用户名: 密码: 验证码:
铁矿石—微生物协同去除水中Cr(VI)的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用PRB(Permeable Reactive Barrier,可渗透反应墙)技术修复受污染地下水或土壤的过程中,零价铁或纳米级零价铁会被逐渐氧化为Fe203等含铁氧化物(类似于含铁矿物),同时各种含铁矿物也在土壤中广泛存在。本文考察了自然界中常见的铁矿石——黄铁矿、褐铁矿、磁铁矿、赤铁矿和磁黄铁矿,以及微生物对水中Cr(Ⅵ)的去除效果,并将铁矿石和微生物有机结合,初步研究了铁矿石-微生物协同体系对水中Cr(Ⅵ)的去除效果及机理,探讨了在纳米级零价铁的制备中加入稳定剂CMC(羧甲基纤维素),使制备的纳米级零价铁或反应后形成的含铁氧化物高度分散,有效提高对Cr(Ⅵ)去除能力的情况,同时CMC可为后续的微生物处理提供碳源。结果表明:
     1、黄铁矿可以有效去除水中的Cr(Ⅵ),去除效率主要受颗粒大小、投加量、初始pH值和反应温度等影响,水中Cl-和SO42-等离子对Cr(Ⅵ)去除效率影响不大,而H2P04-的添加会抑制反应的进行。在Cr(Ⅵ)初始浓度为10 mgl-1、100~200目黄铁矿投加量为20 gl-1、室温的条件下,当pH=3.0时,30 mmin即反应完全;pH=5.5时,120 min后Cr(Ⅵ)去除率可达到91.82%,而在pH=9.0时,反应120 min后Cr(Ⅵ)的去除率仅为52.73%。在与前述相同的反应条件下,当pH=5.5时,黄铁矿对Cr(Ⅵ)的去除能力约为1.53 mg Cr(Ⅵ)g-1。在反应过程中,水中的Cr(Ⅵ)主要与黄铁矿表面的FeS2进行反应,Cr(Ⅵ)被还原成Cr(Ⅲ),形成了类似Fe304结构的Cr2S3和CrS的混合物Cr3S4,及少量的Cr02,并在黄铁矿表面形成覆盖层,使黄铁矿的表面逐渐钝化而失去反应能力。同时,FeS2中的Fe(11)也被氧化为Fe(Ⅲ),从而失去还原去除Cr(Ⅵ)的能力。
     2、褐铁矿也可有效去除水中的Cr(Ⅵ)。褐铁矿的颗粒大小、投加量和初始pH值对Cr(Ⅵ)去除效率也有显著的影响,而温度对反应的影响不大。水中Cl-和NO3-对Cr(Ⅵ)去除的影响不大,而MgO的添加在反应初期对反应有抑制作用。在反应过程中,水中的Cr(Ⅵ)与褐铁矿表面的FeS2等反应,Cr(Ⅵ)被还原成Cr2S3和CrS的混合物Cr3S4,并产生了部分Cr5Si3,主要沉积在褐铁矿的表面,使褐铁矿表面逐渐钝化并失去反应能力。室温下,当pH=5.5时,100~200目的褐铁矿对Cr(Ⅵ)的去除能力约为10.03 mg Cr(Ⅵ)g-1。
     3、在中性条件下,磁铁矿去除水中Cr(Ⅵ)的能力较差,赤铁矿则具有一定的去除能力。在酸性条件下,两者对水中Cr(Ⅵ)的去除能力均有提高,磁铁矿的去除能力提高较为明显。而磁黄铁矿在酸性和中性条件下对Cr(Ⅵ)均具有较好的去除效果,Cr(Ⅵ)还原产物Cr(Ⅲ)主要以FeCr2O4的形式存在于磁黄铁矿的表面。在碱性条件下,三种铁矿石的去除能力均较差。
     4、利用城市污水处理厂厌氧消化池中的污泥接种,加入低浓度含Cr(Ⅵ)废水进行驯化,筛选出对Cr(Ⅵ)具有较强还原去除能力的微生物,微生物对Cr(Ⅵ)的去除反应为酶促反应。乙酸钠是较为合适的碳源,pH值是影响反应的重要因素,在中性条件下,反应效果最佳。在短暂的饥饿状态下,微生物仍具有还原Cr(Ⅵ)的能力。经11h反应后,5 mgl-1的Cr(Ⅵ)废水浓度即降至0。
     5、利用铁矿石-微生物联合体系去除水中的Cr(Ⅵ)时,发现铁矿石与微生物之间存在一定的协同效果,去除能力明显优于两者单独反应。在使用0.2 g褐铁矿和2.0 g离心后污泥分别及联合去除30 mgl-1 Cr(Ⅵ)时,78 h后褐铁矿仅将Cr(V1)浓度降至29.6 mgl-1,单独微生物作用可将Cr(Ⅵ)浓度降至5.07 mgl-1,而两者联合作用下,Cr(Ⅵ)浓度可降至3.68 mgl-1。协同体系还原去除Cr(Ⅵ)的反应主要有三条途径:一是铁矿石对Cr(Ⅵ)的吸附与还原,二是微生物对Cr(Ⅵ)的还原降解,三是微生物将铁矿石表面和液相中的Fe(Ⅲ)还原为Fe(Ⅱ),并通过Fe(Ⅱ)间接还原Cr(Ⅵ)。
