用户名: 密码: 验证码:
钴基高温合金的元素占位及相分配的第一原理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于第一原理密度泛函理论,对钴基高温合金,我们研究了一系列元素在γ-Co_3(Al,W)相中的择优占位,以及Re和Ru在两相中的分配行为。
     本文研究合金化元素包括Mo,Ta,铂族元素(Ru,Rh,Pd,Os,Ir和Pt)以及3d元素(Ni,Fe,Mn,Cr,V和Ti)在Co_3(Al,W)中的择优占位。L12结构的Co_3(Al,W)中Co原子择优面心,Al和W原子则在顶角,但没有实验报道顶角上Al和W原子的有序排列。首先,我们需要建立一个合理的L12结构Co_3(Al,W)模型,进而实行一系列元素在Co_3(Al,W)中的择优占位计算。计算结果表明,Mo,Ta和铂族元素(PGMs)中,Mo,Ta,Rh,Ir和Pt,可使γ-Co_3(Al,W)相变稳定。在γ-Co_3(Al,W)中添加的PGMs有三种基本的择优占位:Mo和Ta有很弱的择优占W位倾向;Ru和Os有很弱的择优占Co位倾向;而其他的PGMs原子如Rh、Pd、Ir和Pt倾向于占Co位,且它们择优占Co位的倾向依次是:Ir     本文还研究了Re和Ru在γ/γ两相中的分配行为,以及Ru对Re的分配行为的影响。计算模型是含有192个原子的γ/γ界面模型。计算结果表明,Re和Ru都倾向于γ相分配,Ru的加入会抑制Re往γ相分配的行为。同时我们还计算了Re和Ru在γ-Co_3(Al,W)中的择优占位,Re倾向于占W位,Ru倾向于占Co位。电子结构的分析表明,在有Re的基础上添加Ru后,Ru主要通过Re-Ru-W之间较强的化学成键影响Re的分配行为。
The site preference of alloying elements inγ-Co_3(Al, W), and the partitioning be-haviors of Re and Ru betweenγandγphases in Co-based superalloys are investigatedby ab initio calculations.
     The site preference of various alloying elements in Co_3(Al, W) are studied usingfirst principle VASP method. The elements include Mo,Ta,platinum group metals(Ru,Rh,Pd,Os,Ir and Pt) and 3d metal elements (Ni,Fe,Mn,Cr,V and Ti). Theresult we present in current work based on a proper model of 32-atomγ-Co_3(Al, W)supercell, which is confirmed to be valid for the study of site preference of alloyingelements.
     The calculation results of site preference of alloying elements inγ-Co_3(Al, W)are as follows. For Mo,Ta and platinum group metals (PGMs), Mo, Ta, Rh, Ir andPt can stabilizeγphase. The addition of those PGMs element modifies the latticeparameter ofγphase and it increases in the order of Mo< Ta < Rh < Ru < Os < Ir      The partitioning behaviors of Re and Ru betweenγandγphases in Co-basedsuperalloys are studied by density functional theory using a 192-atom Co-basedγ/γsupercell model. Both Re and Ru are found to partition more strongly to theγphase,but the addition of Ru element depresses the partitioning trend of Re intoγphase. Reand Ru are found preferentially substitute the W and Co(1) sublattice sites in the L12 Co_3(Al, W), respectively. Moreover, the investigation of the impurity-induced chargedensity characteristics shows that the strong interaction between Re(Ru) and its NNCo atoms inγphase conduce to theγ-phase partitions of Re and Ru, and the stronginteractions between Re-Ru-W inγphase are responsible for the in?uence e?ect ofRu addition on the partitioning behavior of Re.
引文
[1] Deevi S C, Sikka V K. Nickel and iron aluminides: An overview on properties, processing,and applications. Intermerallics, 1996, 4:357–375.
    [2] Deevi S C, Sikka V K, Liu C T. Processing, properties, and applications of nickel and ironaluminides. Prog. Mater. Sci., 1997, 42:177–192.
    [3] Sims C T. The Occurrence of Topologically Close Packed Phases. NJ: Wiley, 1972.
    [4] Sato J, Omori T, Ohnuma I, et al. Cobalt-Base High-Temperature Alloys. Science, 2006,312:90–91.
