水库一带1/5万化探普查报告[R].1990.
    [183]甘肃省地质局.甘肃省金昌白家咀子铜镍矿MV号磁异常补充检查报告[R].1984.
    [184]甘肃省地质局.内蒙及甘肃北大山、龙首山地区航测检查报告[R].1967.
    [185]甘肃省地质局第六地质队.北大山、龙首山、永昌南山地质矿产图及说明书[R].1969.
    [186]甘肃省地质局第六地质队.甘肃永昌白家咀子铜镍矿V号磁异常补充检查报告[R].1972.
    [187]甘肃省地质局第六地质队.甘肃永昌金川一带一九八0年航磁异常复查及天祝幔坡和指南牌起基础岩等踏勘报告[R].1980.
    [188]甘肃省地质局第六地质队八分队.甘肃永昌白家咀子铜镍矿一矿区西端隐伏矿体评价及三矿区南侧磁异常验证报告[R].1981.
    [189]甘肃省地质局祁连山地质队.甘肃省永昌县白家咀子铜镍矿区域地质详细普查报告[R].1965.
    [190]甘肃省地质局祁连山地质队.甘肃永昌白家咀子铜镍矿区域地质地球物理综合普查报告[R].1962.
    [191]甘肃省地质局物探大队张掖物探队.白家咀子铜镍矿区详查物探工作结果报告[R].1959.
    [192]甘肃省地质局物探队.永昌白家咀子硫化铜镍矿4矿区物探工作详查报告[R].1967.
    [193]甘肃省综合地质大队祁连山地质队.甘肃省永昌白家咀子矿区域地质地球物理综合详细普查报告[R].1962.
    [194]甘肃有色冶金岩土工程公司.龙首矿1160m水平Ⅰ-8~Ⅱ-6行钻探工程地质总结报告[R].2003.
    [195]甘肃综合地质大队.永昌白家咀子铜镍矿区外围综合普查物探工作结果报告[R].1963.
    [196]甘肃综合地质大队祁连山地质队.甘肃永昌自家咀子铜镍矿V号磁异常地质地球物理综合报针R].1963.
    [197]甘肃综合地质大队物探队.甘肃永昌白家咀子Ⅱ、Ⅲ矿区物(化)探详查工作成果报告[R].1964.
    [198]甘肃综合地质大队物探队.永昌白家咀子硫化铜镍矿详查物探工作结果报告[R].1963.
    [199]甘肃综合地质大队物探队一分队.永昌白家咀子硫化铜镍矿详查物探工作结果报告[R].1963.
    [200]贵州有色冶金岩土工程公司第四工程处.金川公司二矿1400水平32-34行特富矿生产探矿总结[R].1999.
    [201]贵州有色冶金岩土工程公司第四工程处.金川有色金属公司龙首矿1280中段10-12行生产探矿总结[R].1999.
    [202]贵州有色冶金岩土总公司河西公司.金川公司二矿区1450水平36-38行特富矿补充探矿总结[R].1979.
    [203]黄满湘.金川一、二矿区深部找矿研究,内部资料[R].2004.
    [204]金川公司.金川铜镍矿床探采对比报告[R].1981.
    [205]金川公司.金川铜镍矿第一矿区露天开采采场闭坑地质报告[R].1996.
    [206]金川公司龙首矿.金川有色金属公司龙首矿1400~1300水平5-8行盲矿体生产勘探报告[R].1994.
    [207]金川公司龙首矿.龙首矿地质找矿综合研究[R].2005.
    [208]金川公司镍钻研究院.金川镍矿工艺矿物与工艺关系[R].1987.
    [209]金川公司任银昌等.金川铜镍矿二矿区矿产资源储量核实报告[R].2004.
    [210]金川公司易立平等.金川铜镍矿一、三矿区矿产资源储量核实报告[R].2004.
    [211]金川镍钴研究设计院、金川公司二矿区.金川二矿区特富矿成矿规律和找矿研究报告[R].1993.
    [212]金川有色金属公司二矿.二矿区25行上盘特富矿生产勘探阶段总结[R].1996.
    [213]金川有色金属公司井巷工程公司.金川有色金属公司二矿区1450中段特富矿生产探矿报告[R].1995.
    [214]金川有色金属公司井巷公司.金川有色金属公司龙首矿东采区1200~1100水平生产勘探报告[R].1995.
    [215]金川有色金属公司井巷公司工程公司.金川有色金属公司二矿区Ⅱ期基建探矿报告[R].1994.
    [216]李文渊.金川铜镍矿床外围铜镍成矿带成矿规律与成矿预测图[R].1999.
    [217]龙首矿.金川有色金属公司龙首矿1520、1460中段开采结束报告[R].1993.
    [218]祁连山地质队.白家咀子铜镍矿床第一矿区1959年勘探报告[R].1959.
    [219]祁连山地质队.白家咀子铜镍矿床第一矿区地质勘探补充报告[R].1961.
    [220]祁连山地质队.白家咀子铜镍矿床第一矿区地质勘探补充报告[R].1964.
    [221]祁连山地质队.白家咀子铜镍矿区外围东湾磁异常检查验证工作报告[R].1972.
    [222]西北地质局甘肃地质综合大队.甘肃永昌白家咀子铜镍矿V号磁异常地质物探综合检查中间报告[R].1963.
    [223]西北有色宁夏工程勘探处.金川有色金属公司二矿区1200水平26行上盘特富矿生产勘探小结[R].1997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700