     6、利用纳米级零价铁处理水中Cr(Ⅵ)的过程中,零价铁被逐渐氧化为Fe203等类似于铁矿石的含铁化合物。加入稳定剂CMC可提高纳米级零价铁及被氧化后纳米级含铁化合物的分散度,以保持好的反应活性,同时投加的CMC还可作为后续生物处理过程中微生物的营养物质(碳源),研究为稳定化纳米级零价铁-微生物协同修复Cr(Ⅵ)进行前期的探索。
Iron particles and nanoparticles could be used to remediate Cr(Ⅵ)-polluted soils and underground waters with PRB (Permeable Reactive Barrier) and would be oxidized to Fe2O3 gradually while many kinds of minerals which containing iron oxides exist in soils.This article researched on Cr(Ⅵ) removal by pyrite, limonite, magnetite, hematite, pyrrhotite and bacteria and synergistic removal of Cr(Ⅵ) by iron ores and bacteria was studied. Besides, Carboxymethyl Cellulose (CMC), a nontoxic and biodegradable stabilizer, was used to stabilize the nanoscale zero-valent iron and maintain Cr(Ⅵ) removal rate in Cr(Ⅵ) reduction. It could also be used as a carbon source in synergistic removal of Cr(Ⅵ) by iron ores and bacteria.
     The results are as follows:
     1. Cr(Ⅵ) could be removed from water by pyrite and the removal efficiency was affected by pyrite size and dose, initial pH and temperature. Cl- and SO42- did not affect the reaction obviously but H2PO4- could inhibit the reaction. At room temperature,10 mg l-1 Cr(Ⅵ) could be removed completely after 30 min by 20 g l-1 pyrite (100~200 mesh) with pH of 3.0, while Cr(Ⅵ) removal rate could reach 91.82% after 120 min at pH 5.5 with other conditions the same as before, and only 52.73% of Cr(Ⅵ) could be removed at pH 9.0. At pH 5.5 and room temperature, reaction capability of pyrite (100~200 mesh) to reduce Cr(Ⅵ) was 1.53 mg Cr(Ⅵ) g-1. FeS2 from the surface of pyrite reacted with Cr(Ⅵ) in the solution and Cr(Ⅵ) was reduced to form Cr3S4, composed of Cr2S3 and CrS, while some CrO2 was produced. They appeared on the surface of pyrite and covered it, which made pyrite lose the ability to reduce Cr(Ⅵ) gradually. Meanwhile, Fe(Ⅱ) in FeS2 was oxidized to Fe(Ⅲ) and could not reduce Cr(Ⅵ) any more.
