用户名: 密码: 验证码:
冀西北高原不同耕作方式对砂质栗钙土土壤特性及莜麦生长发育的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为研究冀西北坝上高原不同耕作方式对土壤特性和莜麦生长发育状况的影响,于2007年在河北农业大学张北实验站砂质栗钙土连续六年定点定位试验田进行了试验研究,试验以当地主栽晚熟莜麦品种品五为供试材料,研究了铁茬免耕、松耕和翻耕三种耕作方式对莜麦生长发育状况和土壤特性的影响。研究结果表明:
     1.不同耕作方式的土壤容重,播种前0-10cm和10-20cm土层的土壤容重均以铁茬免耕高于松耕和翻耕,0-10cm土层松耕显著高于翻耕,10-20cm土层差异不明显;收获后0-10cm土层铁茬免耕容重相对播前下降,松耕和翻耕相对播前升高,10-20cm土层三种耕作方式土壤容重均下降,但彼此间差异并不显著。
     2.不同耕作方式的土壤硬度播前5cm、10cm、15cm、20cm和0-20cm均为铁茬免耕最高,松耕居中,翻耕最低;收获后5cm和20cm层为铁茬免耕最高,翻耕居中,松耕最低,10cm、15cm和0-20cm为铁茬免耕最高,松耕居中,翻耕最低。各土层间土壤硬度相比较,铁茬免耕和松耕无论播前收后均随着土层的加深而逐渐增加,翻耕则在0-15cm逐渐下降,15-20cm急剧升高。
     3.不同耕作方式的土壤含水量在分蘖期松耕和翻耕显著高于铁茬免耕,其它时期三种处理均无明显差异。
     4.不同耕作方式不同层次的土壤呼吸均以铁茬免耕最低,0-10cm土层和0-20cm土层以松耕最高,10-20cm土层以翻耕最高。
     5.不同耕作方式不同层次土壤微生物量碳以松耕最高,翻耕和铁茬免耕在不同层次土壤微生物量碳变化各不相同,0-10cm土层和0-20cm土层铁茬免耕高于翻耕,10-20cm土层则以翻耕较高。
     6.不同耕作方式的土壤活跃微生物0-10cm土层以铁茬免耕最高,松耕居中,翻耕最低,10-20cm土层以松耕最高,翻耕居中,铁茬免耕最低,0-20cm土层的平均土壤活跃微生物以松耕最高,铁茬免耕次之,翻耕最低。
     7.不同耕作方式的土壤呼吸商0-10cm和0-20cm以翻耕最高,松耕居中,铁茬免耕最低,10-20cm的土壤呼吸商以翻耕最高,铁茬免耕居中,松耕最低。
     8.本试验测定不同耕作方式的根干重和根分布得出,0-30cm土层的根干重均以铁茬免耕最低,松耕居中,翻耕最高,0-10cm土层的根分布除分蘖期以外,其它时期均以铁茬免耕高于松耕和翻耕,10-30cm土层的根分布均低于松耕和翻耕。收获前取0-70cm根测定根系特性得出,三种处理根长、根重、根表面积和根体积均随着土层深度的增加而逐渐减小,铁茬免耕的比根长随着土层的加深而增加,松耕和翻耕0-40cm土层的比根长随土层的加深而增加,40-50cm土层的比根长下降,之后又呈现上升趋势。
     9.莜麦的株高、叶面积指数、总茎数等群体动态指标均以翻耕最高,松耕居中,铁茬免耕最低,其中松耕和翻耕差异不大,铁茬免耕与二者差异显著。从产量来看,以松耕最高,翻耕次之,铁茬免耕最低,且铁茬免耕显著低于松耕和翻耕。松耕的水分利用效率最高,翻耕次之,铁茬免耕最低,但三者差异不显著。
     10.铁茬免耕省去了动土作业,节省了人力物力,但造成了土壤容重和硬度升高,进而影响到莜麦播种出苗质量及地下部与地上部的生长发育,导致产量显著下降;松耕比翻耕减少了动土作业的耕作量,生态效益好,产量比较稳定,因此,本试验认为松耕在冀西北坝上高原砂质栗钙土上应用更具有可行性。
In order to study the effects of different tillage forms on the growth and development of naked oats and soil characteristics in Bashang plateau in the northwest of Hebei Province, A long term positioned experiment was conducted with a naked oats cultivar pin 5 and on the sandy loam light chestnut soil land of No-tillage experimental field of Zhangbei Experimental Station Agricultural University of Hebei. from May to September in 2007. The main results are as follows:
     1. The bulk density of soil at 0-10 cm layer and 10-20 cm layer are always higher under the treatment of no-tillage than those of minimum tillage and the conventional cross tillage at pre-seeding, and the bulk density of soil at 0-10 cm layer of minimum tillage is higher significantly than the conventional cross tillage, the difference between minimum tillage and the conventional cross tillage at 10-20 cm is not evident. The bulk density of soil at 0-10 cm layer of no-tillage descended after reaping compared with pre-seeding, and the other two treatments is opposite. The bulk density of soil at 10-20 cm layer under three treatments all descended, and the difference of bulk density of soil among three treatments and two soil layers is indistinctive after reaping.
