用户名: 密码: 验证码:
高磷鲕状赤铁矿还原焙烧—磁选新工艺及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鲕状赤铁矿是一种典型的难处理铁矿资源,据统计我国约有30-50亿吨储量,占我国红铁矿储量的30%。这种铁矿石含磷高(0.4-1.8%)、铁品位较低(35-50%),铁矿石中的磷主要赋存于胶磷矿中,并与富含氧化铁的鲕绿泥石混杂在一起,形成同心层状相间的鲕粒结构,矿石中氧化铁晶粒粒度细微,且与脉石嵌布关系复杂,难解离。若不改变铁和磷的赋存状态,破坏矿石特有的鲕粒结构,铁就无法精选富集,磷也无法有效去除。目前,该资源尚未得到有效开发利用,尚属于“呆滞”矿产资源。
     本文以湖南某地鲕状赤铁矿为对象,系统研究了其物化性能以及工艺矿物学特征,针对其复杂的嵌布关系,研究了高磷鲕状赤铁矿还原焙烧的热力学,开发出高磷鲕状赤铁矿还原焙烧-磁选分离的新工艺及添加剂强化还原分选新技术,并结合光学显微鉴定、XRD和显微图像分析揭示了高磷鲕状赤铁矿铁磷分离的机制。
     (1)查明了鲕状赤铁矿的工艺矿物学特征:赤铁矿呈环带状集合体与脉石矿物的紧密嵌布,铁矿石中的磷主要以胶磷矿的形式出现,胶磷矿在鲕状赤铁矿中主要产出形式是球粒状集合体。铁与磷等脉石成分的复杂嵌布关系导致物理分选铁和磷十分困难。
     (2)通过高磷鲕状赤铁矿还原焙烧-磁选工艺研究,确定适宜的还原焙烧温度为1050℃,还原焙烧时间为120min,还原产品磨矿细度-0.074mm含量为97.1%,磁场强度为0.1T。此工艺条件下,铁金属化率86.7%,磷挥发率24.3%,精矿铁品位85.1%,铁回收率69.7%,精矿磷品位0.972%,磷脱除率51.4%;加入添加剂可有效强化鲕状赤铁矿的还原分选,在适宜的还原磨选条件下,添加了7.5%硫酸钠和1.5%辅助添加剂BS,铁金属化率达95.8%,磷挥发率25.1%,精矿铁品位92.7%,铁回收率92.5%,精矿磷品位0.086%,磷脱除率96.1%。
     (3)热力学研究表明,磷灰石在有碳存在的情况下可还原生成气态的单质磷挥发出去,反应受温度和气体磷分压的影响。在气体磷分压为0.01%的时候,反应起始温度约为1100K。高磷鲕状赤铁矿还原焙烧过程中,部分物料在较低温度下先发生固相反应,生成物主要有铁橄榄石、FeO·Al2O3;T>1190K时,上述固相反应产物在还原过程中可被还原Fe。添加钠盐后,碳酸钠和硫酸钠与SiO2均可在低于1190K时发生反应,竞争置换出FeO,使其还原阻碍减少。热力学上证明钠盐添加剂可促进金属铁的还原。
     (4)结合XRD结果和还原焙烧产物的微观结构分析可知,无添加剂时铁晶粒细小且受界面阻力无法有效聚集;添加钠盐后,随着还原反应的进行,在局部能形成液相,为铁离子的扩散提供条件;而添加复合添加剂后,降低铁晶粒的表面张力,使得细小的铁晶粒聚集长大连成片状,完全破坏了鲕状结构,并与脉石有了明显的界限,有利于后续磨矿、磁选分离出金属铁粉。
     本研究针对国内量大难处理的鲕状赤铁矿,用廉价煤做还原剂,通过添加剂强化还原分选,由高磷鲕状赤铁矿制备高品位直接还原金属铁粉。随着进口铁矿石价格日益剧增,从长远来看,新工艺是未来鲕状赤铁矿开发利用的有效途径。
Oolitic Hematite is a typical refractory iron ore resource. There are approximately 3 to 5 billion tons of reserves in China. Typical characteristics of these oolitic hematite ores include a low total iron grade (35 to 50%) and a high phosphorus content (0.4 to 1.8%). Phosphorus mainly occurs as collophanite and is associated with chamosite that contains iron oxide, and a special concentric and layered oolite texture usually formed. It is very difficult to be processed because of the complex relationship between hematite and gangues in the ring. An innovative process of reduction roasting oolitic hematite ore in the presence of selected additives followed by magnetic separation was developed as an alternative method for utilizing the oolitic hematite resources.
     Oolitic hematite mainly exists in the form of spherulitic aggregate. Most of the spherulite is fragmentary between calcite and oolite. Phosphorus mainly occurs in a form of collophanite.