     2. Cr(Ⅵ) could also be removed from water by limonite and the removal efficiency was affected by limonite size and dose, initial pH. Temperature did not play an important role in reaction, just like the addition of Cl- and NO3-. But MgO could inhibit the reaction at the beginning of the reaction. FeS2 from the surface of limonite reacted with Cr(Ⅵ) in the solution and Cr(Ⅵ) was reduced to form Cr3S4, composed of Cr2S3 and CrS, while some Cr5Si3 was produced. They appeared on the surface of limonite and covered it, which made limonite lose the ability to reduce Cr(Ⅵ) gradually. At pH 5.5 and room temperature, reaction capability of limonite (100~200 mesh) to reduce Cr(Ⅵ) was 10.03 mg Cr(Ⅵ) g-1.
     3. In neutral condition, magnetite could hardly remove Cr(Ⅵ) while hematite had the ability. In acid condition, the Cr(Ⅵ) removal abilities of magnetite and hematite were all improved, especially magnetite. In comparison, pyrrhotite had good abilities to remove Cr(Ⅵ) in aquous solution in neutral and acid conditions and FeCr2O4 produced in the reaction would exist on the surface of pyrrhotite. In basic condition, all three iron ores had bad results in removal.
     4. Indigenous bacteria from Sewage Treatment Plant could be acclimated and screened, and then used in hexavalent chromium reduction in aqueous solution. The microbial reduction of Cr(Ⅵ) was an enzyme catalysis reaction. NaAc was the suitable carbon resource. pH played an important roles in reactions and best results appeared in neutral condition. After short starvation the bacteria still had the ability to removal Cr(Ⅵ).
     5. A synergistic mechanism was found in Cr(Ⅵ) removal by iron ore and bacteria and better results could be obtained by them together than by them seperately. After 78 h,30 mg l-1 Cr(Ⅵ) could only be reduced to 29.6 mg l-1 by 0.2 g limonite and could be reduced to 5.07 mg l-1 by 2.0 g bacteria. At the same condition,30 mg l-1 Cr(Ⅵ) could be reduced to 3.68 mg l-1 by limonite and bacteria. The synergistic reaction had three reaction pathways. First, Cr(Ⅵ) was adsorbed and reduced by iron ores. Second, bacteria reduced Cr(Ⅵ). Third, Fe(Ⅲ) which exists on the surface of iron ores and in the solution was reduced to Fe(Ⅱ) by bacteria and then Fe(Ⅱ) reacted with Cr(Ⅵ).
     6. Iron particles and nanoparticles could be used to remove Cr(Ⅵ) and would be oxidized to Fe2O3 gradually. Carboxymethyl Cellulose could disperse iron nanoparticles and iron oxides which were producted from iron nanoparticles to maintain the reaction activity. It could also be used as a carbon source in synergistic removal of Cr(Ⅵ) by iron ores and bacteria and the results could be regarded as the basic researches results in Cr(Ⅵ) removal synergistic reaction of iron nanoparticles and bacteria.
引文
1.高晓燕,中国的水污染现状分析及防治对策浅论.中国科技博览,2009.13:p.169-169.
    2.张震宇,水污染防治与水安全问题.建设科技,2009.5:p.60-61.
    3.何雅娟,邵明武,苏福海,水污染、饮水安全与化学计量.中国计量,2010.2:p.35-37.
    4.中华人民共和国环境保护部,中国环境状况公报(2009).中国环境状况公报,2010.
    5.梅光泉,重金属废水的危害及治理.微量元素与健康研究,2004.21(4):p.54-56.
    6.王兴强,阎斌伦,曹梅,氯化镉、硝酸铅和氯化高汞对缢蛏存活率的影响.水利渔业,2006.26(6):p.28-29.
    7.孙建民,于丽青,孙汉文,重金属废水处理技术进展.河北大学学报(自然科学版),2004.24(4):p.438-443.
    8.徐根良,肖大松,肖敏,重金属废水处理技术综述.水处理技术,1991.17(2):p.77-86.
    9.胡文玉,梅光泉,微量元素在人体内的化学行为.广东微量元素科学,1998.5(11):p.17-19.
    10.常学秀,文传浩,王焕校,重金属污染与人体健康.云南环境科学,2000.19(1):p.59-61.
    11.徐承水,环境中有害微量元素对人体健康的影响.广东微量元素科学,1999.6(10):p.1-3.
    12.许永杰,铬化物对人体的危害及预防.铬盐工业,2006.2:p.49-50.