     2. The soil rigidity is almost the highest under the treatment of no-tillage, followed by minimum tillage and the conventional cross tillage at 5 cm, 10 cm, 15 cm, 20 cm and 0-20 cm layer at pre seeding. On the other hand, the soil rigidity is higher under the treatment of no-tillage than by the conventional cross tillage and minimum tillage at 5 cm and 20 cm layer after reaping, and the soil rigidity of other soil layers such as 10 cm, 15 cm and 0-20 cm layer are the highest under the treatment of no-tillage, followed by minimum tillage and the conventional cross tillage.In addition, the soil rigidity of no-tillage and minimum tillage is positively related to the depth of soil, but the soil rigidity at 0-15 cm descended gradually under the treatment of the conventional cross tillage, and ascended acutely at15-20 cm.
     3. The water content of soil under minimum tillage and cross tillage was significantly higher than no tillage at tillering stage merely.
     4. Soil respiration under the treatment of no-tillage is the lowest among different treatments and layers, and highest under minimum tillage at 0-10 cm and 0-20 cm layer, at the same time, soil respiration under conventional cross tillage is higher than others at 10-20 cm layer.
     5. Soil microbial biomass carbon is almost the highest under the treatment of minimum tillage among different treatments and layers. On the other hand, the changes under the treatments of conventional cross tillage and no-tillage are different. Soil microbial biomass carbon under the treatments of no-tillage at 0-10 cm layer and 0-20 cm layer are higher than the conventional cross tillage, and the soil microbial biomass carbon under the treatments of conventional cross tillage at 10-20 cm layer is higher than that of no-tillage.
     6. Soil active microbial biomass is almost the highest under the treatment of no-tillage, followed by minimum tillage and the conventional cross tillage. At 10-20 cm layer, the soil active microbial biomass of minimum tillage is higher than that of the conventional cross tillage, and the lowest is no-tillage. At 0-20 cm layer, the average soil active microbial biomass is the highest under the treatment of minimum tillage, followed by no-tillage and the conventional cross tillage.
     7. Soil respiratory quotient is almost the highest under the treatment of the conventional cross tillage, followed by minimum tillage and no-tillage, and soil respiratory quotient at 10-20 cm layer is higher under the treatment of the conventional cross tillage, followed by no-tillage and minimum tillage.
     8. Dry weight and distribution of root was measured within the experiment, the result showed that dry weight of root at 30-40 cm layer is almost the highest under the treatment of the conventional cross tillage, followed by minimum tillage and no-tillage. On the other hand, the distribution of root at 0-10 cm layer is almost higher under the treatment of the conventional cross tillage than the other two treatments except tillering stage, but dry weight of root under no-tillage is lower. The distribution of root at 10-30 cm layer under no-tillage treatment is the lowest. Root length, dry weight of root system, surface area of root system and volume of root system in soil are negatively related to the depth of the soil. Specific root length of no-tillage is positively related to the depth of the soil, at the same time, minimum tillage and conventional cross tillage is positively related to the depth of the soil except 40-50 cm layer.