     Proper conditions were as fallows, roasting temperature of 1050℃, roasting time of 120min, grinding fineness of-0.074mm accounting for 97.1%, magnetic separation intensity of 0.1T. At optimum conditions, When processed in the absence of additives, metallization of iron was 86.7%, phosphorus volatilization was 24.3%, the iron concentrate contained 85.1% iron and 0.972% phosphorus; the iron recovery and dephosphorization was only 69.7% and 51.4%, respectively. However an metallic iron product that contains 92.7% iron and only 0.086% phosphorus, metallization of iron of 86.7%, phosphorus volatilization of 24.3% could be obtained when processed oolitic hematite by reduction roasting-magnetic separation with addition of 7.5% Na2SO4 and 1.5% BS. The iron recovery and dephosphorization was 92.5% and 96.1%, respectively.
     When iron oxide is reduced by carbon, the solid reaction occurs at low temperature resulting in the formation of FeO·SiO2 and FeO·Al2O3, which are reduced to metallic iron when temperature exceeds 1190K. is found to at lower temperature than 1190K when sodium sulfate or sodium carbonate was added during the reduction.
     The results of X-ray diffraction(XRD) and Microstructure analyzes of the reducing roasting product have proved that the were fine and can not aggregation and growth without additive. After addition sodium salt, it can form the liquid phase partially, provides the condition for iron ion to diffusion along with the reducing roasting. And when added the compound chemical additive, the tiny metal iron crystal would aggregation and growth then become the laminated shape, and destroyed the oolitic texture completely, is advantageous separates the metal powdered iron in the magnetic separation.
     In view of the domestic the quantity and refractory Oolitic hematite, This research produce the high grade metal by direct reduction by adding suitable additive and used inexpensive coal. Along with the import iron ore price sharp increase, it will be the effective way to exploitation and utilization the oolitic hematite in the future.
引文
[1]潘宏,陈天香.2009年我国钢铁出口的形势与对策.学术论丛,2009,(9):26-27.
    [2]李蓉,金文杰,于宝新.鞍钢铁矿石资源现状及可持续发展.矿业工程,2005,(3):15-16
    [3]马建明,吴初国.对我们低品位铁矿资源开发利用的思考.国土资源情报,2008,(2):27-28
    [4]何金祥.对我国钢铁工业发展的若干战略性思考.国土资源情报,2009,(3):12-18
    [5]徐旭中,叶军,宋艳华.合理利用两种铁矿资源保障我国钢铁工业健康发展.发展战略,2003,(6):20-22
    [6]刘动.近年我国进口铁矿石的现状与分析.金属矿山,2009,(1):12-15
    [7]袁志安,黄志伟,姚振巩.论我国铁矿资源可持续发展战略.采矿技术,2006,(3):68-69
    [8]王亨炎.浅谈铁矿石资源对我国钢铁工业的影响及对策.金属矿山,2002,(5):6-9
    [9]赵鹏.浅析我国铁矿资源现状及发展对策.矿业快报,2004,(6):1-3
    [10]Sparks, B. D:Intor. J. Mier. Proces.1974.231~241
    [11]Petrut, W:CIM Bull,1977,(786):122~131
    [12]王申强,王建国.全球铁矿石资源态势与中国铁矿石资源战略分析.资源与产业,2009,(2):12-17
    [13]焦玉书,周伟.世界铁矿资源开发利用和我国进口铁矿石的发展态势.中国冶金,2004,(11):13-18
    [14]余永富,张汉泉.我国钢铁发展对铁矿石选矿科技发展的影响.武汉理工大学学报,2007,(1):1-6
    [15]郑焱评.我国矿山企业可持续发展问题研究.山西冶金,2005,(4):51-52
    [16]余永富,段其福.降硅提铁对我国钢铁工业发展的重要意义.矿冶工程,2002,(3):1-6
    [17]李维兵,宋仁峰,刘华艳.我国难选铁矿石选矿技术进步评述.金属矿山,2008,(11):1-4
    [18]袁致涛,高太,印万忠.我国难选铁矿石资源利用的现状及发展方向.金属矿山,2007,(1):1-5
    [19]印万忠,丁亚卓.我国难选铁矿石资源利用现状.有色矿冶,2006,8:163-168
    [20]余永富.我国铁矿山发展动向、选矿技术发展现状及存在的问题.矿冶工程,2006,(1):21-25
    [21]徐叶兵,邓军.我国铁矿资源保障对策探讨.国土资源情报,2006,(6):37-40
    [22]赵海燕.我国铁矿资源节约利用剖析.矿产保护与利用,2007,(3):6-9
    [23]刘铁男.钢铁产业发展政策指南.北京经济科学出版社,2005
    [24]张罗续,罗小民.我国铁矿资源可持续发展.资源发展,2008,5:15-18
    [25]马建明.我国未查明的铁矿资源潜力分析.资源与人居环境,2009,(11):29-31
    [26]马建明,吴初国.我国未利用铁矿的资源形势分析.国土资源情报,2009,(4):10-13
    [27]黄天文.中国铁矿石市场现状和展望.中国钢铁业,2005,(11):23-25
    [28]陈宏.世界铁矿石资源和生产概况.钢铁,2001,(11):69-73
    [29]赵瑞荣,王青,徐小荷.世界铁矿石资源开发现状与中国铁矿石企业生存环境分析.资源科学,2000,(3):82-84
    [30]张泾生.我国铁矿资源开发利用现状及发展趋势.钢铁,2007,(2):1-6
    [31]孙炳泉.近年来我国复杂难选铁矿石选矿技术进展.金属矿山,2006,(3):5-9
    [32]韩跃新.我国金属矿山选矿技术进展及发展动向.金属矿山,2006,(1):24-28
    [33]侯宗林.中国铁矿资源现状与潜力.地质找矿论丛,2005,(4):10-14.