    13.纪柱,正确认识铬渣危害及其综合利用.铬盐工业,2008.2:p.1-4.
    14.朱建华,王莉莉,不同价态铬的毒性及其对人体影响.环境与开发,1997.12(3):p.46-48.
    15.谭西顺,危害人体健康的杀手—六价铬.劳动保护,2003.1:p.61-61.
    16.史黎薇,铬化合物的健康效应.中国环境卫生,2003.6(3):p.125-129.
    17. Kimbrough, D. E., Cohen, Y., Winer, A. M., Creelman, L. and Mabuni, C., A critical assessment of chromium in the environment. Critical Reviews in Environmental Science and Technology,1999.29(1):p.1-46.
    18. Costa, M. and Klein, C. B., Toxicity and carcinogenicity of chromium compounds in humans. Critical Reviews in Toxicology,2006.36(2):p.155-163.
    19. Barnowski, C., Jakubowski, N., Stuewer, D. and Broekaert, J. A. C., Speciation of chromium by direct coupling of ion exchange chromatography with inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry,1997.12(10):p.1155-1161.
    20.吴克明,潘留明,黄羽,反应柱充填活性炭法处理轧钢含铬废水的研究.环境污染与防治,2005.27(5):p.379-381.
    21.贡小兵,电镀作业的职业危害.江苏安全生产,2007.4:p.43-43.
    22. Gil, R. A., Cerutti, S., Gasquez, J. A., Olsina, R. A. and Martinez, L. D., Preconcentration and speciation of chromium in drinking water samples by coupling of on-line sorption on activated carbon to ETAAS determination. Talanta,2006.68(4): p.1065-1070.
    23. Kotas, J. and Stasicka, Z., Chromium occurrence in the environment and methods of its speciation. Environmental Pollution,2000.107(3):p.263-283.
    24.王维岗,亚库甫江·吐尔逊,环境的重金属污染物来源和毒理作用.生态环境,2005.2:p.39-40.
    25. World Health Organization, Guidelines for drinking-water quality,2nd Edition,Vol.1-Recommendations. Geneva,1993.
    26. Suzuki, Adsorption Engineering. Elsevier,1990. Amsterdam.
    27. Chingombe, P., Saha, B. and Wakeman, R. J., Surface modification and characterisation of a coal-based activated carbon. Carbon,2005.43(15):p. 3132-3143.
    28. Park, S. J. and Jung, W. Y., Adsorption behaviors of chromium(Ⅲ) and (Ⅵ) on electroless Cu-plated activated carbon fibers. Journal of Colloid and Interface Science,2001.243(2):p.316-320.
    29. Karthikeyan, T., Rajgopal, S.and Miranda, L. R., Chromium(Ⅵ) adsorption from aqueous solution by Hevea Brasilinesis sawdust activated carbon. Journal of Hazardous Materials,2005.124(1-3):p.192-199.
    30.贾金平,谢少艾,陈虹锦,电镀废水处理技术及工程实例(第一版).化学工业出版社,2003.
    31. Srivastava, S. K., Tyagi, R. and Pant, N., Adsorption of heavy-metal ions on carbonaceous material developed from the waste slurry generated in local gertilizer plants. Water Research,1989.23(9):p.1161-1165.
    32. Kratochvil, D., Pimentel, P. and Volesky, B., Removal of trivalent and hexavalent chromium by seaweed biosorbent. Environmental Science & Technology, 1998.32(18):p.2693-2698.
    33. Srivastava, S. K., Gupta, V. K. and Mohan, D., Removal of lead and chromium by activated slag-A blast-furnace waste. Journal of Environmental Engineering-Asce,1997.123(5):p.461-468.
    34. Gupta, V. K. and Ali, I., Removal of lead and chromium from wastewater using bagasse fly ash-a sugar industry waste. Journal of Colloid and Interface Science,2004.271(2):p.321-328.
    35. Park, D., Yun, Y. S., Jo, J. H. and Park, J. M., Biosorption process for treatment of electroplating wastewater containing Cr(VI):Laboratory-scale feasibility test. Industrial & Engineering Chemistry Research,2006.45(14):p.5059-5065.
