用户名: 密码: 验证码:
一元金属氧化物的原子层沉积及性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,原子层沉积技术由于具有精确控制薄膜厚度、台阶覆盖性极好、大面积生长薄膜均匀性非常好、生长温度较低等优点,受到研究人员越来越广泛的关注,在微电子领域得到越来越广泛的应用。利用原子层沉积技术生长多组分的金属氧化物铁电超薄薄膜开始成为研究的热点。铁电薄膜是近几十年来薄膜研究的前沿和热点之一。各种铋基铁电材料因其不含铅,引起了人们的广泛关注,如SrBi2Ta2O9、Bi4Ti3O12、BiFeO3等。而最近,Baettig等人通过理论研究发现,BiAIO3具有很大的自发极化强度(理论预测达到75.6μC/cm2)。利用原子层沉积技术生长多组分金属氧化物超薄薄膜必将有着广泛的应用前景。
     然而目前为止,利用原子层沉积技术生长的金属氧化物薄膜多为一元金属化合物,如ZnO、Al2O3、Fe2O3、ZrO2、Y2O3、Ta2O5等,关于生长多元金属氧化物的研究工作尚不多见,工艺远未成熟。而且对于SrBi2Ta2O9、Bi4Ti3O12、 BiFeO3等材料中的重要组分Bi2O3,在本文之前没有利用原子层沉积技术生长高质量的结晶Bi2O3薄膜的报道。本文对利用原子层沉积技术生长含铋体系的各组分金属氧化物铁电薄膜进行了相关研究,报道了利用原子层沉积技术生长出高质量的Bi2O3薄膜,并对其性质作了相关研究。成功探索出利用原子层沉积技术无需任何辅助技术手段在室温下生长出高绝缘性的Al2O3薄膜,利用异丙醇钛为钛前驱体生长了TiO2薄膜、纳米管。这些成果为本实验室的下一步多组分金属氧化物薄膜的研究工作打下了良好的基础。
     本论文获得的一些研究成果概括如下:
     (1)利用原子层沉积技术在Si(100)衬底、石英玻璃衬底上沉积得到符合化学计量比的、完全(012)取向的a相Bi203超薄薄膜。实验发现了Bi(thd)3分子中有机配体的空间位阻效应,沉积过程中的吸附机制符合Langmuir模型。
     采用Bi(thd)3和H2O分别作Bi、O前驱体、运用ALD技术生长Bi203超薄薄膜。利用XRD、TGA/DTA等测试详细分析了Bi(thd)3的分子结构、物理、化学特性;详细研究了ALD生长Bi2O3超薄膜的表面吸附反应机制、薄膜生长特性,利用薄膜生长动力学分析了获得完全α(012)取向的薄膜的机制;利用XRD、HRTEM、Raman测试等技术手段发现薄膜晶体结构为α相。AFM测试了形貌,发现薄膜具有平整的表面,表面粗糙度小于其他方法得到的结果。薄膜的漏电机制为Poole-Frenkel效应。傅立叶变换红外光谱(Fourier transform infrared spectroscopy, FTIR)表明生长时前驱体反应完全,没有可觉察的有机成分的残留。测试了Bi2O3薄膜的UV-vis透射光谱,发现随着温度的降低,光学带隙由室温下的3.03eV增加到3.12eV,其Eg-T关系符合Bose-Einstein关系,并由此拟合得到了Bi2O3薄膜的德拜温度约为392K,以及电子—声子相互作用强度αB为0.069。发现了获得能够在室温下存在的亚稳态γ-Bi2O3薄膜的方法。
     (2)实现在室温下无需任何辅助技术措施的原子层沉积氧化铝薄膜,沉积速率比已有报道的方法提高约两个数量级,所得薄膜的击穿场强高达7MV/cm,薄膜中的羟基及金属态铝团簇等杂质引起的缺陷密度比由已报道的方法得到的薄膜更低。
     进行了利用TMA(三甲基铝)和H2O、O3作为前驱体ALD生长Al2O3薄膜的研究,发明了在室温下无需任何辅助措施的ALD、以TMA和O3为前驱体生长Al2O3薄膜的方法;并通过AFM、SEM研究发现所得到的A1203薄膜具有原子级的平整表面,薄膜的生长方式为层状生长。以O3替代H2O为氧化剂使得沉积速度提高了两个数量级,大大有利于提高实际生产效率。对MIS(金属—绝缘体—半导体)结构的电容器的C-V特性测试分析表明利用O3为氧化剂得到的薄膜比利用H2O得到的薄膜漏电流更小,慢界面态密度降低了两个数量级(低至1010cm-2)。对MIM结构的电容器进行C-F特性测试,发现所得到的Al2O3薄膜在很宽的频率范围(102-106Hz)都没有介电色散现象。对薄膜漏电流和击穿电压的测试表明,利用03为氧化剂得到的Al2O3薄膜的电阻率高达1017Ω·cm,击穿场强达到7MV/cm,几乎是现有报道的利用H20生长的A1203薄膜的击穿场强的两倍。
     (3)纯净锐钛矿相ZiO2薄膜、纳米管的原子层沉积技术制备与研究。发现高表面比的多孔结构表面单分子层化学吸附延时效应。
     进行了利用TIP(异丙醇钛)和H2O或O3作为前驱体ALD生长TiO2薄膜的研究。研究了晶体结构、对锐钛矿相(101)择优取向作了理论解释,测试分析了薄膜的漏电机制,发现其漏电特性为空间限制电流机制(Space-charge-limited conduction,简称SCLO。利用薄膜生长工艺和阳极氧化铝AAO模板进行了Ti02纳米管的生长,分析了微观形貌特征、元素组成,分析了纳米管的晶体结构、存在的应力和对拉曼光谱的影响。
In recent years, atomic layer deposition (ALD) has become one of the solutions for the ultra thin films. ALD employs self-limiting surface reactions that result in the growth of one atomic layer per ALD cycle, and high quality thin films are achieved layer by layer with precisely controlled film thickness to single atomic layer, and excellent conformity in very high aspect ratio geometries and porous structures. Moreover, ALD deposition can perform at much lower temperature than some other techniques.
     Recently, multi-component metal oxides ultra thin films preparing via ALD method becomes a research hotspot. Bi-based ferroelectric thin films such as SrBi2Ta2O9,(Bi,La)4Ti3O12, BiAlO3, BiFeO3have attracted considerable attention. However, there are little reports about deposition of Bi-based complex ferroelectrics films by ALD. As an important component for SrBi2Ta2O9, Bi4Ti3O12, BiFeO3, high quality Bi2O3films had not been deposited successfully via ALD method.
     In this work, some previous works for ALD Bi-based complex ferroelectrics films were done. The main results are as follow:
     (1) α-Bi2O3ultra thin films were successfully synthesized on silicon and quartz substrates by means of ALD using Bi(thd)3and H2O as precursors. The marked steric hindrance originate from the bulky ligands of Bi(thd)3was found.