     9. The plant height, Leaf Area Index and total stems of naked oats are almost the highest under the treatment of the conventional cross tillage, followed by minimum tillage and No-tillage, and the difference between minimum tillage and the conventional cross tillage is indistinctive, the difference among minimum tillage, the conventional cross tillage and no-tillage is apparent. The yield of naked oats is almost the highest under the treatment of minimum tillage, followed by the conventional cross tillage and No-tillage, and the yield under the treatment of no-tillage is lower significantly than minimum tillage and the conventional cross tillage. The water use efficiency is almost the highest under the treatment of minimum tillage, followed by the conventional cross tillage and No-tillage, and the difference among them is not significant.
     10. No-tillage has no work of tillage and saves manpower and material resources. The bulk density and rigidity of soil increases under the No-tillage, furthermore, it can affect the quality of seeding, seedling and the growth and development of crops, so the yield of naked oats decreases significantly. Minimum tillage reduces the tillage work than the conventional cross tillage, ecological efficiency and yield is much better. So the experiment reached a conclusion that minimum tillage is favorably feasible on the sandy loam light chestnut soil land in Bashang plateau in the northwest of Hebei Province.
引文
[1]王殿武,王立秋,牛瑞明.高寒半干旱区农牧增产技术[M].北京:地震出版社,1998.
    [2]刘全友.坝上地区气候与沙化关系的研究[J].环境科学进展,1994,2(6):47-56.
    [3]高焕文.保护性耕作技术与机具[M].北京:化学工业出版社.2004.
    [4]李安宁,范学民,吴川云,等.保护性耕作现状及发展趋势[J].农业机械学报,2006,37(10):177-180,111.
    [5]师江澜,刘建忠,吴发启.保护性耕作研究进展与评述[J].干旱地区农业研究,2006,24(1):205-212.
    [6]张海林,高旺盛,陈阜,等.保护性耕作研究现状、发展趋势及对策[J].中国农业大学学报,2005,10(1):16-20.
    [7]王长生,王遵义,苏成贵,等.保护性耕作技术的发展现状[J].农业机械学报,2004,34(1):167-169.
    [8]Noel D.The Environmental Consequences of the Conservation Tillage Adoption Decision in Agriculture in the United States[J].Uri,1996.35-48.
    [9]涂建平,徐雪红,夏忠义.南方农业保护性耕作的进展[J].农机化研究,2004,(2):30-31.
    [10]曹建军.美国的保护性耕作策略[J].农机科技推广,2006,3:48-49.
    [11]杨林,赵嘉琨,王衍,等.澳大利亚机械化旱作节水农业和保护性耕作考察报告[J].农机推广,2001,(3):20-22.
    [12]吴兰.澳大利亚机械化旱作节水农业和保护性耕作情况[J].四川农机,2001,2:20-21.
    [13]王延好,张肇鲲.保护性耕作在加拿大的研究及现状[J].安徽农学通报,2004,10(2):5-6.
    [14]张飞,赵明,张宾.我国北方保护性耕作发展中的问题[J].中国农业科技导报,2004,6(3):36-39.
    [15]高焕文,李问盈,李洪文.中国特色保护性耕作技术[J].农业工程学报,2003,19(3):1-4.
    [16]赵其斌,郝强.漫谈保护性耕作的现状与发展前景[J].农业机械,2001,12:26-27.
    [17]马俊贵.保护性耕作技术简介[J].新疆农机化,2004,4:19-20.
    [18]关于大力发展保护性耕作的意见[J].中国农技推广,2007,23(6):6.
    [19]谢先举.我国旱地免耕研究[J].耕作与栽培,1995,1:16-20.
    [20]蔡立群.几种保护性耕作措施效应的初步研究[D].甘肃农业大学硕士学位论文,甘肃,甘肃农业大学,2003.
