用户名: 密码: 验证码:
钒钛铁精矿转底炉直接还原—电炉熔分工艺与理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国攀枝花-西昌地区的钒钛磁铁矿是一种铁、钒、钛等多元素共生的复合矿,具有很高的综合利用价值。现有的高炉冶炼、转炉提钒和钛精矿选矿处理钒钛磁铁矿工艺,仅利用了铁的68%、钒的47%、钛的15%。资源浪费巨大,并造成环境污染、土地破坏、生态失衡等严重问题。
     为了实现铁、钒、钛等资源高效清洁分离及综合回收利用,近年来转底炉煤基直接还原-电炉熔分技术逐步发展成为了处理钒钛磁铁矿的工艺之一,此工艺具有以煤代焦、还原温度高、冶炼时间短、能耗低、环境污染小和投资省等特点,符合我国资源、能源实际,成为目前国内外钢铁界研究的热点之一。
     本文为该工艺的应用基础研究,目的是充分地掌握钒钛铁精矿内配碳球团直接还原-熔分的工艺参数、反应机理以及工艺应用所需要的一般性条件。因此通过实验室压片机压球工艺、实验室竖式还原炉直接还原工艺和实验室高温快速加热炉熔分工艺的研究模拟出钒钛铁精矿直接还原-电炉熔分工艺参数。实验室压片机压球结果表明:使生球落下次数较高的条件分别为矿煤粒度比为(200:60)、球团水分为8%、粘结剂浓度为0.3%、压团压力为10 Mpa;球团水分是影响球团性能或压团工艺参数的主要因素,矿煤粒度比对球团性能有较大影响,压团压力和粘结剂浓度对各项指标的影响最小;生球团要进行干燥处理,干燥温度为105℃,干燥时间控制在2小时左右,所得球团的抗压强度为98N/个、高温爆裂性能小于20%,能满足转底炉直接还原工艺的要求;钒钛铁精矿直接还原-电炉熔分实验室模拟结果表明,配碳比(1.5:1)、还原温度(1350℃)、添加剂(2%)、还原时间(20min)时,球团金属化率可以达到88%以上;金属化球团电炉熔分工艺参数为碱度值1.4、熔分时间120min、熔分温度1450℃及配碳比1.5时,渣相中FeO含量为8.35%,能使铁和钒钛进行有效分离。
     然后采用热重实验、热力学、动力学计算模拟以及XRD、SEM、TG-DSC等检测手段对钒钛铁精矿的还原机理和熔分机理进行了详细研究。结果表明,钒钛铁精矿的还原历程依次为Fe2TiO4和Fe3O4、3(Fe3O4)?Fe2TiO4、Fe3O4?Fe2TiO4、Fe2TiO4和FeO、Fe和FeTi2O5;在磁铁矿大量还原生成浮士体的阶段,钛铁矿与新生成的浮士体发生“钛铁晶石化”,最终还原转变为单质铁和含铁黑钛石;钒钛铁精矿内配碳球团直接还原过程可分为前期和后期两个阶段,前期为化学反应控制,反应活化能为73.17kJ/mol;后期为扩散控制,反应活化能为152.02kJ/mol。还原度随反应温度的升高而增大,后期反应速度小于初期反应速度;FeO含量在整个熔化分离过程中起着重要的作用,通过控制FeO含量可以使熔化分离达到良好的效果。
     最后又将实验室研究结果扩展到对辊压球机-直径2.3m转底炉-50KVA电弧炉对钒钛铁精矿煤基直接还原-熔分的扩大试验研究,得出该工艺是可行的。通过实验得到含TiO2为49%、V2O5为1.2%以上的富钛渣和低钒生铁,并对含钒富钛渣中钛和钒分离进行了初步探讨,实现了铁、钛和钒的综合回收。
     本研究的主要创新点表现在:(1)对钒钛铁精矿内配碳球团转底炉直接还原-熔分工艺进行了实验室模拟,得出了实验室工艺参数。(2)对钒钛铁精矿内配碳球团转底炉直接还原-熔分机理进行了系统研究,为该工艺产业化奠定了理论基础。(3)采用对辊压球机-直径2.3m转底炉-50KVA电弧炉对钒钛铁精矿煤基直接还原-熔分工艺进行了扩大试验,得到的工艺参数和调控方法为该工艺工程化设计提供参考和依据。(4)以含钒富钛渣为原料进行酸浸制取钛白粉是完全可行的,试制的钛白粉白度可以达到同类产品指标,但处理工艺较复杂,且消色力较低;含钒富钛渣中的V基本进入水解母液和洗液中,收得率可达到93%以上,可通过水解废液的处理实现钒的回收。
Vanadium and titanium iron concentrate of Panzhihua–Xichuang in our country is one kind of iron, vanadium, titanium multiple-element symbiotic composite ore, has extremely high comprehensive utilization value.