     The structure of Bi(thd)3(thd:2,2,6,6-tetramethyl-3,5-heptanedionato) molecule, volatility, thermal stability, the reaction mechanism for Bi(thd)3and H2O was investigated. The optimum ALD window was about270-300℃,and an ALD-type growth mechanism via surface saturation reaction was identified, the growth rate was about0.1A/cycle. The growth rate fits well to a Langmuir adsorption model. The X-ray Diffraction (XRD), Raman scattering and High-resolution transmission electron microscopy investigations revealed that Bi2O3films crystallized into a predominant alpha phase above250℃. The leakage mechanism of the films is Poole-Frenkel effect. Fourier transform infrared spectroscopy investigation implies the reaction is complete, and no organic residue remained in the films. It was found that the band gap increased with the decreasing temperature, and the relationship of Eg~T fits well to the Bose-Einsteinmodel. In addition, the α-Bi2O3films (synthesized by ALD) transformed into meta-stable y-Bi2O3. with preferred orientation (222) after annealing above512℃, and y-phase could persist at room temperature.
     (2) AI2O3thin films were deposited by atomic layer deposition (ALD) method with trimethylaluminum (TMA) and ozone. The deposition was accomplished at room temperature without any assistance. The breakdown field of the films is as high as7MV/cm
     The GPC (about1.25A/cycle) is almost independent of TMA purge time range from2to12s. This indicates that the minimum of the purge time2s is long enough to eliminate multilayer adsorption and prevent subsequent CVD-type growth. The ALD cycle time can be reduced two orders of magnitude with the using of O3instead of H2O. The Al2O3films surface are atomically smooth. The growth possibly follows2D layer-by-layer growth mode. The capacitance-voltage loop implies that there are much less defects density (order of magnitude of1010cm-2) in the03-based Al2O3film than H2O-based one. Using of O3for the Al2O3film can suppress the presence of-OH radicals compares to H2O-based process, much lower defects density in the03-based films facilitates the improvement of the insulating behavior and C-V characteristics. The excellent insulating behavior of03-based films corresponds to resistivity higher than1017Ω·-cm. The breakdown field is about7MV/cm, and it is roughly twice that of H2O-based film (deposited at33℃)..
     (3) The anatase TiO2films and nanotubes have been synthesized successfully by atomic layer deposition method using titanium isopropoxide and water.
     The XRD studies show the anatase phase (101) preferred orientation. The characteristic of leakage is consistent with space-charge-limited conduction mechanism. The morphology, composition of the prepared TiO2nanotubes was investigated by scanning electron microscope and energy dispersive X-ray spectroscopy (EDS), respectively. The TiO2nanotubes are composed of Ti and O, and the ratio of Ti to O approximate to1:2. The was confirmed and certified by XRD and Raman scattering studies. The lattice constants of the TiO2nanotubes is slightly larger than that of powder anatase TiO2crystal, which may due to the the strain resulting from the crimp of the TiO2crystal lattice.
引文
1. T. Suntola and J. Antson, (US Patents,1977).
    2. M. Pessa, R. M kel and T. Suntola, Appl. Phys. Lett.38,131 (1981).
    3. J. S. Min, Y. W. Son, W. G. Kang and S. W. Kang,1998 (unpublished).
    4. R. Huang and A. H. Kitai, J. Electron. Mater.22,215-220 (1993).
    5. K. Kukli, J. Aarik, A. Aidla, O. Kohan, T. Uustare and V. Sammelselg, Thin Solid Films 260,135 (1995).
    6. G Sveshnikova, S. Kol'tsov and V. Aleskovskii, Zh. Prikl. Khim 43,1150 (1970).
    7. G N. Parsons, S. M. George and M. Knez, MRS bulletin 36,865 (2011).
    8. K. Kukli, M. Ritala, M. Schuisky, M. Leskela, T. Sajavaara, J. Keinonen, T. Uustare and A. Harsta, Chem. Vap. Deposition 6,303 (2000).
    9. W. Kessels, H. Knoops, S. Dielissen, A. Mackus and M. van de Sanden, Appl. Phys. Lett.95,013114 (2009).
    10. M. Leskela and M. Ritala, Thin Solid Films 409,138 (2002).
    11. K. Kukli, A. Aidla, J. Aarik, M. Schuisky, A. Harsta, M. Ritala and M. Leskela, Langmuir 16,8122 (2000).
    12. J. Ferguson, E. Smith, A. Weimer and S. George, J. Electrochem. Soc.151, G528 (2004).
    13. T. O. Kaariainen and D. C. Cameron, Plasma Processes Polym.6, S237 (2009).
    14. S. K. Kim, S. Hoffmann-Eifert and R. Waser, Electrochemical and Solid State Letters 14, H146 (2011).
    15. M. Putkonen, Dissertation for PhD., department of chemical technology, Helsinki University of Technology, Espoo 2002, Finland,2002.
    16. J. Klaus and S. George, Surf. Sci.447,81 (2000).
    17. J. Kim, K. Chakrabarti, J. Lee, K. Y. Oh and C. Lee, Mater. Chem. Phys.78, 733 (2003).
    18. J. W. Klaus, S. J. Ferro and S. M. George, J. Electrochem. Soc.147,1175 (2000).
    19. S. K. Kim, S. Hoffmann-Eifert and R. Waser, J. Phys. Chem. C 113,11329 (2009).
    20. D. C. Miller, R. R. Foster, S. H. Jen, J. A. Bertrand, D. Seghete, B. Yoon, Y. C. Lee, S. M. George and M. L. Dunn, Acta Mater.57,5083 (2009).
    21. A. Dameron, D. Seghete, B. Burton, S. Davidson, A. Cavanagh, J. Bertrand and S. George, Chem. Mater.20,3315 (2008).
    22. L. D. Salmi, E. Puukilainen, M. Vehkamaki, M. Heikkila and M. Ritala, Chem. Vap. Deposition 15,221 (2009).
    23. G Wilk, R. Wallace and J. Anthony, J. Appl. Phys.89,5243 (2001).
    24. W. Tsai, R. Carter, H. Nohira, M. Caymax, T. Conard, V. Cosnier, S. DeGendt, M. Heyns, J. Petry and O. Richard, Microelectron. Eng.65,259 (2003).
    25. M. Gutsche, H. Seidl, T. Hecht, S. Kudelka and U. Schroeder, Future Fab Int 14,1009 (2003).
    26. D. G Park, H. J. Cho, C. Lim, I. S. Yeo, J. S. Roh, C. T. Kim and J. M. Hwang,2000 (unpublished).
    27. Y. H. Wu, C. K. Kao, B. Y. Chen, Y. S. Lin, M. Y. Li and H. C. Wu, Appl. Phys. Lett.93,033511 (2008).
    28. W. Chen, W. J. Liu, M. Zhang, S. J. Ding, D. W. Zhang and M. F. Li, Appl. Phys. Lett.91,022908 (2007).
    29. H. Kim, Surf. Coat. Technol.200,3104 (2006).
    30. J. H. Choi, J. H. Chung, S. H. Oh, J. S. Choi, C. Y. Yoo, S. T. Kim, U. I. Chung and J. T. Moon,2003 (unpublished).
    31. B. S. Lim, A. Rahtu and R. G Gordon, Nature materials 2,749 (2003).
    32. H. Knoops, A. Mackus, M. Donders, M. Van De Sanden, P. Notten and W. Kessels, Electrochem. Solid-State Lett.12, G34 (2009).
    33. Y. Zhu, K. A. Dunn and A. E. Kaloyeros, J. Mater. Res.22,1292 (2007).
    34. X. Jiang, H. Huang, F. B. Prinz and S. F. Bent, Chem. Mater.20,3897 (2008).
    35. Y. J. Lee and S. W. Kang, Electrochem. Solid-State Lett.5, C91 (2002).
    36. A. Furuya, H. Tsuda and S. Ogawa, J. Vac. Sci. Technol. B 23,979 (2005).
    37. S. H. Kim, H. T. Kim, S. S. Yim, D. J. Lee, K. S. Kim, H. M. Kim, K. B. Kim and H. Sohn, J. Electrochem. Soc.155, H589 (2008).
