用户名: 密码: 验证码:
钒钛磁铁矿微波碳还原研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了探索钒钛磁铁矿资源综合利用的新方法,本文在综述微波冶金的研究进展和钒钛磁铁矿资源利用的基础上,以攀钢钒钛磁铁矿为研究对象,采用微波碳热还原的方法,结合微波加热的基本理论和热力学计算,研究了微波场中钒钛磁铁矿的碳还原特性,得出以下主要结论:
     微波场中,温度影响还原反应进行的程度和还原产物。在还原温度为1300℃时,还原产物的主要物相是:金属铁、未还原的磁铁矿、钛铁矿和Fe_2TiO_5;在还原温度为1400℃时,还原产物的主要物相是:孔洞状的金属铁块、未还原的磁铁矿和FeTiO_3、MgTiO_3、Fe_2TiO_5和TiO_2、镁铝尖晶石(MgAl_2O_4);在还原温度为1500℃时,还原产物出现渣铁分离,金属部分为铁钒合金,渣相部分主要物相是FeTiO_3、MgTiO_3、Fe_2TiO_5、Ti_3O_5、镁铝尖晶石(MgAl_2O_4)、FeO。
     配加一定量CaO的钒钛磁铁矿在微波碳还原过程中,因CaO与钛铁矿和钛铁晶石发生反应,可以促进这两种物质的分解,降低了钛铁矿和钛铁晶石中铁氧化物的还原难度;同时CaO与钒钛磁铁矿中的酸性氧化物发生反应,生成低熔点物质,有利于渣铁分离。但是过多的CaO反而会减弱钒钛磁铁矿的吸波性,渣铁分离的效果变差。实验结果表明:碱度为1.2、1.4、1.6的样品均比碱度为1.0的样品,还原效果好。
     钒钛磁铁矿中配加过量的碳,不仅为还原反应提供还原性气氛,而且过量的碳会覆盖在还原产物表面,使反应物与外部隔绝,起到保温作用。实验结果表明:配碳量为26%及以上时,还原后有剩余的含碳物质存在,钒钛磁铁矿的还原效果好。
     当微波功率基本保持不变时,钒钛磁铁矿的温度与时间成2次函数关系上升,升温速率则随时间延长而下降。在钒钛磁铁矿微波碳还原过程中,随着还原反应的进行产生的气体不断增多以及气体在温度的作用下发生膨胀,导致微波炉炉膛压力随时间成上升关系。
     本实验条件下,钒钛磁铁矿微波碳还原的最优条件是:1500℃,配碳量29.9%,自然碱度,0.6atm。
The resource of vanadium titano-magnetite is abundant in China. The present process of vanadium titano-magnetite can not make full use of it and lead to waste of titanium resource. In order to obtain a new way to make full use of vanadium titano-magnetite, the mixture of vanadium titano-magnetite and coal powder was heated by microwave to acquire the reduction characteristic. The conclusions of this work are as fellows:
     Temperature has important influence on the reduction degree of vanadium titano-magnetite and the composition of the reduction product. When the reduction temperature is 1300℃, the reduction product contains Fe, Fe3O4, FeTiO_3 and Fe_2TiO_5。When the reduction temperature is 1400℃, the reduction product contains Fe, Fe3O4, FeTiO_3, MgTiO_3, Fe_2TiO_5, TiO_2, MgAl_2O_4. When the reduction temperature is 1500℃, the slag and the metal separate. The metal is Fe—V alloy. The slag contains FeTiO_3, MgTiO_3, Fe_2TiO_5, Ti_3O_5, MgAl_2O_4, FeO.
     The addition of CaO to the vanadium titano-magnetite can make the reduction of FeTiO_3 and 2FeO.TiO_2 easily and the separation of slag and iron. The separation of the slag and metal becomes weaken because the microwave absorbancy of the mixture drops off if the addition of CaO is excessive. The results indicate that the reduction is better when the basicity is 1.2, 1.4, 1.6.