     The current process on dealing with vanadium and titanium magnetite craft processing of blast furnace, converter v-recovering and titanium concentrates dressings only make use of 68% iron, 47% vanadium and 15% titanium. The waste of resources are huge and cause serious problems such as environmental pollution, land damage, ecological unbalance and so on.
     In order to realize efficient cleaning separation and comprehensive recycling of iron, vanadium, titanium resource etc, the direct reduction technology of RHF based coal and melting and separation technology of arc furnace in recent years gradually becomes one of best processing technology of vanadium, titanium magnetite .The technology has many features such as using coal replace coke, high temperature, short time of smelting, low energy consumption , environmental pollution and investment. The technology is in accordance with the characteristics of energy resources and is becoming one of the hot spot research of iron steel in our world.
     The present work mainly concentrates on a application fundamental study on the direct reduction technology of RHF based coal and melting and separation technology of arc furnace .The purpose is fully grasping process parameters , reaction mechanism and application technology of the general conditions needed of the technology . In order to simulate process parameters of the new technology , pressing pellets by laboratory preforming machine has been investigated,as wellas reduction process by laboratory vertical reduction furnace and melting-separation by laboratory rapid heating process furance. Research results of laboratory preforming machine show that conditions on higher falling number of raw pellets respectively are that mine and coal size ratio is 200:60,moisture is 8%,binder is 0.3% ,pressure is 10 Mpa.The main factors of affecting pellets performance or briquett process parameters are respectively pellets moisture, mine and coal size ratio , pressure and binder concentration.Raw pellets must be processed by drying.when the drying temperature is 105℃,the drying time is controled in 2 hours. The compressive strength of the pellets is 98N/a, high temperature burst performance of the pellets is less than 20%,which can meet the requirement of direct reduction process by rotary hearth furnace . The experimental results of reduction process by laboratory vertical reduction furnace show that a metallization rate of 88% was achieved while the pellets are in carbon and Oxygen ratio(1.5:1), reaction temperature(1350℃), additive(2%) and reaction time(20min). The experimental results of FeO melting -separation by laboratory rapid heating process furance show that content of FeO in slags is 8.35% while alkalinity is 1.4,melting time is 120 min,melting temperature is 1450℃and carbon ratio is 1.5, Can make iron , vanadium and titanium effectively separated.
     Then ,through the thermogravimetric experiment, thermodynamics and kinetics calculation simulation and XRD, SEM and TG - DSC etc ,direct reduction mechanism and melting -separation principle of vanadium and titanium concentrate are studied. The thermogravimetric experimental results show that reduction process on quick reduction of vanadium and titanium iron concentrate of carbon-containing pellets respectively is Fe2TiO4 and Fe3O4,3(Fe3O4)?Fe2TiO4,Fe3O4?Fe2TiO4,Fe2TiO4 and FeO,Fe and FeTi2O5 .In the stage of generating float by magnetite iron reduction, generate the new phase of Fe2TiO4, and finally vanadium and titanium iron concentrate is reduced into Fe and (Fe,Mg)Ti2O5. The experimental results of kinetics calculation simulation show that the reduction process on vanadium and titanium iron concentrate pellets containing carbon can be classified into two stages. The initial stage is controlled by chemical reaction between the metal oxide and carbon,and the activation energy of the reduction process is 73.17kJ/mol.The following stage is controlled by the diffusion of reduced products,and the activation energy of the reduction process is 152.02kJ/mol. Reductive degree rises with the increase of temperature. Later reaction velocity is less than initial reaction velocity. FeO content plays an important role in melting separation process .Through controling FeO content can make good effect to melting separation. Finally, laboratory findings have been expanded on roll squeezer, RHF of 2.3 meters diameter and 50KVA arc furnace. Process parameters have been obtained. The technology is feasible. Through the experiment titanium slag that TiO2 is 49% and V2O5 is 1.2% and iron of low vanadium are obtained, can satisfy the subsequent processing quality requirements. Titanium slag containing vanadium was discussed to separate vanadium and titanium,finally comprehensive recovery of iron, titanium and vanadium has been achieved. The main new view points of the author are as follows:
     (1) Through laboratory simulation on direct reduction technology based coal and melting and separation technology , get the laboratory process parameters.