    38. W. H. Kim, K. Heo, Y. K. Lee, T. M. Chung, C. G Kim, S. Hong, J. Heo and H. Kim, J. Electrochem. Soc.158, Dl (2011).
    39. K. Park and G Parsons, Appl. Phys. Lett.89,043111 (2006).
    40. J. W. Elam, G Xiong, C. Y. Han, H. H. Wang, J. P. Birrell, U. Welp, J. N. Hryn, M. J. Pellin, T. F. Baumann and J. F. Poco, Journal of Nanomaterials 2006,22 (2006).
    41. M. Kariniemi, J. Niinisto, T. Hatanpaa, M. Kemell, T. Sajavaara, M. Ritala and M. Leskela, Chem. Mater.23,2901 (2011).
    42. J. Hamalainen, T. Sajavaara, E. Puukilainen, M. Ritala and M. Leskela, Chem. Mater.24,55 (2012).
    43. K. Kim and S. Lee, J. Appl. Phys.100,051604 (2006).
    44. M. D. Groner, F. H. Fabreguette, J. W. Elam and S. M. George, Chem. Mater. 16,639 (2004).
    45. J. W.Elam, N. P. Dasgupta and F. B, Prinz, MRS Bull.36,899 (2011).
    46. K. Park, Q. F. Zhang, B. B. Garcia, X. Y. Zhou, Y. H. Jeong and G Z. Cao, Adv. Mater.22,2329 (2010).
    47. H. C. Chen, M. J. Chen, M. K. Wu, W. C. Li, H. L. Tsai, J. R. Yang, H. Kuan and M. Shiojiri, IEEE J. Quantum Electron.46,265 (2010).
    48. H. T. Jeon, (Google Patents,2004).
    49. P. Baettig, C. F. Schelle, R. LeSar, U. V. Waghmare and N. A. Spaldin, Chem. Mater.17,1376 (2005).
    1. A. Langmuir, J. Am. Chem. Soc 33,1097 (1919).
    2. O. Redlich and D. L. Peterson, J. Phys. Chem.63,1024 (1959).
    3. A. B. F. Martinson, M. J. DeVries, J. A. Libera, S. T. Christensen, J. T. Hupp, M. J. Pellin and J. W. Elam, Journal of Physical Chemistry C,115,4333 (2011).
    4. Y. Shen, Y. Li, W. Li, J. Zhang, Z. Hu and J. Chu, J. Phys. Chem. C 116,3449 (2012).
    5. H. S. Fogler, Elements of chemical reaction engineering. (Prentice-Hall International London,1999).
    6. C. Soto and W. Tysoe, J. Vac. Sci. Technol. A 9,2686 (1991).
    7. G Eres and J. Sharp, J. Appl. Phys.74,7241 (1993).
    8. A. Dillon, A. Ott, J. Way and S. George, Surf. Sci.322,230 (1995).
    9. M. K. Gobbert, S. G Webster and T. S. Cale, J. Electrochem. Soc.149, G461 (2002).
    10. M. K. Gobbert, V. Prasad and T. S. Cale, J. Vac. Sci. Technol. B 20,1031 (2002).
    11. M. K. Gobbert, V. Prasad and T. S. Cale, Thin Solid Films 410,129 (2002).
    12. M. Lindblad, S. Haukka, A. Kytokivi, E. L. Lakomaa, A. Rautiainen and T. Suntola, Appl. Surf. Sci.121,286 (1997).
    13. R. L. Puurunen, A. Root, S. Haukka, E. I. Iiskola, M. Lindblad and A. O. I. Krause, J. Phys. Chem. B 104,6599 (2000).
    14. R. L. Puurunen, M. Lindblad, A. Root and A. O. I. Krause, Phys. Chem. Chem. Phys.3,1093 (2001).
    15. S. Haukka, E. L. Lakomaa and A. Root, The Journal of Physical Chemistry 97,5085 (1993).
    16. R. Peglar, F. Hambleton and J. Hockey, J. Catal.20,309 (1971).
    17. F. Hambleton and J. Hockey, J. Catal.20,321 (1971).
    18. C. Mui, Y. Widjaja, J. K. Kang and C. B. Musgrave, Surf. Sci.557,159 (2004).
    19. A. Kytokivi, A. Rautiainen and A. Root, J. Chem. Soc., Faraday Trans.93, 4079 (1997).
    20. I. V. Babich, Y. V. Plyuto, P. Van Der Voort and E. F. Vansant, J. Colloid Interface Sci.189,144 (1997).
    21. M. Alam and M. Green, J. Appl. Phys.94,3403 (2003).
    22. R. L. Puurunen, J. Appl. Phys.95,4777 (2004).
    23. J. Koo, J. W. Lee, T. Doh, Y. Kim, Y. D. Kim and H. Jeon, J. Vac. Sci. Technol.A 19,2831(2001).
    24. R. L. Puurunen, Chem. Vap. Deposition 9,249 (2003).
    25. M. Leskela and M. Ritala, Thin Solid Films 409,138 (2002).
    26. J. R. Wank, S. M. George and A. W. Weimer, J. Am. Ceram. Soc.87,762 (2004).
    27. J. Elam and S. George, Chem. Mater.15,1020 (2003).
    28. M. Deminsky, A. Knizhnik, I. Belov, S. Umanskii, E. Rykova, A. Bagatur'yants, B. Potapkin, M. Stoker and A. Korkin, Surf. Sci.549,67 (2004).
    29. M. Green, M. Y. Ho, B. Busch, G. Wilk, T. Sorsch, T. Conard, B. Brijs, W. Vandervorst, P. Raisanen and D. Muller, J. Appl. Phys.92,7168 (2002).
    30. A. Satta, J. Schuhmacher, C. Whelan, W. Vandervorst, S. Brongersma, G. Beyer, K. Maex, A. Vantomme, M. Viitanen and H. Brongersma, J. Appl. Phys.92,7641 (2002).
    31. Q. Peng, X. Y. Sun, J. C. Spagnola, G. K. Hyde, R. J. Spontak and G. N. Parsons, Nano Lett.7,719 (2007).
    32. A. Satta, A. Vantomme, J. Schuhmacher, C. Whelan, V. Sutcliffe and K. Maex, Appl. Phys. Lett.84,4571 (2004).
    33. M. Cassir, F. Goubin, C. Bernay, P. Vernoux and D. Lincot, Appl. Surf. Sci. 193,120 (2002).
    34. R. L. Puurunen and W. Vandervorst, J. Appl. Phys.96,7686 (2004).
    35. R. L. Puurunen, Chem. Vap. Deposition 10,159 (2004).
    36. J. Badot, S. Ribes, E. Yousfi, V. Vivier, J. Pereira-Ramos, N. Baffier and D. Lincotb, Electrochem. Solid-State Lett.3,485 (2000).