    [21]Blevins R L.Thmas G W,Smith M S.Frye W W,Cornelius P L.Changes in soil properties after10 years' continuous non-tilled and conventionally tilled com.Soil and Tillage Research,1983,3:135-146.
    [22]Unger P W.Tillage effects on surface soil physical conditions and sorghum emergence[J].Soil Sci.Am.1984,48:1423-1432.
    [23]张志国,徐琪,R.L.Blevins.长期秸秆覆盖免耕对土壤某些理化性质及玉米产量的影响[J].土壤学报,1998,35(3):385-389.
    [24]李昱,李问盈.冷凉风沙区机械化保护性耕作技术体系试验研究[J].中国农业大学学报,2004,9(3):16-20.
    [25]Domzal H and Slowinska-Jurkiewica A.effects of tillage and weather conditions on structure and Physical properties of soil and yield of winter wheat[J].Soil &Tillage Research,1987(10):225-241.
    [26]吴敬民.秸秆还田效果及其在土壤培肥中的地位[J].土壤学报,1991,25(5):211-215.
    [27]王笳,王树楼,丁玉川,等.旱地玉米免耕整秸秆覆盖土壤养分、结构和生物研究[J].山西农业科学,1994,22(3):17-19.
    [28]刘世平,庄恒阳,陆建飞,等.免耕法对土壤结构影响的研究[J].土壤学报,1998,35(1):33-37.
    [29]孙海国,雷浣群.植物残体对土壤结构性状的影响[J].生态农业研究,1998,6(3):39-41.
    [30]林大仪.土壤学[M].北京:中国林业出版社,2002.122.
    [31]Wagger,M G.Corn yield and water use efficiency as affected by tillage and irrigation[J].Soil Sci.Soc.Am.J,1993,57(1):229-234.
    [32]Jones O R,Hanser V L.No-tillage effects on infiltration runoff and water conservation on dry land [J].American Society of Agriculture engineers,1994,37(2):473-479.
    [33]Bruce R R.Tillage and crop rotation effect on characteristics of sands surface soil[J].Soil Sci.Soc.Am J.1990.54(6):1744-1747.
    [34]Hammel J E.Long-term tillage and crop rotation effects on winter wheat production in northern Idaho[J].Agron.J,1995,87:16-22.
    [35]Thnh H Dao.Tillage and winter wheat residue management effects on water in filtration and storage[J].Soil Sci.Soc.Am.J,1993,57:1586-1595.
    [36]张海林.华北平原麦玉二熟区覆盖免耕土壤-作物系统农田耗水与调控[D].中国农业大学博士学位论文,北京:中国农业大学,2001.
    [37]张海林,陈阜,秦耀东,等.覆盖免耕夏玉米耗水特性的研究[J].农业工程学报,2002,18(2):36-40.
    [38]张海林,朱文珊.覆盖免耕节水效应研究[C].耕作制度学会2002年学会论文集,兰州,甘肃科学技术出版社,2002.
    [39]李立科.小麦留茬松耕秸秆全程覆盖新技术[J].陕西农业科学,1999,4:40-41.
    [40]许迪,R.Schmid,A.Mermoud.耕作方式对土壤水动态变化及夏玉米产量的影响[J].农业工程学报,1999,15(3):101-106.
    [41]籍增顺,刘虎林,洛希图,等.免耕覆盖对早地玉米生长发育的影响[J].山西农业科学,1994,22(3):22-27.
    [42]Steiner,J C.Standing stem persistence in no-tillage farming to reduce costs and improve yields,but italsocan reduce erosion to acceptable level[J].Southeastern soil erosion control and water quality workshop.1994:68-70.
    [43]Steiner,J L.Tillage and surface residue affects on evaporation from soils[J].Soil Sci.Soc.Am.J.1989,49:728-733.
    [44]蔡典雄,张志田,高绪科,等.半湿润偏干旱区旱地麦田保护耕作技术研究[J].干旱地区农业研究,1995,13(4):63-74.
    [45]梁银丽.黄土区地面覆盖的主要类型及其保水效应[J].水土保持通报,1997,17(1):133-134.