     (2) Direct reduction mechanism and melting -separation principle of vanadium and titanium concentrate are studied,which lay a theoretical foundation as industrialization.
     (3) Exploratory testings are studied by roll squeezer, RHF of 2.3m diameter and 50KVA arc furnace ,get process parameters and results ,which provides reference and basis for the engineering design.
     (4) Titanium slag containing vanadium as raw material for acid leaching is feasible to obtain titanium dioxide, titanium dioxide trial whiteness index of similar products can be achieved, but need more complex treatment process, and reducing color power is low.Vanadium basic has get into hydrolysis mother liquor and lotion intorich , the recovery rate could reach 93% or more, recovery of vanadium can be achieved by treating those waste water.
引文
[1]傅文章.攀西钒钛磁铁矿资源特征及综合利用问题的基本分析[J].矿产综合利用,1996,(1):27-35.
    [2]莫畏,邓国珠,罗方承.钛冶金[M].北京:冶金工业出版社,1999,182-185.
    [3] Vijay P L,Venugopalan R,Sathiyamoorthy D.Preoxidation and hydrogen reduction of ilmenite in fluidized bed reactor[J].Metall Mater Trans B,1996,27(5):731-738.
    [4] Chernet T.Applied mineralogical studies on australias and ilmenite concentrate with special reference to its behaviour in the sulphate process[J].Minerals Engineering,1999, 12(5):485-495.
    [5] Chachula F,Liu Q.Up grading arutile concentrate produced from athabascaoil sands tailings[J].Fuel,2003,82(8):929-942.
    [6] Vandyk J P,Pistorius P C.Evaluation of using sphosphate additions to up grade titanium slag[J].Metall Mater TransB,1999,30(4):823-826.
    [7] Eitawil S Z,Mosri I M,Yehia A,Francis A A.Alkali reductive roasting of ilmenite Ore[J]. Canadian Metallurgical Quarterly,1996,35(1):31-35.
    [8] Chen Y,Hwang T,Williams J S.Ball milling induced low-temperature carbothermic reduction of ilmenite[J].Materials Letters,1996,28(3):55-59.
    [9] Chen Y,Williams J S.Application of high energy ball milling in mineral materials:extraction of TiO2 from mineral FeTiO3[J].Material Science Forum, 1997, 23(1):9-13.
    [10]汪子和.国外钒钛工业与钒钛磁铁矿的综合利用[J].钒钛磁铁矿开发利用国际学术会议论文集,1989,29-36.
    [11]孙康.钛提取冶金物理化学[M].北京:冶金工业出版社,2001,24-25.
    [12] Vondyk J P,Pistorius P C.Evalution of process that uses phosphate additions to up grade titania slag[J].Metallurgical and Materials Transaction B,1999,30 (8): 823-826.
    [13]王尚槐.Inmetc直接还原法的基础研究[J].世界金属导报,1996.
    [14]卢维高,荀宏宇.一种低煤炼铁工艺的可行性研究[J].钢铁,1997,32(增刊):78-82.
    [15] Richard H Hanewald.Rotary hearth funrace.Int.Cl:F27B9/16.United States Patent, US4597564, 1986.7.1.
    [16] B.C.Jena,W.Dresler and I.G.Reilly.Extraction of titanium, vanadium and iron from titanomagnetite deposits at pipestone lake, Manitoba, Canada[J]. Minerals Engineering, 1995,(8):159-168.
    [17] R. K. Biswas, M.F. Islam, M.A. Habib.Processing of ilmenite through salt-water vapourroasting and leaching[J]. Hydrometallurgy, 1996, 42(2):367-375.