     When the addition of carbon to vanadium itano-magnetite is excessive, the excessive carbon will effect the reduction atmosphere and there is surplus of carbon after the completion of reduction, the surplus carbon covering the reduction production can insulates the production and keep the temperature. The experimental results indicate that there is surplus of carbon and the reduction is better when the addition of carbon is above 26%.
     When the microwave power is unchanged, the temperature and time is a function of 2. The heating rate decreases with time. The microwave oven pressure increases with time becase the gas production increases and the volume inflates.
     Under the experimental condition, when the reduction temperature is 1500℃, the carbon content is 29.9%, the basicity is natural, the initial pressure is 0.6atm, the reduction is the best.
引文
[1]方觉等著.非高炉炼铁工艺与理论[M].北京:冶金工业出版社, 2001:3~5.
    [2] Connell L H, Moe L. A. Apparatus for Treatment of Ore [P]. US Pat.: 3261959, 1966-04-24.
    [3] Ford J.D., and Pei D. C. T, High Temperature Chemical Processing via Microwave Absorption[J]. Journal of Microwave Power , 1967, (2): 61 - 68.
    [4] Chen T T, Dutrizac J E, Haque K.E., et al. The Relative Transparency of Minerals to Microwave Radiation [J]. Can. Metall. Q. ,1984, 23(3): 349-351.
    [5] Standish,N., Worner,H., Gupta,G., Temperature distribution in microwave-heated iron ore carbon composites[J]. Journal of Microwave Power and Electromagnetic Energy, 1990, Vol. 25 (2): p.75-80.
    [6] Standish,N., Pramusanto. Reduction of microwave lrradiated lron ore particles in CO[J]. ISIJ International, 1991, Vol. 31, No.1:11-16.
    [7] S tandish, N., Huang, W.,Microwave Application in Carbothermic Reduction of lron Ores[J]. ISIJ International, 1991, Vol. 31, No. 3: 241-245
    [8] Zhong,S., Geotzman,H. E. and Bleifuss,R. L. Reduction of iron ores with coal by microwave heating[J]. SME Transactions, 1996, 300: 5
    [9] Ishizaki Kotaro, Nagata Kazuhiro, Hayashi Tetsuro. Production of pig iron from magnetite ore-coal composite pellets by microwave heating[J]. ISIJ International, 2006, 46 (10): 1403?1409.
    [10] Ishizaki Kotaro, Nagata Kazuhiro. Selectivity of microwave energy consumption in the reduction of Fe3O4 with carbon black in mixed powder[J]. ISIJ International, 2007, 47 (6):811?817.
    [11] Ishizaki Kotaro, Nagata Kazuhiro, Hayashi Tetsuro. Localized heating and reduction of magnetite ore with coal in pellets using microwave irradiation[J]. ISIJ International, 2007, 47(6): 817?822.
    [12] Ishizaki Kotaro, Nagata Kazuhiro. Microwave Induced Solid–Solid Reactions between Fe3O4 and Carbon Black Powders[J]. ISIJ International, 2008, Vol. 48, No.9:1159–1164.
    [13] Matsubara,Akihiro., Takayama,Sadatsugu., Nakayama,Kazuya. et al. Investigation of the microwave Iron-Production Process with multipoint pyrometric and spectroscopic measurements[J]. Plasma and Fusion Research: Regular Articles Volume 3, S1085 (2008).
    [14] Chen Jin, Zhao Jing, Zhang Meng et al. Carburization of ferrochromium metals in chromium ore fines containing coal during voluminal reduction by microwave heating [J]. J. Cent. SouthUniv. Technol. 2009,16: 0043?0048.
    [15] Sato Motoyasu, Matsubara Akihiro, Takayama Sadatsugu et al. Experimental analysis for thermally Non-Equilibrium State under microwave irradiations: A Greener Process for Steel Making[J]. TMS (The Minerals, Metals & Materials Society), 2006.
    [16] Saidi Ali, Azari Kamran. Carbothermic Reduction of Zinc Oxide Concentrate by Microwave[J]. J. Mater. Sci. Technol., 2005, Vol.21, No.5.
    [17] Hua YiXin, Heating rate of minerals and compounds in microwave field[J]. Transactions of NFsoc, 1996, Vol.6, No.1: 35-40.