    [34]赵一鸣.中国铁矿资源现状、保证程度和对策.地质论评,2004,(4):396
    [35]侯宗林.中国铁矿资源与钢铁工业可持续发展.地勘采选,2005,(1):3-6
    [36]王小春.论商业性矿产勘查的可持续发展.成都理工大学学报,2004,(31):198-200
    [37]William A Preston. Exploitation of Iron Ore in Western Australia. ASIA,1999, (40):12~15
    [38]Surajit Ghosh Dastidar. Raw Materials for Iron and Steel Industry—the Indian Scenario. Iron &Steel Review,1999, (10):29~ 32
    [39]S B S Chauhan. Status of Indian Ores and Mines for Steel Industry. Iron & Steel Review,2000, (4):9~11
    [40]赵东旭.宣龙铁矿铁质鲕粒的显微结构及成因.地质科学,1994,(1):71-76
    [41]姚敬劬.宁乡式铁矿工艺矿物学特征及选矿效果预期.资源环境与工程,
    [59]卢尚文.宁乡式胶磷铁矿用解胶浸矿法降磷的研究.金属矿山,1994,(8):30-33
    [60]石原透.高磷磁铁矿和赤铁矿超声波酸浸脱磷研究.1966,(2)
    [61]周继程.高磷鲕状赤铁矿脱磷技术研究.炼铁,2007,(2):40-42
    [62]罗立群,高志,孙洁.难选铁矿石微生物脱磷技术.金属矿山,2008,(8):58-60
    [63]Delvasto P, Valverde A, Ballester A. Diversity and activity of phosphate bioleaching bacteria from a highphosphoms iron ore. Hydrometallurgy,2008,92(3):124~129
    [64]何良菊,胡芳仁,魏德洲.梅山高磷铁矿石微生物脱磷研究.矿冶,2000,9(1):31-35
    [65]何良菊,张维庆,魏德洲.高磷贫碳酸锰矿石微生物的脱磷机理.中国锰业,1999,17(4):29-32
    [66]姜涛,金勇士,李骞.氧化亚铁硫杆菌浸出铁矿石脱磷技术.中国有色金属学报,2007,17(10):1718-1722
    [67]沈慧庭.难选鲕状赤铁矿焙烧-磁选和直接还原工艺的探讨.矿冶工程,2008,(5):30-34
    [68]B. D. Sparks, A. F. Sirianmi. Benefication of aphoaphoriferous iron ore by agglomeration metaods. International Journal of Mineral Processing,1974,1(3):231~241
    [69]王成行.某鲕状赤铁矿磁化焙烧-磁选试验研究.金属矿山,2009,(5):57-59
    [70]左倩.鄂西某鲕状赤铁矿焙烧磁选试验研究.金属矿山,2008,(8):36-39
    [71]龚国华,余永富,朱瀛波.闪速磁化焙烧处理低品位铁精矿的研究.2003年全国矿产资源高效开发和固体废物处理处置技术交流会论文集,2003,35-37
    [72]Mamoun Muhammed, zyu Zhang. A hydrometallurgical process for the dephosphorization of iron ore. Hydrometallurgy,1989,21(3):277~ 322
    [73]李广涛.某高磷鲕状赤褐铁矿的焙烧-磁选试验研究.矿业快报,2008,(1):27-29
    [74]刘万峰.某赤铁矿浮-磁工艺流程试验研究.有色金属(选矿部分),2005,(3):17-20
    [75]张锦瑞.难选鲕状赤铁矿的研究利用现状及展望.中国矿业,2007,(7):74-76
    [76]童雄.难选鲕状赤铁矿石的选矿新技术试验研究.中国工程科学,2005,(7):323-326
    [77]纪军.高磷铁矿石脱磷技术研究.矿冶,2003,(2):33-37
    [78]周继程.高磷鲕状赤铁矿直接还原过程中铁颗粒长大特性研究.武汉科技大学学报(自然科学版),2007,(5):458-460
    [79]孙永升.某鲕状赤铁矿深度还原试验研究.金属矿山,2009,(5):80-83
    [80]陈述文.贵州赫章鲕状赤铁矿直接还原磁选试验研究.金属矿山,1997,(11):13-16
    [81]黄希祜.钢铁冶金原理.北京:冶金工业出版社,2005,284-288

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700