    [18] Kathryn Sole, Angus Feather, Johan Connell.Recovery of titanium from the leach liquors of titaniferous magnetites by solvent extraction Part3. Continuous mini-plant trials[J]. Hydrometallurgy, 1999,51:275-284.
    [19]杨保祥,李在妙,蒋国兴,等.稀硫酸浸出富集深还原钛渣[J].钢铁钒钛,1996,17(1):34-37.
    [20]朱俊士.攀枝花-西昌地区钒钛磁铁矿的选矿特征[J].矿冶工程,1997,17(1):20-26.
    [21] Yoshiaki Iguchi,Shchei Yokomoto.Kinetics of the reaction in carbon composite iron ore pellets under various pressuers from vacuum to 0.1Mpa[J].ISIJ International,2004,44(12): 2008-2017.
    [22] S Messner,I Kobayashi,Y Tanigaki,K H.Tacke.Reduction and melting model of carbon composite ore pellets[J].Ironmaking and Steelmaking,2003,30(2):170-176.
    [23]游锦洲.新煤基直接还原理论与工艺研究.博士学位论文.沈阳:东北大学,2000.
    [24]王玉明,袁章福,郭占成,等. Reduction mechanism of natural ilmenite with graphite[J]. Transactions of Nonferrous Metals Society of China,2008,(4): 5-10.
    [25]王凤林.世界直接还原铁生产现状及展望.河南登封:全国直接还原技术交流会议文集,中国金属学会,1996:16-21.
    [26]张清岑,肖奇.直接还原生产的发展及其在我国应用前景[J].烧结球团,1997,22(2): 31-35.
    [27]朱凯荪.直接还原在当代冶金变革中的发展[J].宝钢技术,1997,(2):54-60.
    [28]赵庆杰,史占彪.直接还原回转窑技术[M].北京:机械工业出版社,1998.
    [29]陈茂熙.回转窑直接还原“一步法”与“二步法”工艺述评[J].炼铁,1991,10(4):46-53.
    [30]史志瑞.天津钢管公司直接还原厂引进煤基工艺述评[J].烧结球团,1997,22(6):20-23.
    [31]潘竞业,杨有育.鲁中铁精矿冷固结球团矿回转窑直接还原工业试验[J].炼铁,1996, 15(4):19-23.
    [32]章庆和.磁铁精矿冷固结球团直接还原新工艺的研究.钢铁[J],1997,32(10):1-11.
    [33]赵庆杰.直接还原炼铁工艺在我国的发展状况[J].钢铁,1997,31(增刊):479-482.
    [34]周渝生.非高炉炼铁工艺的现状及其发展[J].冶金信息工作,1997,(4):18-21.
    [35]孙泰鹏.非高炉炼铁工艺的发展及评述[J].沈阳工程学院学报(自然科学版),2007,(1):90-93.
    [36] H. B. Luengen,K. Muelheims,R. Steff.铁矿石直接还原与熔融还原的发展现状[J].上海宝钢工程技术,2001,(4):27-32.
    [37]高文星,董凌燕,陈登福,等.煤基直接还原及转底炉工艺的发展现状[J].矿冶,2008, (6):68-72.
    [38]王定武.转底炉工艺生产直接还原铁的现况和前景[J].冶金管理,2007,(12):52.
    [39]黄雄源.现代非高炉炼铁技术的发展现状与前景(一)[J].金属材料与冶金工程,2007,(6):48-51.
    [40]张海峰,薛正良,周继程,等.内配煤团块直接还原法制备铁粒技术研究[J].武汉科技大学学报(自然科学版),2007,(4):125-129.
    [41]汪琦.含碳球团还原反应及其技术[J].鞍钢技术,2009,(4):7-13.
    [42]范晓慧,邱冠周.我国直接还原铁生产的现状与发展前景[J].炼铁,2002,(6):52-55.
    [43] Winston L Tennies,James Lepinski,John T Kopfle.The Midrex Fastmet process,a simple, economic ironmaking option[J].Ironmaking and Steelmaking,1991,(2):36-42
    [44] B Sarma,R J Fruehan.A review of coal-based direct ironmaing processes.Ironmaking Conference Proceedings, ISS, Warrendale, PA, 1998, 57(2): 1537-1548.