    36. Aoyama, M., Sugiyama, T., Doi, S., Cho, N. S. and Kim, H. E., Removal of hexavalent chromium from dilute aqueous solution by coniferous leaves. Holzforschung,1999.53(4):p.365-368.
    37. Gupta, V. K., Morhan, D., Sharma, S. and Park, K. T., Removal of chromium(VI) from electroplating industry wastewater using bagasse fly ash-a sugar industry waste material. Environmentalist,1999.19(2):p.129-136.
    38. Udaybhaskar, P., Iyengar, L. and Rao A., Hexavalent chromium in teraction with chirosan. Journal of Applied Polymer Science,1990.39(3):p.739-747.
    39.梁郁强,贾宗剑,江凤仪,活性污泥吸附重金属Cr6+的研究.环境技术,2004.22(1):p.33-34.
    40.李健,张惠源,尔丽珠,电镀重金属废水治理技术的发展现状.电镀与精 饰,2003.25(3):p.36-38.
    41. Jagiello, M., Minta, E., Chojnacka, K. and Kafarski, P., Mode of biosorption of chromium(Ⅲ) by Spirulina species cells from aqueous solutions. Water Environment Research,2006.78(7):p.740-743.
    42. Srivastava, S. and Thakur, I. S., Biosorption potency of Aspergillus niger for removal of chromium (Ⅵ). Current Microbiology,2006.53(3):p.232-237.
    43.徐灵,王成端,姚岚,离子交换树脂处理含铬废水的研究.工业安全与环保,2007.33(11):p.12-13.
    44.吴克明,石瑛,王俊,黄羽,离子交换树脂处理钢铁钝化含铬废水的研究.工业安全与环保,2005.31(4):p.22-23.
    45. Pugazhenthi, G., Sachan, S., Kishore, N. and Kumar, A., Separation of chromium(Ⅵ) using modified ultratiltration charged carbon membrane and its mathematical modeling. Journal of Membrane Science,2005.254(1-2):p.229-239.
    46. Dzyazko, Y. S., Mahmoud, A., Lapicque, F. and Belyakov, V. N., Cr(Ⅵ) transport through ceramic ion-exchange membranes for treatment of industrial wastewaters. Journal of Applied Electrochemistry,2007.37(2):p.209-217.
    47. Aroua, M. K., Zuki, F. M. and Sulaiman, N. M., Removal of chromium ions from aqueous solutions by polymer-enhanced ultrafiltration. Journal of Hazardous Materials,2007.147(3):p.752-758.
    48. Muthukrishnan, M. and Guha, B. K., Effect of pH on rejection of hexavalent chromium by nanofiltration. Desalination,2008.219(1-3):p.171-178.
    49. Bohdziewicz, J., Removal of chromium ions (Ⅵ) from underground water in the hybrid complexation-ultrafiltration process. Desalination,2000.129(3):p. 227-235.
    50. Yilmaz, A., Kaya, A., Alpoguz, H. K., Ersoz, M. and Yilmaz, M., Kinetic analysis of chromium(Ⅵ) ions transport through a bulk liquid membrane containing p-tert-butylcalix 4 arene dioxaoctylamide derivative. Separation and Purification Technology,2008.59(1):p.1-8.
    51.Chiha, M., Samar, M. H. and Hamdaoui, O., Extraction of chromium(Ⅵ) from sulphuric acid aqueous solutions by a liquid surfactant membrane (LSM). Desalination,2006.194(1-3):p.69-80.
    52. Djane, N. K., Ndungu, K., Johnsson, C., Sartz, H., Tornstrom, T. and Mathiasson, L., Chromium speciation in natural waters using serially connected supported liquid membranes. Talanta,1999.48(5):p.1121-1132.
    53. Liu, A. J., Ding, S. L., Zhao, C. C., Ren, H. J. and Zhao, Q. Y., Removal of Cr(VI) by emulsion liquid membrane technology. Journal of the Society of Leather Technologists and Chemists,2007.91(2):p.52-58.
    54.张卫东,马竞男,任钟旗,王厚林,杜昌顺,大块液膜技术处理含六价铬废水.电镀与涂饰,2007.26(12):p.31-33.