    [46]李胜福.陇中半干旱地区少免耕法对土壤含水量的影响初报[J].土壤通报,1994,25(3):133-134.
    [47]晋凡生,张宝林.免耕覆盖玉米秸秆对早塬地土壤环境的影响[J].生态农业研究,2000,8(3):47-50.
    [48]牛灵安,秦耀生,郝晋珉,等.曲周试区秸秆还田配施氮磷肥的效应研究[J].土壤肥料,1998,6:32-35.
    [49]袁家福.麦田秸秆覆盖效应及增产作用[J].生态农业研究,1996,4(3):61-65.
    [50]吴崇海,李振金,顾士领.高留麦茬的整体效应与配套技术的研究[J].干旱地区农业研究,1996,14(1):43-48.
    [51]籍增顺.国外免耕农业研究[J].山西农业科学,1994,22(3):63-68.
    [52]陈兰祥,夏淑芬,许松林.小麦-玉米轮作覆盖稻草对土壤肥力及产量的影响[J].土壤,1996,28(3):156-159.
    [53]高云超,朱文珊,陈文新.秸秆覆盖免耕土壤微生物生物量与养分转化的研究[J].中国农业科学,1994,27(6):41-49.
    [54]杨玉爱.微量元素研究及应用[M].湖北科技出版社,1986,297-306.
    [55]林新荣.有机肥防治油菜缺硼效果的研究[J].浙江农业科学,1985,2:88-91.
    [56]Tracy,P.W,Carbon,nitrogen,phosphorus and sulfuring realization in plow and no-till arltiration,Soil-Sci-Soo-Am-J,1990,54(2):457-461.
    [57]刘鹏程.稻草覆盖还田培肥地力的试验研究[J].土壤肥料,1993,(1):35-36.
    [58]余晓鹤.土壤表层管理对部分土壤化学性质的影响[J].土壤,1990,2:158-161.
    [59]白大鹏,赵建强,陈明昌,等.整秸覆盖免耕条件下黄土高原旱地的养分消长研究[J].土壤学报,1997,34(1):103-106.
    [60]T.E.Staley著,郎印海译.耕作方式对土壤微生物生物量影响的研究[J].水土保持科技情报,2001,(1):12-13.
    [61]J.R.Salinas-Garcla.J.de J.Vela zquez-Garcla,M.Gallardo-Valdez,et al.Tillage effects on microbial biomass and nutrient distribution in soils under rain-fed corn production in central-western Mexico[J].Soil & tillage research.2002,66:143-152.
    [62]王芸,韩宾,史忠强,等.保护性耕作对土壤微生物特性及酶活性的影响[J].水土保持学报,2006,20(4):120-122,142.
    [63]Cox W J,Zobel R W,van Es H Met al.Tillage effects on some soil physical and corn physiological characteristics[J].Agron.J,1990,82:812-860.
    [64]Swan J B,Schneider E C,Moncrief J F,et al.Estimating corn growth,yield and grain moisture from air growing degree days and residue cover[J].Agron.J,1987,79:53-60.
    [65]王晓方.免耕对土壤孔隙状况及冬小麦根系生长的影响[D].北京农业大学硕士论文,1984
    [66]Ehlers W,et al.Tillage effects on root development on soil water behavior Soil conditions and Corn growth on soil water behavior of oats[J].Soil & tillage research,1980,1:19-34.
    [67]Cornish P S,Lymbery J R.Reduced early growth of direct drilled wheat in southern New South Wales:causes and consequences[J].Aust.J.Exp.Agric,1987,27:869-880.
    [68]Oussible M,Crookston R K,Larson W E.Subsurface compaction reduces the root and shoot growth and grain yield of wheat[J].Agron.J,1992,84:34-38.
    [69]周兴祥.一年两熟地区机械化保护性耕作体系试验与分析[D].中国农业大学博士学位论文,2001,10-11.
    [70]杜兵,李问盈,邓健,等.保护性耕作表土作业的田间试验研究[J].中国农业大学学报,2000,5(4):65-67.