    [5] Pope D P, Ezz S S. Mechanical properties of Ni3Al and nickel-base alloys with high volumefraction ofγ’. Inter. Met. Rev., 1984, 29:136–167.
    [6] Tian S, Yu X, J Yang e a. Deformation features of a nickel-base superalloy single crystalduring compression creep. Mater. Sci. Eng. A, 2004, 379:141–147.
    [7] Wanderka N, Glatzel U. Chemical composition measurements of a nickel-base superalloyby atom probe field ion microscopy. Mater. Sci. Eng. A, 1995, 203:69–74.
    [8] Warren P J, Cerezo A, Smith G D W. An atom probe study of the distribution of rheniumin a nickel-based superalloy. Mater. Sci. Eng. A, 1998, 250:88–92.
    [9] Volek A, Singer R F, R Buergel e a. In?uence of topologically closed packed phase forma-tion on creep rupture life of directionally solidified nickel-base superalloys. Metall. Mater.Trans. A, 2006, 37:405–410.
    [10] Volek A, Pyczak F, R F Singer e a. Partitioning of Re betweenγandγ′phase in nickel-base superalloys. Scr. Mater., 2005, 52:141–145.
    [11] Wusatowska-Sarnek A M, Ghosh G, G B Olson e a. Characterization of the microstructureand phase equilibria calculations for the powder metallurgy superalloy IN100. J. Mater.Res., 2003, 18:2653–2663.
    [12] Karunaratne M S A, Reed R C. Interdi?usion of the platinum-group metals in nickel atelevated temperatures. Acta Mater., 2003, 51:2905–2919.
    [13] Reed R C, Karunaratne M S A. Interdi?usion in the face-centred cubic phase of the Ni–Re,Ni–Ta and Ni–W systems between 900 and 1300°C. Mater. Sci. Eng. A, 2000, 281:229–233.
    [14] Shyam A, Torbet C J, S K Jha e a. Development of ultrasonic fatigue for rapid, high tem-perature fatigue studies in turbine engine materials. Warrendale, PA: TMS. 259–267.
    [15] MacKay R A, Maier R D. The in?uence of orientation on the stress rupture properties ofnickel-base superalloy single crystals. Metall. Mater. Trans. A, 1982, 13:1747–1754.
    [16] Clavel M, Pineau A. Fatigue behaviour of two nickel-base alloys I: Experimental resultson low cycle fatigue, fatigue crack propagation and substructures. Mater. Sci. Eng., 1982,55:157–171.
    [17] Karunaratne M S A, Rae C M F, Reed R C. On the microstructural instability of an ex-perimental nickel-based single-crystal superalloy. Metall. Mater. Trans. A, 2001, 32:2409–2421.
    [18] Rae C M F, Reed. The precipitation of topologically close-packed phases in rhenium-containing superalloys. Acta Mater., 2001, 49:4113–4125.
    [19] Reed R C. The Superalloys Fundamentals and Applications. UK: Cambridge University,2006.
    [20]刘刚,刘林,赵新宝等.难熔元素对镍基单晶高温合金凝固特性及组织的影响.材料导报, 2008, 22:38–42.
    [21] Matijasevic-Lux B, Banhart J, S Fiechter e a. Modification of titanium hydride for improvedaluminium foam manufacture. Acta Mater., 2006, 54:1887–1900.
    [22] Miyoshi T, Itoh M, S Akiyama e a. ALPORAS aluminum foam: production process, prop-erties, and applications. Adv. Eng. Mater., 2000, 2:179–183.
    [23] Gromov A R, Kouznetsova N N, S L Yudina e a. The investigation of titanium hydrideoxidation process. J. Alloy. Compd., 1997, 261:269–272.
    [24] Gergely V, Curran D C, Clyne T W. The FOAMCARP process: foaming of aluminiumMMCs by the chalk-aluminium reaction in precursors. Compos. Sci. Technol., 2003,63:2301–2310.
    [25] Blaise J M, Viatour P, Drapier J M. On The Stability and Precipitation of the Co3Ti Phasein Co-Ti Alloys. Cobalt, 1970, 49:192–195.
    [26] Viatour P, Drapier J M, Coutsouradis D. Stability of theγ′-Co3Ti Compound in Simpleand Complex Cobalt Alloys. Cobalt, 1973, 3:67–74.