    [18] Hua Yixin, Liu Chunpeng. Microwave–Assisted Carbothermic Reduction of Limonits[J]. Acta Metallurgica Sinica (English Letter), 1996, 9(3): 164-170.
    [19]杨卜等.微波辐射钒钛磁铁精矿制备铁粉新工艺研究[J].中国工程科学, 2005,7.
    [20]陈津.微波加热还原含碳铁矿分粉试验研究[J].钢铁, 2004(6):1-5.
    [21]彭金辉,刘纯鹏.微波场中矿物及其化合物的升温特性[J].中国有色金属学报, 1997,7(3).
    [22] Aguilar J A, Gomez I. Microwaves Applied to Carbothermic Reduction of Iron Ore Pellets [J]. J. Microwave Power Electromagn Energy, 1997, 32(2): 67-73.
    [23] Yu A B. Reduction of stannic oxide with carbon by microwave heating [A].6th Aus IMM Extractive Metallurgy Conference Metall [C].1994,225 - 232.
    [24] Beard G E, Belcher W R, Bradhurst D H, et al. Microwave-assisted Synthesis of Rare-earth Magnet Alloy [A]. Proceeding of the 12th International Workshop on Microwave-assisted Smelting of Rare-earth Magnet Alloy [C]. Canberra: AU, 1992:67?70.
    [25] Worner H K, Bradhurst D H. Microwave Energy Used to Smelt Mixture of Low Rank Coals and Oxide Minerals [J]. Fuel, 1993, 72(5): 685?688.
    [26] Haque K.E. Microwave Energy for Mineral Treatment Processes-A Brief Review[J]. Int. J. Miner. Process, 1999, 57(1): 1-24.
    [27] Huang J H, Rowson N A. An Application of Microwave Pre-oxidation in Improving Gold Recovery of a Refractory Gold Ore[J]. Rare Metals, 2000, 19(3): 161-171.
    [28]孟哲锋.应用微波技术处理难选矿石[J].国外金属矿山, 2001,(3):33
    [29]刘全军,唐荣.微波预处理含碳微细粒金矿石的试验研究[J].国外黄金参考, 1998, (3-4):36-41.
    [30]谷晋川,刘亚川,谢扩军等.难选冶金矿微波预处理研究[J].有色金属, 2003, 55(2): 55-56.
    [31] Kruesi W H, Kruesi P R. Microwaves in laterite processing [A]. Extraction and Refining of Nickel[C].1986,8(1):17 - 20.
    [32]华一新,谭春娥,谢爱军.微波加热低品位氧化镍矿石的FeCl3氯化[J].有色金属,2000,52(1):59-61.
    [33]丁伟安.微波辐射作用下硫化铜精矿FeCl3浸出[J].湿法冶金,1996(1):53.
    [34] Peng Jinhui ,Liu Chunpeng. Kinetics of leaching sphalerite With pyrolusite simultaneously by microwave irradiation [J]. Trans. Nonferrous Met. Soc. China, 1997,7(3):152.
    [35]郑英,牛玉清,牛学军,等.粘土矿物在微波辐射下的酸溶性实验[J].铀矿冶, 2001, 20(3): 209-211.
    [36] Chen Yan. Yoshikawa, Noboru. Taniguchi, Shoji. Microwave Heating Behavior of Blast Furnace Slag Bearing High Titanium[J]. ISIJ International, 2005, Vol. 45, No. 9, pp. 1232–1237
    [37] Liangying Wen, Chenguang Bai, Guibao Qiu et al. Numerical simulation of the temperature field of titania-bearing BF slag heated in a microwave oven[J]. Journal of University of Science and Technology Beijing. 2008, Volume 15, Number 4:379.
    [38] Kuroki Tomonori, Uchida Yusuke, TAKIZAWA Hirotsugu et al. Effects of 28 GHz/2.45 GHz Microwave Irradiation on the Crystallization of Blast Furnace Slag [J]. ISIJ International, 2007, Vol. 47, No. 4:592–595.