    37. K. Kobayashi and S. Okudaira, Chem. Lett.6,511 (1997).
    38. J. Aarik, A. Aidla, T. Uustare and V. Sammelselg, J. Cryst. Growth 148,268 (1995).
    39. J. Aarik, A. Aidla, A. A. Kiisler, T. Uustare and V. Sammelselg, Thin Solid Films 340,110(1999).
    40. P. Tagtstrom, P. Martensson, U. Jansson and J. O. Carlsson, J. Electrochem. Soc.146,3139(1999).
    41. V. Drozd, A. Tulub, V. Aleskovski and D. Korol'Kov, Appl. Surf. Sci.82,587 (1994).
    42. L. Ben-dor, R. Druilhe and P. Gibart, J. Cryst. Growth 24,172 (1974).
    43. M. Tammenmaa, M. Leskela, T. Koskinen and L. Niinisto, Journal of the Less Common Metals 126,209 (1986).
    44. M. Tammenmaa, H. Antson, M. Asplund, L. Hiltunen, M. Leskela, L. Niinisto and E. Ristolainen, J. Cryst. Growth 84,151 (1987).
    45. J. Aarik, A. Aidla, A. Jaek, M. Leskela and L. Niinisto, Appl. Surf. Sci.75,33 (1994).
    46. V. Saanila, J. Ihanus, M. Ritala and M. Leskela, Chem. Vap. Deposition 4, 227(1998).
    47. K. Timmer, S. L. Cook and C. Spee, (US Patents,1998).
    48. B. S. Lim, A. Rahtu and R. G. Gordon, Nature materials 2,749 (2003).
    49. B. S. Lim, A. Rahtu, J. S. Park and R. G. Gordon, Inorg. Chem.42,7951 (2003).
    50. W. G Jeong, E. Menu and P. Dapkus, Appl. Phys. Lett.55,244 (1989).
    51. W. Chen, J. Chen, L. Anthony and P. Liu, Appl. Phys. Lett.55,987 (1989).
    52. A. Ott, J. Johnson, J. Klaus and S. George, Appl. Surf. Sci.112,205 (1997).
    53. S. Bedair, M. Tischler, T. Katsuyama and N. El-Masry, Appl. Phys. Lett.47, 51 (1985).
    54. M. Ozeki and N. Ohtsuka, Appl. Surf. Sci.82,233 (1994).
    55. D. Riihela, M. Ritala, R. Matero and M. Leskela, Thin Solid Films 289,250 (1996).
    56. K. Kukli, M. Ritala, M. Leskela and J. Jokinen, J. Vac. Sci. Technol. A 15, 2214 (1997).
    57. J. F. Fan and K. Toyoda, Appl. Surf. Sci.60,765 (1992).
    58. V. Drozd, A. Baraban and I. Nikiforova, Appl. Surf. Sci.82,583 (1994).
    59. H. Kumagai, K. Toyoda, M. Matsumoto and M. Obara, Jpn. J. Appi. Phys.32, 6137 (1993).
    60. J. Kim, K. Chakrabarti, J. Lee, K. Y. Oh and C. Lee, Mater. Chem. Phys.78, 733 (2003).
    61. M. D. Groner, F. H. Fabreguette, J. W. Elam and S. M. George, Chem. Mater. 16,639 (2004).
    62. V. Drozd and V. Aleskovski, Appl. Surf. Sci.82,591 (1994).
    63. J. T. Tanskanen, J. R. Bakke, S. F. Bent and T. A. Pakkanen, Langmuir 26, 11899(2010).
    64. V. Drozd, I. Nikiforova, V. Bogevolnov, A. Yafyasov, E. Filatova and D. Papazoglou, J. Phys. D:Appl. Phys.42,125306 (2009).
    65. M. T. Harrison, S. V. Kershaw, M. G Burt, A. Rogach, A. Eychmuller and H. Weller, J. Mater. Chem.9,2721 (1999).
    66. W. Yeh and M. Matsumura, Jpn. J. Appi. Phys.36,6884 (1997).
    67. D. K. Russell, Chem. Vap. Deposition 2,223 (1996).
    68. M. Schuisky, K. Kukli, M. Ritala, A. Harsta and M. Leskela, Chem. Vap. Deposition 6,139 (2000).
    69. M. Putkonen, Atomic Layer Deposition of Nanostructured Materials, (Wiley Press,2012)
    70. M. Putkonen and L. Niinisto, J. Mater. Chem.11,3141 (2001).
    71. H. O. Davies, A. C. Jones, T. J. Leedham, P. O'Brien, A. J. P. White and D. J. Williams, J. Mater. Chem.8,2315 (1998).
    72. M. Lukosius, C. Wenger, S. Pasko, L. Costina, J. Dabrowski, R. Sorge, H. J. Mussig and C. Lohe, Ieee Transactions on Electron Devices 55,2273 (2008).
    73. P. R. Chalker, R. J. Potter, J. L. Roberts, A. C. Jones, L. M. Smith and M. Schumacher, J. Cryst. Growth 272,778 (2004).
    74. T. J. Leedham, A. C. Jones, H. O. Davies, N. L. Tobin, P. A. Williams, J. F. Bickley and A. Steiner, Integrated Ferroelectrics 36,111 (2001).
    75. M. J. Crosbie, P. J. Wright, H. O. Davies, A. C. Jones, T. J. Leedham, P. O'Brien and G W. Critchlow, Chem. Vap. Deposition 5,9 (1999).
    76. M. Ritala, K. Kukli, A. Rahtu, P. I. Raisanen, M. Leskela, T. Sajavaara and J. Keinonen, Science 288,319 (2000).
    77. K. Kukli, M. Ritala and M. Leskela, Chem. Mater.12,1914 (2000).
    78. A. Rahtu, M. Ritala and M. Leskela, Chem. Mater.13,1528 (2001).
    79. W. K. Kim, S. W. Kang and S. W. Rhee, J. Vac. Sci. Technol. A 21, L16 (2003).
    80. M. Juppo, M. Ritala and M. Leskela, J. Vac. Sci. Technol. A15,2330 (1997).
    81. M. Juppo, M. Vehkamaki, M. Ritala and M. Leskela, J. Vac. Sci. Technol., A 16,2845 (1998).
    82. J. Klaus, S. Ferro and S. George, Appl. Surf. Sci.162,479 (2000).
    83. J. Elam, C. Nelson, R. Grubbs and S. George, Surf. Sci.479,121 (2001).
    84. H. Kim, J. Vac. Sci. Technol. B 21,2231 (2003).
    85. M. Yang, H. Chung, A. Yoon, H. Fang, A. Zhang, C. Knepfler, R. Jackson, J. Byun, A. Mak and M. Eizenberg,2001 (unpublished).
    86. T. Suntola and J. Antson, (Google Patents,1977).
    87. K. Kukli, M. Ritala, M. Schuisky, M. Leskela, T. Sajavaara, J. Keinonen, T. Uustare and A. Harsta, Chem. Vap. Deposition 6,303 (2000).
    88. M. Ritala, T. Asikainen and M. Leskela, Electrochem. Solid-State Lett.1,156 (1998).
    89. K. Kukli, K. Forsgren, J. Aarik, T. Uustare, A. Aidla, A. Niskanen, M. Ritala, M. Leskela and A. Harsta, J. Cryst. Growth 231,262 (2001).
    90. K. Kukli, J. Aarik, A. Aidla, K. Forsgren, J. Sundqvist, A. Harsta, T. Uustare, H. Mandar and A. A. Kiisler, Chem. Mater.13,122 (2001).
    91. L. Hiltunen, H. Kattelus, M. Leskela, M. Makela, L. Niinisto, E. Nykanen, P. Soininen and M. Tiittad, Mater. Chem. Phys.28,379 (1991).