    [27] Drapier J M, Brouwer J L, Coutsouradis D. Refractory Metals and Intermetallic Precipitatesin Cobalt-Chromium Alloys. Cobalt, 1965, 27:59–72.
    [28] Drapier J M, Coutsouradis D. Precipitation Hardening of Co-Cr-Ta alloys. Cobalt, 1968,39:63–74.
    [29] Chinen H, Sato J, T Omori e a. New ternary compound Co3(Ge,W) with L12 structure. Scr.Mater., 2007, 56:141–143.
    [30] Versnyder F L, Shank M E. The structure of carbides in alloy steels. Mater. Sci. Eng., 1970,6:213–247.
    [31] Goldschmidt H J. The structure of carbides in alloy steels. J. Iron Steel Inst., 1948, 160:345.
    [32] Cao F, Pollock T M. Creep deformation mechanisms in Ru-Ni-Al ternary B2 alloys. Metall.Mater. Trans. A, 39:39–49.
    [33] Mucklich F, Ilic N, Woll K. RuAl and its alloys, Part II: Mechanical properties, environ-mental resistance and applications. INTERMETALLICS, 2008, 16:593–608.
    [34] Suzuki A, Pollock T M. High-temperature strength and deformation ofγ/γ′two-phaseCo–Al–W-base alloys. Acta Mater., 2008, 56:1288–1297.
    [35] Glatzel U, Wenderoth M, R Volkl e a. Microstructure, oxidation resistance and high-temperature strength ofγ’hardened Pt-base alloys. Intermetallics, 2007, 15:539–549.
    [36] Yamabe-Mitarai Y, Gu Y, C Huang e a. Platinum-group-metal-based intermetallics as high-temperature structural materials. JOM, 2004, 56:34–39.
    [37] Sekido N, Kimura Y, S Miura e a. Fracture toughness and high temperature strength ofunidirectionally solidified Nb-Si binary and Nb-Ti-Si ternary alloys. J. All. Comp., 2006,425:223–229.
    [38] Jehanno P, Heilmaier M, H Kestler e a. Assessment of a powder metallurgical processingroute for refractory metal silicide alloys. Metall. Mater. Trans. A, 36:515–523.
    [39] Jia C C, Ishida K, Nishizawa T. Metall. Mater. Trans. A, 1994, 25:473–485.
    [40] Pollock T M, Dibbern J, Tsunekane M. New Co-basedγ-γ′high-temperature alloys.JOM Journal of the Minerals, Metals and Materials Society, 2010, 62:58–63.
    [41] Walston W S, Schae?er J C, Murphy W H. A new type of microstructural instability insuperalloys-SRZ. Superalloys. 9–18.
    [42] Schafrik R, Sprague R. Saga of gas turbine materials-Part III. Adv. Mater. Pro., 2004,5:29–33.
    [43] Leverant G R, Kear B H. The mechanism of creep in gamma prime precipitation-hardenednickel-base alloys at intermediate temperatures. Adv. Mater. Pro., 1970, 1:491–498.
    [44] Kear B H, Oblak J M, Giamei A F. Stacking faults in gamma prime Ni3(Al,Ti) precipitationhardened nickel-base alloys. Metal. Mater. Trans. B, 1970, 1:2477–2486.
    [45] Yao Q, Xing H, Sun J. Structural stability and elastic property of the L12 ordered Co3(Al,W) precipitate. Appl. Phys. Lett., 2006, 89:161906.
    [46] Tanaka K, Ohashi T, K Kishida e a. Single-crystal elastic constants of Co3(Al, W) with theL12 structure. Appl. Phys. Lett., 2007, 91:181907.
    [47] Wang Y J, Wang C Y. A comparison of the ideal strength between L12 Co3(Al, W) andNi3Al under tension and shear from first-principles calculations. Appl. Phys. Lett., 2009,94:261909.
    [48] Miura S, Ohkubo K, Mohri T. Mechanical Properties of Co-Based L12 Intermetallic Com-pound Co3(Al, W). Mater. Trans., 2007, 48:2403–2408.
    [49] Suzuki A, DeNolf G C, Pollock T M. Flow stress anomalies inγ/γ′two-phaseCo–Al–W-base alloys. Scr. Mater., 2007, 56:385–388.
