用户名: 密码: 验证码:
聚合物太阳能电池的界面修饰研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
界面修饰在高性能的有机太阳能电池的制备,提升器件稳定性等方面起到关键作用。但界面修饰材料及其应用仍面临限制需要进一步研究改进。例如如何改进界面层制备过程,避免真空蒸镀过程使其适用于低成本大规模的溶液法器件制备;改进材料本身及作用于有机太阳能电池器件后的稳定性;改善界面层制备工艺,避免对界面层的后处理对活性层产生破坏;制备适用于不同材料体系的太阳能电池界面材料,突破很多界面材料只对特殊体系有效的限制。
     本论文中,针对如何克服以上界面构筑中面临的问题,我们做了如下工作。
     1.在有机太阳能电池界面引入两亲性自组装分子层PAH-D,改善器件活性层表面浸润性,使水相的高导电PEDOT:PSS可以通过溶液旋涂法制备并作为电极,实现全溶液无真空过程有机太阳能电池的构筑。PAH-D是一种可溶液法制备可以沉积在亲水及疏水表面的自组装分子,通过沉积PAH-D使表面转换为两亲性,为构筑多功能层的太阳能电池提供了普遍适用的手段。
     2.通过原位聚合,引入自组装界面修饰分子等方法,优化有机聚合物与无机材料的界面进而控制活性层相分离尺度及电荷传输性质。首先通过原位聚合方法,控制基于PPV以及TiO2的太阳能电池活性层相分离,避免了传统聚合物与无机纳米晶之间共混因界面表面能差异引起的大尺度相分离。此外,我们通过引入两亲性极性自组装分子修饰ZnO表面,构筑了极性可控的聚合物纳米晶界面,得到了相分离尺度可控P3HT:ZnO复合活性层。通过优化自组装分子能级构筑阶梯状的器件能级结构,改进给受体之间的电荷传输,避免传统绝缘分子修饰引起的阻碍电荷传输及电子陷阱作用。
     3.首次制备了基于P(VDF-TrFE)的有机铁电纳米晶并作为界面层引入有机太阳能电池。通过溶液旋涂将其制备与活性层表面,铁电纳米晶可在电池内部引入一个电场有效促进激子分离,提升电荷收集效率。相对之前工作,溶液法纳米晶界面层避免了LB拉膜过程中水氧对活性层的破坏,以及热退火处理对窄带隙材料的破坏。
Interfacial modification play a key role in fabricating multilayerarchitecture devices, improving the PCE of polymer solar cells (PSCs) andoptimizing the stability and lifetime of devices. However there still someissues to be improved: the fabrication of interfacial layer shouldcompatible with solution processed PSC. Improve the stability of materialsof interfacial layer. Avoid the post treatment such as thermal annealingwhich make damage to active layer. Developing novel interfacial materialswhich compatible with most materials systems.
     In this thesis, we made efforts to improve above aspects:
     1. We introduce PAH-D layer to modify the active layer surface ofP3HT:PCBM and convert the hydrophobic surface to amphiphilic and a aqueousPEDOT:PSS PH500can be deposited on surface of active layer as electrode.All-spin-coating vacuum-free processed semi-transparent PSCs wasfabricated. PAH-D is a amphiphilic self assembly molecules which can bedeposited onto both hydrophobic or hydrophilic surface. By introducingamphiphilic PAH-D as interfacial layer, we can convert the hydrophobic orhydrophilic surface to amphiphilic. So solution with different surfaceenergy can be deposited layer by layer according solution process such asspin coating which providing a method for constructing multilayer solutionprocess device architectures and making all solution processed PSCs.
     2. The interface between polymer and nano crystals (NCs) was optimizedby using in-suit polymerization, introducing the SAM modifier to modifythe surface of NCs. By in-suit polymerization, the phase separation betweenpolymer and NCs can be controlled and avoid the large scale aggressioncaused by the naturally differences of their surface energy. The surfacemodification by SAM modifier can construct an aligned energy levelstructures and beneficial for the charge transport as well as optimize themorphology of PSCs.
     3. We make the preformation of P(VDF-TrFE50:50) NCs by a solutionchemistry method and their application in low bandgap PSCs to avoid hightemperature, post-deposition thermal annealing. To the best of ourknowledge, this is the first time that ferroelectric polymer NCs weresynthesized by a very simple solution method and applied in FE-OPVs. Thesize of P(VDF-TrFE) NPs and their crystallinity can be easily controlledbefore they are inserted into the PSCs. The coverage of the P(VDF-TrFE)ferroelectric interlayer can then be precisely manipulated to maximize theefficiency of FE-OPVs. It is easy to deposit the NC layer using solutionprocess. The best PCE reached6.64%, which is among the highest valuesreported for PCDTBT-based solar cells.
引文
[1]Gang Li,Rui Zhu,Yang Yang;Polymer solar cells,nature photonics10.1038/nphoton.2012.11
    [2] Pope, M.&Swenberg, C. E. Electronic Processes in Organic Crystals and Polymers2nd edn (Oxford Univ.,1999).