    92. M. Nieminen, L. Niinisto and E. Rauhala, J. Mater. Chem.6,27 (1996).
    93. J. Si, S. B. Desu and C. Y. Tsai, J. Mater. Res.9,1721 (1994).
    94. H. Molsa, L. Niinisto and M. Utriainen, Adv. Mater. Opt. Electron.4,389 (1994).
    1. H. Gobrecht, S. Seeck, H. E. Bergt, A. Martens and K. Kossmann, Phys. Status Solidi 34,569 (1969).
    2. V. Dolocan and F. Iova, Phys. Status Solidi A 64,755 (1981).
    3. L. Leontie, M. Caraman and G I. Rusu, J. Optoel. & Adv. Mat.2,385 (2000).
    4. Y. I. Matatov-Meytal and M. Sheintuch, Ind. Eng. Chem. Res.37,309 (1998).
    5. P. Shuk, H. D. Wiemhofer, U. Guth, W. Gopel and M. Greenblatt, Solid State Ionics 89,179(1996).
    6. M. Peiteado, M. A. de la Rubia, M. J. Velasco, F. J. Valle and A. C. Caballero, J. Eur. Ceram. Soc.25,1675 (2005).
    7. S. Khonthon, S. Morimoto, Y. Arai and Y Ohishi, Opt. Mater.31,1262 (2009).
    8. J. Zhi, Y. Y Geng and D. H. Gu, Chin. Opt. Lett.6,294 (2008).
    9. K. Kobayasbhi, J. Non-Cryst. Solids 316,403 (2003).
    10. X. Gou, R. Li, G Wang, Z. Chen and D. Wexler, Nanotechnology 20,495501 (2009).
    11. D. Yuan, J. Zeng, N. Kristian, Y. Wang and X. Wang, Electrochem. Commun. 11,313(2009).
    12. F. L. Zheng, G R. Li, Y N. Ou, Z. L. Wang, C. Y Su and Y. X. Tong, Chem. Commun.46,5021 (2010).
    13. L. Leontie, M. Caraman, M. Delibas and G I. Rusu, Mater. Res. Bull.36, 1629 (2001).
    14. H. W. Kim, Thin Solid Films 516,3665 (2008).
    15. C. H. Wang, C. L. Shao, L. J. Wang, L. Zhang, X. H. Li and Y C. Liu, J. Colloid Interface Sci.333,242 (2009).
    16. L. Leontie, M. Caraman, A. Visinoiu and G I. Rusu, Thin Solid Films 473, 230 (2005).
    17. M. Schuisky and A. Harsta, Chem. Vap. Deposition 2,235 (1996).
    18. H. T. Fan, X. M. Teng, S. S. Pan, C. Ye, G H. Li and L. D. Zhang, Appl. Phys. Lett.87,231916 (2005).
    19. S. W. Kang and S. W. Rhee, Thin Solid Films 468,79 (2004).
    20. T. Hatanpaa, M. Vehkamaki, M. Ritala and M. Leskela, Dalton Trans.39, 3219(2010).
    21. M. Vehkamaki, T. Hatanpaa, M. Ritala and M. Leskela, J. Mater. Chem.14, 3191 (2004).
    22. M. Vehkam ki, T. Hatanp, M. Kemell, M. Ritala and M. Leskel Chem. Mater. 18,3883 (2006).
    23. T. Suntola, Appl. Surf. Sci.100,391 (1996).
    24. N. M. Sammes, G. A. Tompsett, H. Nafe and F. Aldinger, J. Eur. Ceram. Soc. 19,1801 (1999).
    25. M. Putkonen and L. Niinist Precursor Chemistry of Advanced Materials,9, 125 (2005).
    26. R. L. Puurunen, J. Appl. Phys.97,121301 (2005).
    27. A. B. F. Martinson, M. J. DeVries, J. A. Libera, S. T. Christensen, J. T. Hupp, M. J. Pellin and J. W. Elam, J. Phy. Chem. C,115,4333 (2011).
    28. K. B. G E.Ostereng,0. Nilsen and H. Fjellvag. (2009).
    29. H. C. Chen, M. J. Chen, M. K. Wu, W. C. Li, H. L. Tsai, J. R. Yang, H. Kuan and M. Shiojiri, IEEE J. Quantum Electron.46,265 (2010).
    30. A. P. Milanov, K. Xu, A. Laha, E. Bugiel, R. Ranjith, D. Schwendt, H. J. Osten, H. Parala, R. A. Fischer and A. Devi, J. Am. Chem. Soc.132,36 (2010).
    31. A. Lintanf-Salaiin, A. Mantoux, E. Djurado and E. Blanquet, Microelectron. Eng.87,373 (2010).
    32. J. Niinisto, M. Mantymaki, K. Kukli, L. Costelle, E. Puukilainen, M. Ritala and M. Leskela, J. Cryst. Growth 312,245 (2010).
    33. B. Hudec, K. Husekova, E. Dobrocka, T. Lalinsky, J. Aarik, A. Aidla and K. Frohlich, IOP Conference Series:Mater. Sci. Eng.8,012024 (2010).
    34. M. LeskelS and M. Ritala, Angew. Chem. Int. Ed.42,5548 (2003).
    35. M. Ylilammi, Thin Solid Films 279,124 (1996).
    36. R. L. Puurunen, Chem. Vap. Deposition 9,327 (2003).
    37. A. Deepatana and M. Valix, J. Hazard. Mater.137,925 (2006).
    38. A. Deepatana and M. Valix, Desalination 218,297 (2008).
    39. M. Putkonen, T. Aaltonen, M. Alnes, T. Sajavaara, O. Nilsen and H. Fjellv g, J. Mater. Chem.19,8767 (2009).
    40. P. Myllymaki, M. Roeckerath, J, M;.Lopes, J. Schubert, K. Mizohata, M. Putkonen and L. Niinisto, J. Mater. Chem.20,4207 (2010).
    41. M. Lie, H. Fjellvag and A. Kjekshus, Thin Solid Films 488,74 (2005).
    42. J. Harjuoja, S. Vayrynen, M. Putkonen, L. Niinisto and E. Rauhala, Appl. Surf. Sci.253,5228 (2007).
    43. K. B. Klepper, O. Nilsen and H. Fjellvag, Thin Solid Films 515,7772 (2007).
    44. M. Vlad and E. Segal, Surf. Sci.79,608 (1979).
    45. T. Takeyama, N. Takahashi, T. Nakamura and S. Itoh, Solid State Commun. 133,771 (2005).
    46. S. J. A. Moniz, C. S. Blackman, C. J. Carmalt and G Hyett, J. Mater. Chem. 20,7881 (2010).
    47. D. Poleti, L. Karanovic, M. Zdujic, E. Jovalekic and Z. Brankovic, Solid-State Sci.6,239 (2004).
    48. T. Takeyama, Opt. Mater.26,413 (2004).
    49. C. Bedoya, G G Condorelli, S. T. Finocchiaro, A. Di Mauro, I. L. Fragala, L. Cattaneo and S. Carella, Chem. Vap. Deposition 11,261 (2005).