    [71]余泳昌,刘晓文,李明枝,等.夏玉米免耕秸秆覆盖机械化栽培技术的研究[J].河南农业大学学报,2002,36(4):309-312.
    [72]陈素英,张喜英,胡春胜,等.秸秆覆盖对夏玉米生长过程及水分利用的影响[J].干旱地区农业研究,2002,20(4):55-58.
    [73]刘立晶,高焕文,李洪文.玉米—小麦一年两熟保护性耕作体系试验研究[J].农业工程学报,2004,24(5):70-73.
    [74]康红,朱保安,洪利辉,等.免耕覆盖对早地土城肥力和小麦产量的影响[J].陕西农业科学,2001(9):1-3.
    [75]贾树龙,孟春香,任图生,等.耕作及残茬管理对作物产量及土壤性状的影响[J].河北农业科学,2004,12(4):37-42.
    [76]王云超.河北坝上农牧交错区不同下垫面土壤风蚀监测及研究[D].河北农业大学硕士论文,保定,2006.
    [77]王秀,赵四申,贾素梅,等.麦茬高度对免耕夏玉米田土壤水分和土壤温度的影响[J].河北农业科学,2001,5(3):10-15.
    [78]高焕文,李洪文,陈君达.可持续机械化早作农业研究[J].干旱地区农业研究,1999,17(1):57-62.
    [79]李洪文,高焕文.旱地玉米保护性耕作经济效益分析[J].干旱地区农业研究,2002.18(3):44-49
    [80]史瑞和.土壤农化分析(第二版)[M].北京:农业出版社,1996.
    [81]高云超,朱文珊,陈文新.秸秆覆盖免耕土壤细菌和真菌生物量与活性的研究[J].生态学杂志,2001,20(2):30-36.
    [82]许光辉,郑洪元.土壤微生物分析方法手册[M].北京:农业出版社,1986,226-227.
    [83]W 伯姆,著.薛德榕,谭协麟,译.根系研究法[M].北京:科学出版社,1985,173-175.
    [84]庄恒扬,刘世平,沈新平,等.长期少免耕对稻麦产量及土壤有机质与容重的影响[J].中国农业科学,1999,32(4):39-44.
    [85]Fang C,Moncrieff J B,Gholz H,et al.Soil CO_2 efflux and its spatial variation in a Florida slash pine plantation[J].Plant and soil,1998,20(5):135-146.
    [86]宋秋华,李凤民,刘洪升.黄土地区地膜覆盖对麦田微生物量碳的影响[J].应用生态学报,2003,14(9):1512-1516.
    [87]Sparling G.P.The soil biomass.In:Soil Organic Matter and Biological Activity.Martinus Nijholf,1985,223-262.
    [88]Brookes P C,Andera L,Jenkinson D S.Chloroform fumigation and the release of soil nitrogen:A rapid direct extraction method to measure microbial biomass nitrogen in soil[J].Soil Biol Biochem 1985,17(6):837-842.
    [89]Brookes P C.The use of microbial parameters in monitoring soil pollution by heavy metals [J].Biol Fert Soils,1995,19:269-279.
    [90]李涛,潘志华,安萍莉等.北方农牧交错带(武川县)土壤微生物数量分布及层化比率研究[J].2006,20(1):99-102.
    [91]邵玉琴,赵吉,等.恢复草地和退化草地土壤微生物类群数量的分布特征[J].中国沙漠,2004,24(2):223-226.
    [92]邵玉琴,赵吉.库布齐固定沙丘土壤微生物数量与土壤生态因子的研究[J].内蒙古大学学报,1997,28(5):715-719.
    [93]Garcia C,Hemandez T,Costa F.Microbial activity in soil under Mediterranean environmental conditions[J].Soil Biology and Biochemistry,1994,26:1185-1191.
    [94]Vance E D,Brookes P C,Jenkinson D S.An extraction method for measuring soil microbial biomass C[J].Soil Biol Biochem,1987,19:703-703.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700