    [50] Gabb T P, Dreshfield R L. Superalloys II. New York: Wiley, 1987.
    [51] Westbrook J W. Temperature dependence of the hardness of secondary phases common inturbine bucket alloys. Trans. AIME, 1957, 209:898–904.
    [52] Flinn P A. Theory of deformation in superlattices. Trans. AIME, 1960, 218:145–154.
    [53] Davies R G, Stolo? N S. On yield stress of aged Ni-Al alloys. Trans. AIME, 1965, 233:714.
    [54] Takasugi T, Hirakawa S, O Izumi e a. Plastic-?ow of Co3Ti single-crystals. Acta Metall.,1987, 35:2015–2026.
    [55] Takeuchi S, Kuramoto E. Temperature and orientation dependence of yield stress in Ni3Gasingle-crystals. Acta Metall., 1973, 21:415–425.
    [56] Thornton P H, Davies R G. Temperature dependence of ?ow stress of gamma prime phaseshaving L12 structure. Metall. Trans., 1970, 1:549.
    [57] Yamaguchi M, Umakoshi Y. The deformation behaviour of intermetallic superlattice com-pounds. Prog. Mater. Sci., 1990, 34:1–148.
    [58] Copley S M, Kear B H. A dynamic theory of coherent precipitation hardening with appli-cation to nickel-base superalloys. Trans. AIME, 1967, 239:984.
    [59] Beardmor P, Davies R G, Johnston T L. On Temperature dependence of ?ow stress ofnickel-base alloys. Trans. AIME, 1969, 245:1537.
    [60] Kear B H, Wilsdorf H G F. Dislocation configurations in plastically deformed polycrys-talline Cu3Au alloys. Trans. AIME, 1962, 224:382.
    [61] Kear B H. Dislocation configurations + work hardening in Cu3Au crystals. Acta Metall.,1964, 12:555.
    [62] Paidar V, Pope D P, Vitek V. A theory of the anomalous yield behavior in L12 orderedalloys. Acta Metall., 1984, 32:435–448.
    [63] Hohenberg P, Kohn W. Inhomogeneous electron gas. Phys. Rev., 1964, 136:B864–B871.
    [64] Kohn W, Sham L J. Self-consistent equations including exchange and correlation e?ects.Phys. Rev., 1965, 140:A1133–A1138.
    [65] Thomas L H. The calculation of atomic fields. Proc. Cambridge Philos. Soc., 1927, 23:542–548.
    [66] Fermi E. Statistical method of investigating electrons in atoms. Z. Phys., 1928, 48:73–79.
    [67] Born M, Oppenheimer J R. Zur Quantentheorie der Molekeln. Anna. der Phys., 1927,84:457–484.
    [68] Ceperley D M, Alder B J. Ground state of the electron gas by a stochastic method. Phys.Rev. Lett., 1980, 45:566–569.
    [69] Vosko S H, Wilk L, Nusair M. Accurate spin-dependent electron liquid correlation energiesfor local spin density calculations: A critical analysis. Can. J. Phys., 1980, 58:1200–1211.
    [70] Barth U V, Hedin L. A local exchange-correlation potential for the spin polarized case. J.Phys. C, 1972, 5:1629–1642.
    [71] Perdew J P, Wang Y. Accurate and simple analytic representation of the electron-gas corre-lation energy. Phys. Rev. B, 1992, 45:13244–13249.
    [72] Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation make simple. Phys.Rev. Lett., 1996, 77:3865–3868.
    [73] Becke A D. A multicenter numerical integration scheme for polyatomic molecules. J.Chem. Phys., 1988, 88:2547–2553.
    [74] Lee C, Yang W, Parr R G. Development of the Colle-Salvetti correlation-energy formulainto a functional of the electron density. Phys. Rev. B, 1988, 37:785–789.
    [75] Gunnarsson O, Jonson M, Lundqvist B I. Descriptions of exchange and correlation e?ectsin inhomogeneous electron systems. Phys. Rev. B, 1979, 20:3136–3164.
    [76] Stadele M, Moukara M, Majewski J A, et al. Exact exchange Kohn-Sham formalism appliedto semiconductors. Phys. Rev. B, 1999, 59:10031–10043.