    55. Powell, R. M. and Puls, R. W., Proton generation by dissolution of intrinsic or augmented aluminosilicate minerals for in situ contaminant remediation by zero valence state iron. Environmental Science & Technology,1997.31(8):p.2244-2251.
    56.刘存海,朱玉凤,5种絮凝剂复配及在电镀含铬废水中的应用.化工时刊,2009.23(8):p.27-29.
    57.刘存海,朱玉凤,张光华,含铬废水处理技术概况及进展.辽宁化工2009.38(11):p.811-813.
    58.张小庆,王文洲,王卫,含铬废水的处理方法.环境科学与技术,2004.27:p.111-113.
    59.刘俊良,杨全利,刘明德,含铬废水处理技术综述.河北科技图苑,1997.3:p.13-15.
    60. Rayman, S. and White, R. E., Simulation of Reduction of Cr(VI) by Fe(II) Produced Electrochemically in a Parallel-Plate Electrochemical Reactor. Journal of the Electrochemical Society,2009.156(6):p.96-104.
    61.武正簧,TiO2薄膜在光催化下处理含铬废水.太原理工大学学报,1999.30(3):p.289-290.
    62.冯俊丽,马鲁铭,催化铁内电解法处理含铬废水.水处理技术,2005.31(7):p.42-45.
    63. Gillham, R. W. and Ohannesin, S. F., Enhanced degradation of halogenated aliphatics by zero-valent iron. Ground Water,1994.32(6):p.958-967.
    64. Fan, X. M., Guan, X. H., Ma, J. and Ai, H. Y., Kinetics and corrosion products of aqueous nitrate reduction by iron powder without reaction conditions control. Journal of Environmental Sciences-China,2009.21(8):p.1028-1035.
    65. Alowitz, M. J. and Scherer, M. M., Kinetics of nitrate, nitrite, and Cr(Ⅵ) reduction by iron metal. Environmental Science & Technology,2002.36(3):p. 299-306.
    66. Noubactep, C., Processes of Contaminant Removal in "Fe0-H2O" Systems Revisited:The Importance of Co-Precipitation. The Open Environmental Journal, 2007.1:p.9-12.
    67. Zouboulis, A. I., Kydros, K. A. and Matis, K. A., Removal of hexavalent chromium anions from solutions by pyrite fines. Water Research,1995.29(7):p. 1755-1760.
    68. Ajouyed, O., Hurel, C., Ammari, M., Ben Allal, L. and Marmier, N., Sorption of Cr(Ⅵ) onto natural iron and aluminum (oxy)hydroxides:Effects of pH, ionic strength and initial concentration. Journal of Hazardous Materials,2010.174(1-3):p. 616-622.
    69. Eary, L. E. and Rai, D., Kinetics of chromate reduction by ferrous-ions derived from hematite and biotite at 25℃. American Journal of Science,1989.289(2): p.180-213.
    70. Erdem, M., Gur, F. and Tumen, F., Cr(Ⅵ) reduction in aqueous solutions by siderite. Journal of Hazardous Materials,2004.113(1-3):p.219-224.
    71. He, Y. T. and Traina, S. J., Cr(Ⅵ) reduction and immobilization by magnetite under alkaline pH conditions:The role of passivation. Environmental Science & Technology,2005.39(12):p.4499-4504.
    72. Ilton, E. S. and Veblen, D. R., Chromium sorption by phlogopite and biotite in acidic solutions at 25℃ insights from X-ray photoelectron-spectroscopy and electron microscopy. Geochimica Et Cosmochimica Acta,1994.58(13):p. 2777-2788.
    73. Kendelewicz, T., Liu, P., Doyle, C. S., Brown, G. E., Nelson, E. J. and Chambers, S. A., X-ray absorption and photoemission study of the adsorption of aqueous Cr(Ⅵ) on single crystal hematite and magnetite surfaces. Surface Science, 1999.424(2-3):p.219-231.
    74. Kendelewicz, T., Liu, P., Doyle, C. S. and Brown, G. E., Spectroscopic study of the reaction of aqueous Cr(Ⅵ) with Fe3O4(Ⅲ) surfaces. Surface Science,2000. 469(2-3):p.144-163.