    50. T. Takeyama, N. Takahashi, T. Nakamura and S. Itoh, Mater. Res. Bull.41, 1690 (2006).
    51. C. Wagner, L. Davis, M. Zeller, J. Taylor, R. Raymond and L. Gale, Surf. Interface Anal.3,211(1981).
    52. M. Ritala, K. Kukli, A. Rahtu, P. I. Raisanen, M. Leskela, T. Sajavaara and J. Keinonen, Science 288,319 (2000).
    53. V. Denisov, A. Ivlev, A. Lipin, B. Mavrin and V. Orlov, J. Phys.:Condens. Matter 9,4967 (1997).
    54. K. N. Tu, J. W. Mayer and L. C. Feldman, Electronic thin film science:for electrical engineers and materials scientists. (Prentice Hall,1992).
    55. J. Venables, Introduction to surface and thin film processes. (Cambridge Univ Pr,2000).
    56. J. W. Elam, D. A. Baker, A. B. F. Martinson, M. J. Pellin and J. T. Hupp, J. Phys. Chem. C 112,1938 (2008).
    57. B. Burton, D. Goldstein and S. George, J. Phys. Chem. C 113,1939 (2009).
    58. K. Kuribayashi and R. Ueyama, Thin Solid Films 295,16 (1997).
    59. K. Maki, N. Komiya and A. Suzuki, Thin Solid Films 445,224 (2003).
    60. M. M. Sung, C. Kim, C. G Kim and Y. Kim, J. Cryst. Growth 210,651 (2000).
    61. H. C. Aspinall, J. M. Gaskell, Y. F. Loo, A. C. Jones, P. R. Chalker, R. J. Potter, L. M. Smith and G W. Critchlow, Chem. Vap. Deposition 10,301 (2004).
    62. M. Burriel, G. Garcia, J. Santiso, A. Abrutis, Z. Saltyte and A. Figueras, Chem. Vap. Deposition 11,106 (2005).
    63. S. Miyake, K. Yamamoto, S. Fujihara and T. Kimura, J. Am. Ceram. Soc.85, 992 (2002).
    64. W. Kingery, H. Bowen and D. Uhlmann, Introduction to Ceramics 2,448 (1976).
    65. D. Barreca, G. A. Rizzi and E. Tondello, Thin Solid Films 333,35 (1998).
    66. T. Takeyama, N. Takahashi, T. Nakamura and S. Itoh, Mater. Res. Bull.41, 1690(2006).
    67. L. Leontie, M. Caraman, A. Visinoiu and G. Rusu, Thin Solid Films 473,230 (2005).
    68. J. G Simmons, Physical Review 155,657 (1967).
    69. R. J. Betsch and W. B. White, Spectrochimica Acta Part A:Molecular Spectroscopy 34,505 (1978).
    70. A. B. Kuzmenko, E. A. Tishchenko and V. G. Orlov, Journal of Physics-Condensed Matter 8,6199 (1996).
    71. M. D. Groner, F. H. Fabreguette, J. W. Elam and S. M. George, Chem. Mater. 16,639 (2004).
    72. M. Nieminen, T. Sajavaara, E. Rauhala, M. Putkonen and L. Niinisto, J. Mater. Chem.11,2340 (2001).
    73. M. Meminen, M. Putkonen and L. Niinisto, Appl. Surf. Sci.174,155 (2001).
    74. P. Martin, S. Guizard, P. Daguzan, G Petite, P. d'Oliveira, P. Meynadier and M. Perdrix, Physical Review B 55,5799 (1997).
    75. J. Wu, W. Walukiewicz, W. Shan, K. Yu, J. Ager III, S. Li, E. Haller, H. Lu and W. J. Schaff, J. Appl. Phys.94,4457 (2003).
    76. J. Muth, J. Lee, I. Shmagin, R. Kolbas, H. Casey Jr, B. Keller, U. Mishra and S. DenBaars, Appl. Phys. Lett.71,2572 (1997).
    77. W. Li, J. Zhu, X. Xu, K. Jiang, Z. Hu, M. Zhu and J. Chu, J. Appl. Phys.110, 013504(2011).
    78. L. Jiang, W. Shen, H. Ogawa and Q. Guo, J. Appl. Phys.94,5704 (2003).
    79. N. A. Mortensen and S. Xiao, Appl. Phys. Lett.90,141108 (2007).
    80. J. Tauc, A. Menth and D. Wood, Phys. Rev. Lett.25,749 (1970).
    81. A. Matsumoto, Y. Koyama and I. Tanaka, Physical Review B 81,094117 (2010).
    82. L. Li, Y. W. Yang, G. H. Li and L. D. Zhang, Small 2,548 (2006).
    83. T. Gujar, V. Shinde and C. Lokhande, Mater. Res. Bull.41,1558 (2006).
    84. S. Condurache-Bota, N. Tigau, A. Rambu, G. Rusu and G Rusu, Appl. Surf. Sci.257,10545(2011).
    85. T. P. Debies and J. W. Rabalais, Chem. Phys.20,277 (1977).
    86. Y. Varshni, Physica 34 (1),149 (1967).
    87. L. Vina, S. Logothetidis and M. Cardona, Physical Review B 30,1979 (1984).
    88. R. Passler, physica status solidi (b) 200,155 (1997).
    89. C. Rincon, S. M. Wasim, G. Marin and I. Molina, J. Appl. Phys.93,780 (2003).
    90. A. Manoogian and J. Woolley, Can. J. Phys.62,285 (1984).
    91. K. Nam, J. Li, M. Nakarmi, J. Lin and H. Jiang, Appl. Phys. Lett.84,5264 (2004).
    92. S. Biemacki, U. Scherz and B. Meyer, Physical Review B 49,4501 (1994).
    1. H. C. Lin, P. D. Ye and G. D. Wilk, Appl. Phys. Lett.87,182904 (2005).
    2. J. H. Lee, K. Koh, N. I. Lee, M. H. Cho, Y. K. Ki, J. S. Jeon, K. H. Cho, H. S. Shin, M. H. Kim, K. Fujihara, H. K. Kang and J. T. Moon, International Electron Devices Meeting 2000. Technical Digest. IEDM (Cat. No.00CH37138) (2000).
    3. J. B. Kim, D. R. Kwon, K. Chakrabarti, C. Lee, K. Y. Oh and J. H. Lee, J. Appl. Phys.92,6739 (2002).
    4. J. Meyer, D. Schneidenbach, T. Winkler, S. Hamwi, T. Weimann, P. Hinze, S. Ammermann, H. H. Johannes, T. Riedl and W. Kowalsky, Appl. Phys. Lett. 94,3 (2009).
    5. P. Burrows, V. Bulovic, S. Forrest, L. Sapochak, D. McCarty and M. Thompson, Appl. Phys. Lett.65,2922 (1994).
    6. M. Weaver, L. Michalski, K. Rajan, M. Rothman, J. Silvernail, J. J. Brown, P. E. Burrows, G. L. Graff, M. E. Gross and P. M. Martin, Appl. Phys. Lett.81, 2929 (2002).
    7. M. Law, L. E. Greene, A. Radenovic, T. Kuykendall, J. Liphardt and P. Yang, J. Phys. Chem. B 110,22652 (2006).
    8. J. Schmidt, A. Merkle, R. Brendel, B. Hoex, M. C. M. de Sanden and W. Kessels, Progress in Photovoltaics:Research and Applications 16,461 (2008).
    9. S. J. Yun, K. H. Lee, J. Skarp, H. R. Kim and K. S. Nam, Journal of Vacuum Science & Technology A:Vacuum, Surfaces, and Films 15,2993 (1997).