    [77] Petukhov A G, Mazin I I, Chioncel L, et al. Correlated metals and the LDA+U method.Phys. Rev. B, 2003, 67:153106–153109.
    [78] Gygi F, Baldereschi A. Quasiparticle energies in semiconductors: Self-energy correction tothe local-density approximation. Phys. Rev. Lett., 1989, 62:2160–2163.
    [79] Car R, Parrinello M. Unified Approach for Molecular Dynamics and Density-FunctionalTheory. Phys. Rev. Lett., 1985, 55:2471–2474.
    [80] Sugino O, Car R. Ab Initio Molecular Dynamics Study of First-Order Phase Transitions:Melting of Silicon. Phys. Rev. Lett., 1995, 74:1823–1826.
    [81] Galli G, Parrinello M. Large scale electronic structure calculations. Phys. Rev. Lett., 1992,69:3547–3550.
    [82] Drabold D A, Sankey O F. Maximum entropy approach for linear scaling in the electronicstructure problem. Phys. Rev. Lett., 1993, 70:3631–3634.
    [83] Goedecker S, Colombo L. E?cient Linear Scaling Algorithm for Tight-Binding MolecularDynamics. Phys. Rev. Lett., 1994, 73:122–125.
    [84] Li X P, Nunes R W. Density-matrix electronic-structure method with linear system-sizescaling. Phys. Rev. B, 1993, 47:10891–10894.
    [85] Payne M C, Teter M P, D C Allan e a. Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev. Mod. Phys., 1992,64:1045–1097.
    [86] Monkhorst H J, Pack J D. Special points for Brillouin-zone integrations. Phys. Rev. B,1976, 13:5188–5192.
    [87] Herring W C. A New Method for Calculating Wave Functions in Crystals. Phys. Rev.,1940, 57:1169–1177.
    [88] Phillips J C, Kleinman L. New Method for Calculating Wave Functions in Crystals andMolecules. Phys. Rev., 1959, 116:287–294.
    [89] Antoncik E. Approximate formulation of the orthogonalized plane-wave method. J. Phys.Chem. Solids, 1959, 10:314–320.
    [90] Hamann D R, Schluter M, Chiang C. Norm-Conserving Pseudopotentials. Phys. Rev. Lett.,1979, 43:1494–1497.
    [91] Blochl P E. Generalized separable potentials for electronic-structure calculations. Phys.Rev. B, 1990, 41:5414–5416.
    [92] Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism.Phys. Rev. B, 1990, 41:7892–7895.
    [93] Blochl P E. Projector augmented-wave method. Phys. Rev. B, 1994, 50:17953–17979.
    [94] Delley B. An all-electron numerical method for solving the local density functional forpolyatomic molecules. J. Chem. Phys., 1990, 92:508–517.
    [95] Delley B. Analytic energy derivatives in the numerical local-density-functional approach.J. Chem. Phys., 1991, 94:7245–7250.
    [96] Hirshfeld F L. Bonded-atom fragments for describing molecular charge densities. Theor.Chim. Acta, 1977, 44:129–138.
    [97] Dolg M, Wedig U, H Stoll e a. Energy-adjusted ab initio pseudopotentials for the first rowtransition elements. J. Chem. Phys., 1987, 86:866–872.
    [98] Bergner A, Dolg M, W Kuechle e a. Ab initio energy-adjusted pseudopotentials for elementsof groups. Mol. Phys., 1993, 80:1431–1441.
    [99] Mulliken R S. Electronic population and analysis on LCAO-MO molecular wave functions.J. Chem. Phys., 1955, 23:1833–1840.
    [100] Argence D, Vernault C, Desvallees Y, et al. MC-NG: A 4 GENERATION SINGLE-CRYSTAL SUPERALLOY FOR FUTURE AERONAUTICAL TURBINE BLADES ANDVANES. Superalloys. 829.
    [101] Murakami H, Koizumi Y, T Yokokawa e a. Atom probe microanalysis of Ir-bearing Ni-based superalloys. Mater. Sci. Eng. A, 1998, 250:109–114.
    [102] Murakami H, Honma T, Y Koizumi e a. Distribution of Platinum Group Metals in Ni-BaseSingle-Crystal Superalloys. Superalloys. 747.