    [39] Nishioka KOki, Maeda Takayuki, Shimizu Masakata. Dezincing Behavior from iron and Steelmaking Dusts by Microwave Heating[J]. ISIJ International, 2002, Vol. 42, Supplement: 19-22.
    [40] Yoshikawa Noboru, Ken-ichi Mashiko, Sasaki You et al. Microwave Carbo-thermal Reduction for Recycling of Cr from Cr-containing Steel Making Wastes[J]. ISIJ International, 2008, Vol. 48, No. 5:690–695
    [41] Xia D K, Pickles C A. Microwave Caustic Leaching of Electric Arc Furnace Dust [J]. Miner. Eng., 2000, 13(1): 79-94.
    [42] Hatton B D. Microwave treatment of ferrous slags[A]. Steelmaking Conf Proc. 1994, 435-442.
    [43] Haque K.E. Microwave Energy for Mineral Treatment Processes-A Brief Review [J]. Int. J. Miner. Process., 1999, 57(1): 1-24.
    [44] Ku H S, Siores E, Taube A, et al. Productivity Improvement through the Use of Industrial Microwave Technologies [J]. Comput. Ind. Eng., 2002, 42(2-4): 281-290.
    [45]杜鹤桂等著.高炉冶炼钒钛磁铁矿原理[M].北京:科学出版社,1996:1~16.
    [46]朱俊士.中国钒钛磁铁矿选矿[M].北京:冶金工业出版社,1996:3~64.
    [47]程希翱.钒钛磁铁矿的工艺矿物学研究[J].矿冶工程,1983,(4):27~32.
    [48]傅文章.攀西钒钛磁铁矿资源特征及综合利用问题的基本分析[J].矿产综合利用,1996,(l):27~34.
    [49]肖六均.攀枝花钒钛磁铁矿资源及矿物磁性特征[J].金属矿山,2001,(l):28~30.
    [50]汪子和.国外钒钛工业与钒钛磁铁矿的综合利用[J].钒钛, 1993, (4): 1~21.
    [51]汪镜亮.国外钒钛磁铁矿的开发利用[J].钒钛, 1993, (5): 1~11.
    [52]朱俊士.钒钛磁铁矿选矿及综合利用[J].金属矿山, 2000,(1): 1~5
    [53]孟长春.攀枝花选矿厂工艺流程优化途径实践与研究[J].昆明理工大学学报,1991,24 (3): 131~136.
    [54]孟长春,汪云华.攀钢选钛厂生产现状及发展方向[J].攀钢技术,1998,21(6):l~6.
    [55]郭新春.国内外钒钛磁铁矿冶炼工艺及技术分析[J].钒钛, 1989,(l):50~64.
    [56]徐楚韶,李祖树.高炉钛矿渣的综合利用(Ⅰ) [J].钒钛,1993,(5):47~50.
    [57]李晨希,王宏,李润霞.含钛高炉渣综合利用研究的进展[J].沈阳工业大学学报, 2004,26(5): 495~498.
    [58]马俊伟,隋智通,陈炳辰.攀钢含钛高炉渣的综合利用[J].钒钛,1994,(7):27~30.
    [59]郭新春.对钒钛磁铁矿冶炼新流程试验工作的回顾与评价[J].钒钛,1991,(6):1~7.
    [60]牟群英,李贤军.微波加热技术的应用与研究进展[J].物理学和高新技术,2004,33(6):438~442.
    [61]闫丽萍,黄卡玛,华伟.微波介质特性高温测量方法研究[J].四川大学学报(自然科学版), 2003, Vol.40, No.1.
    [62] Arai M , Binner J G P , Cross T E. Comparison of techniques for Measurement High-Temperature Microwave Complex Permittivity: Measurements on an Alumina/Zircona System[J]. Journal of Microwave Power and Electromagnetic Energy. 1996, 31(1): 12~18. Electro-magnetic Energy. 1991, 26(3): 145~155.
    [63]陈津,刘浏,曾加庆.微波加热含碳铁矿粉还原矿相结构研究[J].电子显微学报, 2005,24(2):115-119.
    [64]秦民生.非高炉炼铁[M].冶金工业出版社, 1987:141.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700