    [45] G E Hoffman,T Harada.A status report on the Fastmet porcess from the Kakogowa demonstration plant[J].Ironmaking and Steelmaking,1997,(5):51-53.
    [46] Q. Wang.Reduction Kinetics of Iron Ore-Coal Pellet during Fast Heating[J].Ironmaking and Steelmaking,1998,25(6):443-447.
    [47] Tanigaki Yasuhior,Tsuge Osamu,Kobayashi Isao etal .Method of manufacturing molten metal iron.Int.Cl:C21B011/08.United States Patent,US6569223, 2003.5.27.
    [48] Negami Takuya,Kunii Kazuo,Inaba Shinichi etal .Method and apparatus for making metallic iron.Int. Cl: C21B013/14.United States Patent, US6506231, 2003.1.14.
    [49] Fuji Kojiro,Tanaka Hidetoshi,Kikuchi Shoichi etal .Method for porducing reduced iorn.In t.C1:C 21B013/08.United States Patent,US6602320,2003.8.5.
    [50] R J Fruehan.Future iron making in North America.Iornmaking Confeernce Porceedings, ISS, Warrendale, PA, 1998, 57: 59-66.
    [51] Ito Shuzo,Tanigaki Yasuhiro,Kikuchi Shoichi etal .Method of producing metallic iron and raw material feed device.Int.Cl:C21B13/00.World Intellectual Property Organization Intenrational Bureau,W00173137,2001.10.4.
    [52] Hoffman Glenn E ,Meissner David C ,Shoop Kyle J .Furnace hearth for imporved molten iron production and method of operation.Int.Cl:C21B013/10.United States Patent, US6749664, 2004.6.15.
    [53] Kikuchi Shoichi,Tanigaki Yasuhiro,Tokuda Koji etal .Method of producing iron nuggets.Int.Cl:C 21B011/00.United States Patent,US6592649,2003.7.15.
    [54] Harada Takao,Tanaka Hidetoshi.Rotary hearth funrace for producing reduced metallic and method of producing reduced metal.Int.Cl:C21B011/08.United States Patent, US6685466, 2004.2.3.
    [55] Ito Shuzo,Tanigaki Yasuhiro,Kikuchi Shoichi etal.Method of porducing metallic iron.In t.C1:C21B011/00.United States Patent,US6630010,2003.10.7.
    [56]任大宁.万天绷.黄务涤.潘毓淳.转底炉生产珠铁及分离方法.Int.Cl:C21B13/00.中华人民共和国专利局.CN1186863, 1998.7.8.
    [57] K. Eiki.Efect of Mixed-grinding on Reduction Process of Carbonaceous Material and Iron Oxide Composite[J] .ISIJ Internations,1995,135(2):1444-1446.
    [58]秦民生.非高炉炼铁[M].北京:冶金工业出版社,1998.
    [59]万天骥.任大宁.孔令坛.黄务涤.煤基热风转底炉熔融还原炼铁法.Int.Cl:C21B13/00.中华人民共和国国家知识产权局.CN1443856A, 2003.9.24.
    [60]刘云彩.炼铁生产的过去、现在和未来.中国冶金,2005, 15(3): 1-6.
    [61] John olof Edstrim,Joachim von Scheele.Sponge iron and iron carbide:competitive raw materials for high-quality steelmaking[J].Scandiavian Journal of Metallurgical,1997,2 6(2):196-205.
    [62]赵沛,郭培民.煤基低温冶金技术的研究[J].钢铁,2004,39(9):1-5.
    [63] S. K Durra and A. Ghosh.Study of nonisothermal reduction of iron ore-coal/char composite pellet[J].Meta. Tran. B.,1994,25 (1):15-26.
    [64] G. D. McAdam.Rapid Reduction Of New Zealand lwstands [J].Ironmaking and Steelmaking, 1977,(4):1-5.
    [65] Hu guangpei.Preceedings of shenyang international symposium on smelting reduction[J]. Ironmaking and Steelmaking,1986,416(1):10-15.
    [66]汪琦,田济民,李文忠,等.生产直接还原铁的方法:中国,93115876[P].1993.10.29.