    [103] Feng Q, Nandy T K, Tin S, et al. Solidification of high-refractory ruthenium-containingsuperalloys. Acta Mater., 2003, 51:269–284.
    [104] Chiba A, Shindo D, Hanada S. Site occupation determination of Pd in Ni3Al by ALCHEMI.Acta metall. mater., 1991, 39:13–18.
    [105] Raju S, Mohandas E, Raghunathan V S. A study of ternary element site substitution inNi3Al using pseudopotential orbital radii based structure maps. Scr. Mater., 1996, 34:1785–1790.
    [106] Ruban A V, Skriver H L. Calculated site substitution in ternaryγ’-Ni3Al: Temperatureand composition e?ects. Phys. Rev. B, 1997, 55:856–874.
    [107] Shen J, Wang Y, Chen N X, et al. Site preference of ternary additions in Ni3Al - Usingfirst-principle interatomic potentials. Prog. Nat. Sci., 2000, 10:457–464.
    [108] Marcel H, Sluiter F, Kawazoe Y. Site preference of ternary additions in Ni3Al. Phys. Rev.B, 1995, 51:4062–4073.
    [109] Geng C Y, Wang C Y, Yu T. Site preference and alloying e?ect of platinum group metals inγ’-Ni3Al. Acta Mater., 2004, 52:5427–5433.
    [110] Kresse G, Hafner J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B, 1993,47:558–561.
    [111] Kresse G, Hafner J. Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B, 1994, 49:14251–14269.
    [112] Kresse G, Furthmuller J. E?cient iterative schemes for ab initio total-energy calculationsusing a plane-wave basis set. Phys. Rev. B, 1996, 54:11169–11186.
    [113] Kresse G, Furthmuller J. E?ciency of ab-initio total energy calculations for metals andsemiconductors using a plane-wave basis set. Comput. Mat. Sci., 1996, 6:15–50.
    [114] Murnaghan F. The Compressibility of Media under Extreme Pressures. Proc. Nat. Acad.Sci., 1944, 30:244–247.
    [115] Dang H L, Wang C Y, Shu X L. Electronic structure of edge dislocation of core-doped Tiin Fe. Prog. Nat. Sci., 2004, 14:477–482.
    [116] Cui C Y, Ping D H, Y F Gu e a. A new co-base superalloy strengthened by gamma’phase.Mater. Trans., 2006, 47:2099–2102.
    [117] Ochial S, Oya Y, Suzuki T. Alloying behaviour of Ni3Al, Ni3Ga, Ni3Si and Ni3Ge. ActaMetall., 1984, 32:289–298.
    [118] Karg A V, Fornwalt D E, Kriege O H. EFFECT OF ALLOYING ELEMENTS ON INTEN-SITY OF SUPERLATTICE REFLECTIONS OF NI3AL. J. Inst. Met., 1971, 99:301.
    [119] Yang J L, Xiao C Y, Xia S D, et al. SITE PREFERENCE OF ALLOYING ADDITIONSIN INTERMETALLIC COMPOUNDS. J. Phys: Condens. Matter, 1993, 5:6653–6662.
    [120] Hono K, Chiba A, Sakurai T. Determination of site occupation probability of Cu in Ni3Alby atom-probe field ion microscopy. Acta Metall. Mater., 1992, 40:419–425.
    [121] Jiang C, Gleeson B. Site preference of transition metal elements in Ni3Al. Scr. Mater.,2006, 55:433–436.
    [122] Sluiter M H F, Kawazoe Y. Site preference of ternary additions in Ni3Al. Phys. Rev. B,1995, 51:4062–4073.
    [123] Machlin E S, Shao J. Quaternary Gamma-Prime (L12) Pseudobinary Properties as Revealedby the Ionicity Modified Pair Potential Model. Scr. Metall., 1977, 11:859–862.
    [124] Ping D H, Cui C Y, Gu Y F, et al. Microstructure of a newly developedγ′strengthenedCo-base superalloy. Ultramicroscopy, 2007, 107:791–795.
    [125] Min B I, Freeman A J, Jansen H J F. Magnetism, electronic structure, and Fermi surface ofNi3Al. Phys. Rev. B, 1988, 37:6757–6762.