    10. J. Klaus and S. George, J. Electrochem. Soc.147,2658 (2000).
    11. S. E. Potts, W. Keuning, E. Langereis, G. Dingemans, M. C. M. van de Sanden and W. M. M. Kessels, J. Electrochem. Soc.157, P66 (2010).
    12. S. M. George, Polymer 1550,125 (2010).
    13. R. L. Puurunen, H. Kattelus and T. Suntola, Handbook of Silicon Based MEMS Materials and Technologies (2009).
    14. T. Suntola, Material Science Reports|Material Science Reports 4,261 (1989).
    15. M. Ritala, M. Leskela, J. P. Dekker, C. Mutsaers, P. J. Soininen and J. Skarp, Chem. Vap. Deposition 5,7 (1999).
    16. T. Suntola, Appl. Surf. Sci.100,391 (1996).
    17. M. D. Groner, F. H. Fabreguette, J. W. Elam and S. M. George, Chem. Mater. 16,639 (2004).
    18. T. Watanabe, H. H. Funke, R. Torres, M. W. Raynor, J. Vininski and V. H. Houlding, J. Cryst. Growth 248,67 (2003).
    19. P. Kirsch, M. Quevedo-Lopez, H. J. Li, Y. Senzaki, J. Peterson, S. Song, S. Krishnan, N. Moumen, J. Barnett and G Bersuker, J. Appl. Phys.99,023508 (2006).
    20. M. Rose, J. Niinistd; I. Endler, J. W. Bartha, P. Kucher and M. Ritala, ACS Applied Materials & Interfaces 2,347 (2010).
    21. M. Ritala, K. Kukli, A. Rahtu, P. I. Raisanen, M. Leskela, T. Sajavaara and J. Keinonen, Science 288,319 (2000).
    22. Y. Xuan, H. Lin, P. Ye and G Wilk, Appl. Phys. Lett.88,263518 (2006).
    23. T. O. Kaariainen and D. C. Cameron, Plasma Processes Polym.6, S237 (2009).
    24. H. B. Park, M. Cho, J. Park, S. W. Lee, T. J. Park and C. S. Hwang, Electrochem. Solid-State Lett.7, G254 (2004).
    25. I. S. Jeon, J. Park, D. Eom, C. S. Hwang, H. J. Kim, C. J. Park, H. Y. Cho, J. H. Lee, N. I. Lee and H. K. Kang, Jpn. J. Appl. Phys 42,1222 (2003).
    26. C.-W. Cheng and E. A. Fitzgerald, Appl. Phys. Lett.93,031902 (2008).
    27. A. Ott, J. Klaus, J. Johnson and S. George, Thin Solid Films 292,135 (1997).
    28. A. Dillon, A. Ott, J. Way and S. George, Surf. Sci.322,230 (1995).
    29. J. Kim, K. Chakrabarti, J. Lee, K. Y. Oh and C. Lee, Mater. Chem. Phys.78, 733 (2003).
    30. T. Hori, Gate dielectrics and MOS ULSIs:principles, technologies, and applications. (Springer,1997).
    31. W. S. YANQ Y. K. KIM, Y. Seung-Yeal, J. H. CHOI, H. S. PARK, S. I. LEE and Y. Ji-Beom, Surf. Coat. Technol.131,79 (2000).
    32. S. Lombardo, J. H. Stathis, B. P. Linder, K. L. Pey, F. Palumbo and C. H. Tung, J. Appl. Phys.98,121301 (2005).
    33. C. H. Ko and W. J. Lee, J. Solid State Electrochem.11,1391 (2007).
    34. F. Seitz, Physical Review 76,1376 (1949).
    1. Q. Deng, M. Wei, X. Ding, L. Jiang, B. Ye and K. Wei, Chem. Commun.31, 3657 (2008).
    2. S. K. Kim, S. W. Lee, J. H. Han, B. Lee, S. Han and C. S. Hwang, Adv. Funct. Mater.20,2989 (2010).
    3. H. Irie, Y. Watanabe and K. Hashimoto, Chem. Lett.32,772 (2003).
    4. T. C. Tien, F. M. Pan, L. P. Wang, F. Y. Tsai and C. Lin, Journal of Physical Chemistry C 114,10048 (2010).
    5. H. Tang, K. Prasad, R. Sanjines, P. Schmid and F. Levy, J. Appl. Phys.75, 2042 (1994).
    6. S. Pawar, M. Chougule, S. Patil, B. Raut, D. Dalvi, P. Patil, S. Sen, P. Joshi and V. Patil, Journal of Sensor Technology 1,9 (2011).
    7. B. J. Morgan and G W. Watson, J. Phys. Chem. C 114,2321 (2010).
    8. J. Park, J. Y. Lee and J. H. Cho, J. Appl. Phys.100,113534 (2006).
    9. J. Zhang, M. Li, Z. Feng, J. Chen and C. Li, J. Phys. Chem. B 110,927 (2006).
    10. B. T. SU, P. W. ZHU, J. J. XU and L. ZHAO, Chinese Journal of Applied Chemistry 28,33 (2011).
    11. Y. Zhao, J. Zhai, S. Tan, L. Wang, L. Jiang and D. Zhu, Nanotechnology 17, 2090 (2006).
    12. J. Zheng, H. Yu, X. Li and S. Zhang, Appl. Surf. Sci.254,1630 (2008).
    13. M. Sabzi, S. Mirabedini, J. Zohuriaan-Mehr and M. Atai, Prog. Org. Coat.65, 222 (2009).
    14. H. Imagawa, T. Tanaka, N. Takahashi, S. Matsunaga, A. Suda and H. Shinjoh, J.Catal.251,315 (2007).
    15. H. G. Jung, S. W. Oh, J. Ce, N. Jayaprakash and Y. K. Sun, Electrochem. Commun.11,756 (2009).
    16. Q. Zheng, B. Zhou, J. Bai, L. Li, Z. Jin, J. Zhang, J. Li, Y. Liu, W. Cai and X. Zhu, Adv. Mater.20,1044 (2008).
    17. J. Zhang, X. Chen, Y. Shen, Y. Li, Z. Hu and J. Chu, Phys. Chem. Chem. Phys.13,13096(2011).
    18. M. Grigore, R. Sakurovs, D. French and V. Sahajwalla, International Journal of Coal Geology 76,301 (2008).
    19. V. Pore, A. Rahtu, M. Leskela, M. Ritala, T. Sajavaara and J. Keinonen, Chem. Vap. Deposition 10,143 (2004).
    20. K. P. Biju and M. K. Jain, Sensors and Actuators B:Chemical 128,407 (2008).
    21. H. Ogawa, T. Higuchi, A. Nakamura, S. Tokita, D. Miyazaki, T. Hattori and T. Tsukamoto, J. Alloy. Compd.449,375 (2008).
    22. M. Katayama, S. Ikesaka, J. Kuwano, H. Koinuma and Y. Matsumoto, Appl. Phys. Lett.92,132107 (2008).
    23. X. Weng, P. Fisher, M. Skowronski, P. Salvador and O. Maksimov, J. Cryst. Growth 310,545 (2008).
    24. K. H. Wang, Y. H. Hsieh, T. T. Lin and C. Y. Chang, React. Kinet. Catal. Lett. 95,39 (2008).
    25. S. Q. Sun, B. Sun, W. Zhang and D. Wang, Bull. Mater. Sci.31,61 (2008).
    26. P. Chowdhury, H. C. Barshilia, N. Selvakumar, B. Deepthi, K. Rajam, A. R. Chaudhuri and S. Krupanidhi, Physica B:Condensed Matter 403,3718 (2008).