    [67]杨天钧,黄典冰,孔令坛.熔融还原[M].北京:冶金工业出版社,1998.
    [68]梁英教,车荫昌.无机物热力学数据手册[M].沈阳:东北大学出版社.1993.
    [69]方觉.熔融还原与直接还原[M].沈阳:东北大学出版社,1996.
    [70]魏国,赵庆杰,童文献,王治卿.直接还原生产概况和发展[J].中国冶金,2004,14(9):1721- 1725.
    [71]张汉泉,朱德庆.直接还原现状与发展[J].钢铁研究,2002(2): 51-54.
    [72]史占彪.国内外直接还原现状及发展[J].烧结球团,1994,(2): 18-37.
    [73]莫鼎成.冶金动力学[M].长沙:中南工业大学出版社,1987,26-21.
    [74]孙康.宏观反应动力学及其解析方法[M].北京:冶金工业出版社,1998,51-75.
    [75]彭兵,宋海琛,王佳,等.Cr2O3含碳球团的还原过程[J].中南大学学报,2005,36(4):571-575.
    [76]何其松.磁铁矿球团的还原历程及其热力学分析[J].钢铁,1983, 18(4):4.
    [77] Y K Rao.The kinetics of reduction of hematite by carbon[J].Metallurgical Transactions B , 1971,2(5): 1439-1447.
    [78] R J Fruehan.The rate of iron oxides by carbon. [J].Metallurgical Transactions B ,1977,8 (3): 279-286.
    [79] B A Pollock.Altenrate iron sources for the EAF:a re view of the 16th advanced technology symposium[J].Ironmaking and Steelmaking,1993(7):25-30.
    [80] M C Abraham,A Ghosh.Kinetics of reduction of iron oxides by carbon[J].Ironmaking and Steelmaking, 1979, 6(1): 14-21.
    [81] N S Srinivasan,A K Lahiri.Studies on the reduction of hematite by carbon[J].Metallurgical Transactions B, 1977, 8(3): 175-178.
    [82] H Gou,W-KLu.Using the RHF/SRV or RHF/EAF to produce liquid iron at a low coal rate[J].Ironmaking and Steelmaking,1998,(3):81-86.
    [83] G V Reddy,T Sharma,S Chakravorty.Kinetic rate equation for direct reduction of iron ore by non-coking coal[J].Ironmaking and S teelmaking,1991,18(3):211-213.
    [84] Manik C Guswami.Interrelation between kinetics of reduction and volume change during formation of directly reduced iron[J].Iron and Steel Research,1997,68(12):547-511.
    [85] Sujoy K Dutta,Ahindra Guosh.Kinetics of gaseous reduction of iron ore fines[J].ISIJ International, 1993, 33(11): 1168-1173.
    [86] Norman L Kotraba.Direct reduction processin a rotary hearth f urnace.Int.C1: C21B11/08. United States Patent, US5186741, 1993.2.16.
    [87] Rene Munnix,Jean Borlee,Didier Steylus etal .Comet:a new coal-based process for the production of DRI[J].Metallurgical Plant and Technology International,1997,(2):50-61.
    [88] Ramiro Conceicao Nascimento,Marcelo Berda Mourao.Micorstructuers of self-reducing pellets bearing iron o re and carbon[J].ISIJ Intenrational,1997,37(11):1050-1056.
    [89] Yoshitaka Sawa,Tetsuya Yamamoto,Kanji Takeda.New coal-based process to produce high quality DRI for the EAF[J].ISIJ Intenrational,2001,41(Supplement): 17-21.
    [90] Larry Lehtiinen.Iron dynamics process:a new way to make iron[J].Iron and Steel Techno-logy, 1999,(12): 37-39.
    [91] Norman L Kotraba.Direct reduction process and apparatus.Int. Cl:C21B13/08.European Patent Office, 0508166A2, 1992.3.17.
    [92] Bryk,W-K Lu.Reduction phenomena in composition of iron ore concentrates and coals[J].Ironmaking and Steelmaking,1986,13(2):70-75.
    [93] A Ghosh,M N Mungole.A preliminary study of influence of atmosphere on reduction behavior of iron ore/coal composite pellet[J]s.ISIJ International,1999,39(8):829-831.