    [126] Xu J, Min B I, Freeman A J, et al. Phase stability and magnetism of Ni3Al. Phys. Rev. B,2006, 41:5010–5016.
    [127] Cao J C, Liu F S, Wang C Y. ELECTRONIC-STRUCTURE OF THE GAMMA’+GAMMAPHASE IN NICKEL-BASED SUPERALLOYS. J. Phys. F: Met. Phys., 1988, 18:1839–1847.
    [128] Wang S Y, Wang C Y, J H Sun e a. Energetics and electronic structure of Re and Ta in theγ′phase of Ni-based superalloys. Phys. Rev. B, 2006, 65:035101.
    [129] Fahrmann M, Fratzl P, O Paris e a. In?uence of coherency stress on microstructural evolu-tion in model Ni-Al-Mo alloys. Acta Metall., 1995, 43:1007–1022.
    [130] Tien J K, Copley S M. The e?ect of uniaxial stress on the periodic morphology of coherentgamma prime precipitates in nickel-base superalloy crystals. Metall. Mater. Trans. B, 1971,2:215–219.
    [131] Reed R C, Yeh A C, S Tin e a. Identification of the partitioning characteristics of rutheniumin single crystal superalloys using atom probe tomography. Scr. mater., 2004, 51:327–331.
    [132] Yokokawa T, Osawa M, K Nishida e a. Partitioning behavior of platinum group metals intoy and y’phases of Ni-base superalloys. J. Jpn Inst. Metals, 2002, 66:873–876.
    [133] Zhou Y, Mao Z, C Booth-Morrison e a. The partitioning and site preference of rheniumor ruthenium in model nickel-based superalloys: An atom-probe tomographic and first-principles study. Appl. Phys. Lett., 2008, 93:171905.
    [134] Amouyal Y, Mao Z G, C Booth-Morrison e a. On the interplay between tungsten andtantalum atoms in Ni-based superalloys: An atom-probe tomographic and first-principlesstudy. Appl. Phys. Lett., 2009, 94:041917.
    [135] Cetal A D, Duhl D N. Second-generation Nickel-base single crystal superalloy. Superalloys.235.
    [136] Hobbs R A, Zhang L, C M F Rae e a. Mechanisms of topologically close-packed phasesuppression in an experimental ruthenium-bearing single-crystal nickel-base superalloy at1100 degrees C. Metall. Mater. Trans. A, 2008, 39:1014–1025.
    [137] Tin S, Pollock T M. Phase instabilities and carbon additions in single-crystal nickel-basesuperalloys. Mater. Sci. Eng. A, 2003, 348:111–121.
    [138] Carroll L J, Feng Q, J F Mansfield e a. Elemental partitioning in Ru-containing nickel-basesingle crystal superalloys. Mater. Sci. Eng. A, 2007, 457:292–299.
    [139] Sato A, Harada H, T Yokokawa e a. The e?ects of ruthenium on the phase stability of fourthgeneration Ni-base single crystal superalloys. Scr. Mater., 2006, 54:1679–1684.
    [140] Yeh A C, Tin S. E?ects of Ru and Re additions on the high temperature ?ow stresses ofNi-base single crystal superalloys. Scr. Mater., 2005, 52:519–524.
    [141] Harada H, Ishida A, Y Murakami e a. Atom-probe microanalysis of a nickel-base singlecrystal superalloy. Appl. Sur. Sci., 1993, 67:299–304.
    [142] Chen M, Wang C Y. First-principles investigation of the site preference and alloying e?ectof Mo, Ta and platinum group metals in gamma’-Co-3(Al, W). Scr. Mater., 2009, 60:659–662.
    [143] Peng P, Zhou D W, J S Liu e a. First-principles study of alloying e?ect of Re on propertiesof Ni/Ni3Al interface. Computational Materials Science, 2006, 38:354–361.
    [144] Wang Y J, Wang C Y. A first-principles survey of the partitioning behaviors of alloyingelements onγ/γ′interface. Jour. Appl. Phys., 2008, 104:013109.
    [145] Walle C G V, Neugebauer J. First-principles calculations for defects and impurities: Appli-cations to III-nitrides. Jour. Appl. Phys., 2004, 95:3851.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700