    75. Mullet, M., Boursiquot, S. and Ehrhardt, J. J., Removal of hexavalent chromium from solutions by mackinawite, tetragonal FeS. Colloids and Surfaces a-Physicochemical and Engineering Aspects,2004.244(1-3):p.77-85.
    76. Patterson, R. R., Fendorf, S. and Fendorf, M., Reduction of hexavalent chromium by amorphous iron sulfide. Environmental Science & Technology,1997. 31(7):p.2039-2044.
    77. Peterson, M. L., White, A. F., Brown, G. E. and Parks, G. A., Surface passivation of magnetite by reaction with aqueous Cr(Ⅵ):XAFS and TEM results. Environmental Science & Technology,1997.31(5):p.1573-1576.
    78. White, A. F. and Peterson, M. L., Reduction of aqueous transition metal species on the surfaces of Fe(Ⅱ)-containing oxides. Geochimica Et Cosmochimica Acta,1996.60(20):p.3799-3814.
    79. Kaneko, T., Sugita, S., Tamura, M., Shimasaki, K., Makino, E. and Silalahi, L. H., Highly active limonite catalysts for direct coal liquefaction. Fuel,2002. 81(11-12):p.1541-1549.
    80. Lehmann, M., Zouboulis, A. I. and Matis, K. A., Modelling the sorption of metals from aqueous solutions on goethite fixed-beds. Environmental Pollution,2001. 113(2):p.121-128.
    81. Lazaridis, N. K. and Charalambous, C., Sorptive removal of trivalent and hexavalent chromium from binary aqueous solutions by composite alginate-goethite beads. Water Research,2005.39(18):p.4385-4396.
    82. Fendorf, S. E. and Li, G. C., Kinetics of chromate reduction by ferrous iron. Environmental Science & Technology,1996.30(5):p.1614-1617.
    83. Chon, C. M., Kim, J. G. and Moon, H. S., Kinetics of chromate reduction by pyrite and biotite under acidic conditions. Applied Geochemistry,2006.21(9):p. 1469-1481.
    84.王丽,杨翔华,马学良,刘莹,微生物法治理Cr(Ⅵ)污染的研究应用现状与展望.辽宁城乡环境科技,2006.26(4):p.7-10.
    85.马锦民,瞿建国,夏君,李福德,失活微生物和活体微生物处理含铬(Ⅵ)废水研究进展.环境科学与技术,2006.29(4):p.103-105.
    86.瞿建国,申如香,徐伯兴,李福德,微生物法处理含铬(Ⅵ)废水的研究.化工环保,2005.25:p.1-4.
    87. Lovley, D. R. and Anderson, R. T., Influence of dissimilatory metal reduction on fate of organic and metal contaminants in the subsurface. Hydrogeology Journal, 2000.8(1):p.77-88.
    88. Donmez, G. and Aksu, Z., Removal of chromium(Ⅵ) from saline wastewaters by Dunaliella species. Process Biochemistry,2002.38(5):p.751-762.
    89. Campos, J., Martinezpacheco, M. and Cervantes, C., Hexavalent-chromium reduction by a chromate-resistant bacillus sp strain. Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology,1995.68(3):p. 203-208.
    90. Ohtake, H., Fujii, E. and Toda, K., Reduction of toxic chromate in an industrial effluent by use of a chromate-reducing strain of enterobacter-cloacae. Environmental Technology,1990.11(7):p.663-668.
    91. Yamamoto, K., Kato, J., Yano, T. and Ohtake, H., Kinetics and modeling of hexavalent chromium recuction in enterobacter-cloacae. Biotechnology and Bioengineering,1993.41(1):p.129-133.
    92. Cummings, D. E., Fendorf, S., Singh, N., Sani, R. K., Peyton, B. M. and Magnuson, T. S., Reduction of Cr(Ⅵ) under acidic conditions by the facultative Fe(Ⅲ)-reducing bacterium Acidiphilium cryptum. Environmental Science & Technology,2007.41(1):p.146-152.