    [94] Kazuya Miyagawa.Development of the Fastmet as a new dierct reduction porcess[J]. Ironmaking Confeernce Proceedings,ISS,Warrendale,PA,1998,57:877-881.
    [95]黄典冰,孔令坛.内配碳赤铁矿球团反应动力学及其模型[J].钢铁,1995, 30(11): 1-6.
    [96]汪琦,杨兆祥.含碳球团在氧化性气氛中的还原机理[J].钢铁研究学报,1998, 10(3): 1-4.
    [97] S Sun,W-K Lu.A study of kinetics and mechanisms of iron ore reduction in ore/coal composites[J].Ironmaking Conference Proceedings,ISS,Warrendale,PA,1996,55:645-652.
    [98] Q Wang,Z Yang.Mechanisms of reduction in iron ore/coal composite pellet[J].Ironmaking and Steelmaking, 1997, 24(6): 457-460.
    [99]杜挺,邓开文.钢铁冶炼新工艺[M].北京:北京大学出版社,1994.
    [100]徐萌.转底炉煤基热风熔融炼铁工艺的基础性研究.博士学位论文,北京:北京科技大学,2006.
    [101]肖琪.团矿理论与实践[M].长沙:中南工业大学出版社,1989: 56.
    [102] G E Hofman,Kyle J Shoop,Koji Tokuda.A look at development of the Fastmettechnology at the Midrex technical center.Ironmaking Confeernce Proceedings,ISS, Warrendale, PA, 1999, 58: 367-373.
    [103] Frank N Griscom, Donaird Lyles.The Fastmet process:a direct reduction technology for modern steelmaking.Electric Furnace Conference Proceedings,ISS,Warerndale,PA,1994, 52: 75-81.
    [104] Kenneth E Joyner.生产DRI和铁水的Fastmet和Fastmelt新工艺过程[J].钢铁,2000, 35(增刊):62-67.
    [105] James M Mcclellaand,Jr P E .Fastmet dust pellet reduction operation report on the first fastmet waste recovery plant[J].Ironmaking Conference Proceedings, 2001,60: 629-639.
    [106] Karl-Heina Bauer,Dilgeir Hutte.Recycling of iron and steelworks wastes using the Inmetco direct reduction process[J].Metallurgical Plant and Technology International,1990,(4): 74-87.
    [107] J A Lepinski.FASTMET直接还原工艺在美国的应用[J].烧结球团,1992(5):27-30.
    [108] Georgo J Mcmanus,Feature Writer.Steel dynamics seeks subsittute for the blast funrace[J]. Iron and Steel Engineer,1998,(2):44-47.
    [109] Osamu Tsuge,Shoichi Kikuchi,Koji Tokuda etal .Successful iron nuggets production at Itmk3 pilot plant.Iornmaking Confeernce Proceedings,ISS,Warrendale,PA,2002,61: 511-519.
    [110]段东平,万天骥,任大宁.利用普通品位铁矿的煤基直接还原新工艺研究[J].钢铁,2001, 36(8): 7-11.
    [111] Lary Lehtiinen,Steven D Rutherford.The Mesabi Nugget Project:new iron making technology of the future.ISSTech 2003 Confeernce Proceedings,2003:10431048.
    [112] Pargeter, John Kenneth.Process for the detoxification of steel plant wastes.Int.Cl:C22B7/02. European Patent Office,0296616A1,1988.12.28.
    [113]卢维高,黄典冰.矿煤混合体在1300-1500℃的直接还原钢铁,1997, 32(增刊): 91-97.
    [114] Jean Borlee,Didier Steylus,Rene Munnix.Scale-up of the Comet direct reduction process[J]. Iron and Steel Society Technical Paper,1997:24-28.
    [115] Isao Kobayashi,Yasuhiro Tanigaki,Akira uragami.用粉矿和煤直接炼铁的过程[J].钢铁,2000,35(增刊):91-93.
    [116] Mario Cesar Mantovani,Cyor Takano.Recycling of electric arc funrace dust by self-reducing process[J].Ironmaking Confeernce Proceedings,ISS,Warrendale,PA,1998, 57: 1255-1262.
    [117] Cyro Takano,MarceloB Mourao.Behavior of self-reduction pellets for ironmaking[J]. Ironmaking Confeernce Proceedings,ISS,Warrendale,PA,1998,57:1559-1566.