    27. D. M. King, X. Du, A. S. Cavanagh and A. W. Weimer, Nanotechnology 19, 445401 (2008).
    28. D. H. Kuo and C. N. Shueh, Chem. Vap. Deposition 9,265 (2003).
    29. K. Kukli, A. Aidla, J. Aarik, M. Schuisky, A. Harsta, M. Ritala and M. Leskela, Langmuir 16,8122 (2000).
    30. N. G Kubala, P. C. Rowlette and C. A. Wolden, J. Phys. Chem. C 113,16307 (2009).
    31. R. L. Puurunen, J. Appl. Phys.96,7686 (2004).
    32. K. Y. Ahn and L. Forbes, (Google Patents,2005).
    33. A. Niilisk, A. Rosental, A. Tarre and T. Uustare,2003 (unpublished).
    34. M. Vehkamaki, T. Hatanpaa, M. Ritala, M. Leskela, S. Vayrynen and E. Rauhala, Chem. Vap. Deposition 13,239 (2007).
    35. J. Niinisto, K. Kukli, M. Heikkila, M. Ritala and M. Leskela, Adv. Eng. Mater.11,223 (2009).
    36. H. J. Lee, G W. Hwang, K. Lee, G. H. Kim and C. S. Hwang,2007 (unpublished).
    37. Y. Li, Z. Hu, J. Sun, X. Meng and J. Chu, J. Cryst. Growth 310,378 (2008).
    38. W. Hebenstreit, N. Ruzycki, G S. Herman, Y. Gao and U. Diebold, Physical Review B 62,16334 (2000).
    39. M. Lazzeri, A. Vittadini and A. Selloni, Physical Review B 65,119901 (2002).
    40. M. Lazzeri, A. Vittadini and A. Selloni, Physical Review B 63,155409 (2001).
    41. G Roberts and F. W. Schmidlin, Physical Review 180,785 (1969).
    42. M. A. Lampert, Physical Review 103,1648 (1956).
    43. A. Rose, Physical Review 97,1538 (1955).
    44. J. G Simmons, Physical Review 155,657 (1967).
    45. P. Emtage and W. Tantraporn, Phys. Rev. Lett.8,267 (1962).
    46. M. Lenzlinger and E. Snow, J. Appl. Phys.40,278 (1969).
    47. J. Maserjian and N. Zamani, J. Appl. Phys.53,559 (1982).
    48. R. H. Fowler and L. Nordheim, Proceedings of the Royal Society of London. Series A119,173(1928).
    49. M. Marinaro, M. Pfanzelt, P. Kubiak, R. Marassi and M. Wohlfahrt-Mehrens, J. Power Sources 196,9825 (2011).
    50. Z. Liu, Y. Li, C. Liu, J. Ya, W. Zhao, D. Zhao and L. An, ACS Appl. Mater. Inter. (2011).
    51. V. A. Ganesh, A. S. Nair, H. K. Raut, T. M. Walsh and S. Ramakrishna, RSC Adv.2,2067 (2012).
    52. O. Diwald, T. L. Thompson, E. G Goralski, S. D. Walck and J. T. Yates Jr, J. Phys. Chem. B 108,52 (2004).
    53. L. Vayssieres, Adv. Mater.15,464 (2003).
    54. Q. Zhao, H. Z. Zhang, Y. W. Zhu, S. Q. Feng, X. C. Sun, J. Xu and D. P. Yu, Appl. Phys. Lett.86,203115 (2005).
    55. Z. W. Pan, Z. R. Dai and Z. L. Wang, Science 291,1947 (2001).
    56. Y. W. Zhu, H. Z. Zhang, X. C. Sun, S. Q. Feng, J. Xu, Q. Zhao, B. Xiang, R. M. Wang and D. P. Yu, Appl. Phys. Lett.83,144 (2003).
    57. J. L. Yang, S. J. An, W. I. Park, G C. Yi and W. Choi, Adv. Mater.16,1661 (2004).
    58. M. Prato, K. Kostarelos and A. Bianco, Acc. Chem. Res.41,60 (2008).
    59. L. Li, Y. W. Yang, G H. Li and L. D. Zhang, Small 2,548 (2006).
    60. X. H. Sun, S. Lam, T. K. Sham, F. Heigl, A. Jurgensen and N. B. Wong, J. Phys. Chem. B 109,3120 (2005).
    61. A. Narayanaswamy, H. F. Xu, N. Pradhan, M. Kim and X. G Peng, J. Am. Chem. Soc.128,10310 (2006).
    62. X. S. Fang, C. H. Ye, L. D. Zhang, J. X. Zhang, J. W. Zhao and P. Yan, Small 1,422 (2005).
    63. J. Xiao, X. X. Zhang and G. M. Zhang, Nanotechnology 19,295706 (2008).
    64. Y. H. Tong, Y. C. Liu, C. L. Shao and R. X. Mu, Appl. Phys. Lett.88,123111 (2006).
    65. T. R. B. Foong, Y. D. Shen, X. Hu and A. Sellinger, Adv. Funct. Mater.20, 1390 (2010).
    66. S. Liu, L. Gan, L. Liu, W. Zhang and H. Zeng, Chem. Mater.14,1391 (2002).
    67. S. Iijima, M. Yudasaka, R. Yamada, S. Bandow, K. Suenaga, F. Kokai and K. Takahashi, Chem. Phys. Lett.309,165 (1999).
    68. D. P. Yu, C. S. Lee, I. Bello, X. S. Sun, Y. H. Tang, G W. Zhou, Z. G Bai, Z. Zhang and S. Q. Feng, Solid State Commun.105,403 (1998).
    69. Y. F. Qiu, D. F. Liu, J. H. Yang and S. H. Yang, Adv. Mater.18,2604 (2006).
    70. C. Sanchez, B. Julian, P. Belleville and M. Popall, J. Mater. Chem.15,3559 (2005).
    71. S. K. Karuturi, L. Liu, L. T. Su, Y. Zhao, H. J. Fan, X. Ge, S. He and A. T. I. Yoong, J. Phys. Chem. C 114,14843 (2010).
    72. M. Knez, A. Kadri, C. Wege, U. Gosele, H. Jeske and K. Nielsch, Nano Lett. 6,1172(2006).
    73. D. Bangham and F. Burt, Proceedings of the Royal Society of London. Series A105,481(1924).
    74. S. Suwanayuen and R. P. Danner, AlChE J.26,68 (1980).
    75. Q. Xie, Y. L. Jiang, C. Detavernier, D. Deduytsche, R. L. Van Meirhaeghe, G. P. Ru, B. Z. Li and X. P. Qu, J. Appl. Phys.102,083521 (2007).
    76. H. Kamisaka, T. Hitosugi, T. Suenaga, T. Hasegawa and K. Yamashita, The Journal of chemical physics 131,034702 (2009).
    77. H. Kamisaka, T. Suenaga, H. Nakamura and K. Yamashita, J. Phys. Chem. C 66,155213 (2010).
    78. M. B. Yahia, F. Lemoigno, T. Beuvier, J. S. Filhol, M. Richard-Plouet, L. Brohan and M. L. Doublet, The Journal of chemical physics 130,204501 (2009).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700