    93. Viera, M., Curutchet, G. and Donati, E., A combined bacterial process for the reduction and immobilization of chromium. International Biodeterioration & Biodegradation,2003.52(1):p.31-34.
    94. Xu, W. H., Liu, Y. G., Zeng, G. M., Li, X., Tang, C. F. and Yuan, X. Z., Enhancing effect of iron on chromate reduction by Cellulomonas flavigena. Journal of Hazardous Materials,2005.126(1-3):p.17-22.
    95. Rege, M. A., Petersen, J. N., Johnstone, D. L., Turick, C. E., Yonge, D. R. and Apel, W. A., Bacterial reduction of hexavalent chromium by Enterobacter cloacae strain HOI grown on sucrose. Biotechnology Letters,1997.19(7):p.691-694.
    96. Fulladosa, E., Desjardin, V., Murat, J. C., Gourdon, R. and Villaescusa, I., Cr(Ⅵ) reduction into Cr(Ⅲ) as a mechanism to explain the low sensitivity of Vibrio fischeri bioassay to detect chromium pollution. Chemosphere,2006.65(4):p. 644-650.
    97. Olazabal, M. A., Nikolaidis, N. P., Suib, S. A. and Madariaga, J. M., Precipitation equilibria of the chromium(Ⅵ)/iron(Ⅲ) system and spectroscopic characterization of the precipitates. Environmental Science & Technology,1997. 31(10):p.2898-2902.
    98.石俊仙,鲁安怀,陈洁,天然黄铁矿除Cr(V1)中Cr2S3物相的发现.岩石矿物学杂志,2005.24(6):p.539-542.
    99. Puigdomenech, I., Input, sed and predom:Computer Programs Drawing Equilibrium Diagrams. Interim Report TRITA-OOK-3010, Royal Inst. of Tech., Stockholm,1983.
    100. Benincasa, E., Brigatti, M. F., Franchini, G., Malferrari, D., Medici, L., Poppi, L. and Tonelli, M., Reactions between Cr(Ⅵ) solutions and pyrite:Chemical and surface studies. Geologica Carpathica,2002.53(2):p.79-85.
    101. Ruiz, N., Seal, S. and Reinhart, D., Surface chemical reactivity in selected zero-valent iron samples used in groundwater remediation. Journal of Hazardous Materials,2000.80(1-3):p.107-117.
    102. 邓耀杰,许燕滨,高振宁,何超奕,厌氧工艺对含铬(Ⅵ)废水处理效果初探.环境污染治理技术与设备,2004.5(86):p.76-78.
    103. Zhao, M. and Duncan, J. R., Batch removal of sexivalent chromium by Azolla filiculoides. Biotechnology and Applied Biochemistry,1997.26:p.179-182.
    104. Lee, S. E., Lee, J. U., Lee, J. S. and Chon, H. T., Effects of indigenous bacteria on Cr(Ⅵ) reduction in Cr-contaminated sediment with industrial wastes. Journal of Geochemical Exploration,2006.88(1-3):p.41-44.
    105. 马锦民,张烂漫,夏君,瞿建国,李福德,微生物处理含铬(Ⅵ)废水的研究进展.江苏化工,2005.33:p.46-50.
    106. 陈林,邱廷省,陈明,生物吸附剂去除水中六价铬的实验研究.皮革科学与工程,2003.13:p.48-51.
    107. Smith, W. L., Hexavalent chromium reduction and precipitation by sulphate-reducing bacterial biofilms. Environmental Geochemistry and Health,2001. 23(3):p.297-300.
    108. Erdem, M., Altundogan, H. S., Ozer, A. and Tumen, F., Cr(Ⅵ) reduction in aqueous solutions by using synthetic iron sulphide. Environmental Technology, 2001.22(10):p.1213-1222.
    109. Lovley, D. R., Dissimilatory Fe(Ⅲ) and Mn(Ⅳ) reduction. Microbiological Reviews,1991.55(2):p.259-287.
    110. He, F. and Zhao, D. Y., Manipulating the size and dispersibility of zerovalent iron nanoparticles by use of carboxymethyl cellulose stabilizers. Environmental Science & Technology,2007.41(17):p.6216-6221.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700