    [118]王尚槐,冯俊小.敞焰加热含碳球团矿直接还原过程的试验研究[J].钢铁,1996,31(5): 11-16.
    [119] S Sun,W-K Lu.Building of a mathematical model for the reduction of iron ore in ore/coal composites.ISIJ nternational,1999,39(2):1 30-138.
    [120]攀枝花资源综合利用办公室.攀枝花资源综合利用科研报告汇编-综合利用新流程(第六卷上)[G].1985,6-19.
    [121]攀枝花资源综合利用办公室.攀枝花资源综合利用科研报告汇编-综合利用新流程(第六卷中) [G] .1985.453-467.
    [122]储绍斌,石笙陶.钒钛磁铁矿精矿粉的还原过程[J].钢铁,1981,6(1):12.
    [123]黄典冰,杨学民.含碳球团还原过程动力学及模型[J].金属学报,1996,32(6):26-29.
    [124]徐荣军,倪瑞明.含碳铬矿球团还原动力学的研究[J].钢铁研究学报,1995,7(5):1.
    [125]汪云华,彭金辉.钒钛磁铁矿制取还原铁粉工艺及改进途径探讨[J].金属矿山,2006,(1):20.
    [126] Y. K..The Kinetics of Reduction of Hematite by Carbon[J]. Metallurgical Transactions. 1971, 2(5): 1439-1447.
    [127] Srinivasan,N.S,Lahiri,A.K..Studies on the Reduction of Hematite by Carbon[J]. Metallurgiical Transactions B, 1977,8(3):279-286.
    [128] Sastri M V C,Viswanath R P,Viswanathan B.Studies on the Reduction of Iron Oxide with Hydrogen[J].Hydrogen Energy,1982,7(12):951-955.
    [129] Yoshimi Shinya T,Yoshiaki K,eta1.Reduction of Haematite to Magnetite Induced by Hydrogen Ion Implantation[J].J.Phys.D:App1.Phys.,1996,29(1):8-13.
    [130] Bullard D E,Lynch D C.Reduction of Ilmenite in a Non-equilibrium Hydrogen Plasma[J].Metall.Mater.Trans.B:Process Metallurgy and Materials Processing Science. 1997,28B(3):517-519.
    [131] Prabhakaran K,Shaft K V P M,Ulman A.Low Temperature Carbon-free Reduction of Iron Oxide[J].Surf.Sci.,2002,506(2):250-254.
    [132] Chou K C,Li Q,Lin Q,eta1.Kinetics of absorption and dcsorption of hydrogen in alloys powder[J].International Journal of Hydrogen Energy,2005,30:301
    [133] Franzen H.,Reichelt W.,Rottmann G.,Vormerk H..Coal-based direct reduction in the Inmetco process and subsequent melting techniques[J].Steel Times International, 1984,(9):44-48.
    [134] S Sun,W-K Lu.Mathematical modeling of reactions in iron o re/coal composites[J].ISIJ International, 1993, 33(10): 1062-1069.
    [135]程红伟,鲁雄刚,李谦,等.含碳球团还原动力学机理[J].中国稀土学报, 2008,26(8):103.
    [136]吕亚男.钒钛磁铁精矿固态还原及高效利用研究.硕士学位论文,长沙:中南大学,2009:38-40.
    [137]德国钢铁工程师协会编.渣图集[M].北京:冶金工业出版社,1989:92.
    [138]章庆和.磁铁精矿冷固结球团直接还原新工艺的研究[J].钢铁,1997, 32(10): 1-11.
    [139] Q Wang,Z Yang.Reduction kinetics of iorn ore/coal pellet during fast heating[J].Ironmaking and Steelmaking,1998,25(6):443-447.
    [140] Frank E Former.Recent developments in altenrative ironmaking persented at Trinidad Seminar[J].Iron and Steel Engineer,1999,(6):68-69.
    [141]邱冠周,姜涛,徐经沧,等.冷固结球团直接还原[M].长沙:中南大学出版社,2001:139-171.
    [142]姬云波,童雄,叶国华.提钒技术的研究现状和进展[J].国外金属矿选矿,2007, (5): 10-13.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700