    [3] Forrest, S. R. The path to ubiquitous and low-cost organic electronic appliances onplastic. Nature428,911–918(2004)
    [4] Tang, C. W. Multilayer organic photovoltaic elements. US patent4,164,431(1979).
    [5] Tang, C. W.2-layer organic photovoltaic cell. Appl. Phys. Lett.48,183–185(1986).
    [6] Sariciftci, N. S., Smilowitz, L., Heeger, A. J.&Wudl, F. Photoinducedelectron-transfer from a conducting polymer to Buckminsterfullerene. Science258,1474–1476(1992).
    [7] Morita, S., Zakhidov, A. A.&Yoshino, K. Doping effect of Buckminsterfullerene inconducting polymer—change of absorption-spectrum and quenching of luminescence.Solid State Commun.82,249–252(1992).
    [8] Sariciftci, N. S., Smilowitz, L., Heeger, A. J.&Wudl, F. Semiconducting polymers(as donors) and Buckminsterfullerene (as acceptor)—photoinduced electron-transferand heterojunction devices. Synth. Met.59,333–352(1993).
    [9] Hiramoto, M., Fujiwara, H.&Yokoyama, M. P-I-N like behavior in3-layeredorganic solar-cells having a co-deposited interlayer of pigments. J. Appl. Phys.72,3781–3787(1992).
    [10] Yu, G., Gao, J., Hummelen, J. C., Wudl, F.&Heeger, A. J. Polymer photovoltaiccells—enhanced efficiencies via a network of internal donor–acceptor heterojunctions.Science270,1789–1791(1995).
    [11] Halls, J. J. M. et al. Efficient photodiodes from interpenetrating polymer networks.Nature376,498–500(1995).
    [12] McGehee, M. D. Nanostructured organic–inorganic hybrid solar cells. MRS Bull.34,95–100(2009).
    [13] Dayal, S., Kopidakis, N., Olson, D. C., Ginley, D. S.&Rumbles, G. Photovoltaicdevices with a low band gap polymer and CdSe nanostructures exceeding3%efficiency.Nano Lett.10,239–242(2010).
    [14] Weickert, J., Dunbar, R. B., Hesse, H. C., Wiedemann, W.&Schmidt-Mende, L.Nanostructured organic and hybrid solar cells. Adv. Mater.23,1810–1828(2011).22.Wudl, F.&Srdanov, G. Conducting polymer formed of poly(2-methoxy-5-(2’-ethylhexyloxy)-p-phenylene vinylene). US patent5,189,136(1993).
    [15] Li, G. et al. High-efficiency solution processable polymer photovoltaic cells byself-organization of polymer blends. Nature Mater.4,864–868(2005).
    [16] Ma, W. L., Yang, C. Y., Gong, X., Lee, K.&Heeger, A. J. Thermally stable,efficient polymer solar cells with nanoscale control of the interpenetrating networkmorphology. Adv. Funct. Mater.15,1617–1622(2005).
    [17] Dennler, G., Scharber, M. C.&Brabec, C. J. Polymer-fullerene bulk-heterojunctionsolar cells. Adv. Mater.21,1323–1338(2009).
    [18] Weickert, J., Dunbar, R. B., Hesse, H. C., Wiedemann, W.&Schmidt-Mende, L.Nanostructured organic and hybrid solar cells. Adv. Mater.23,1810–1828(2011).22.Wudl, F.&Srdanov, G. Conducting polymer formed of poly(2-methoxy-5-(2’-ethylhexyloxy)-p-phenylene vinylene). US patent5,189,136(1993).
    [19] Hummelen, J. C. et al. Preparation and characterization of fulleroid andmethanofullerene derivatives. J. Org. Chem.60,532–538(1995).
    [20] Brabec, C. J., Shaheen, S. E., Winder, C., Sariciftci, N. S.&Denk, P. Effect ofLiF/metal electrodes on the performance of plastic solar cells. Appl. Phys. Lett.80,1288–1290(2002).
    [21] Wienk, M. M. et al. Efficient methano[70]fullerene/MDMO-PPV bulkheterojunction photovoltaic cells. Angew. Chem. Int. Ed.42, applications with highmobility. Appl. Phys. Lett.69,4108–4110(1996).
    [22] Padinger, F., Rittberger, R. S.&Sariciftci, N. S. Effects of postproductiontreatment on plastic solar cells. Adv. Funct. Mater.13,85–88(2003).
    [23] Muhlbacher, D. et al. High photovoltaic performance of a low-bandgap polymer.Adv. Mater.18,2884–2889(2006).
    [24] Peet, J. et al. Efficiency enhancement in low-bandgap polymer solar cells byprocessing with alkane dithiols. Nature Mater.6,497–500(2007).
    [25] Blouin, N., Michaud, A.&Leclerc, M. A low-bandgap poly(2,7-carbazole)derivative for use in high-performance solar cells. Adv. Mater.19,2295–2300(2007).
    [26] Park, S. H. et al. Bulk heterojunction solar cells with internal quantum efficiencyapproaching100%. Nature Photon.3,297–302(2009).
    [27] Liang, Y. Y. et al. Development of new semiconducting polymers for highperformance solar cells. J. Am. Chem. Soc.131,56–57(2009).
    [28] Liang, Y. Y. et al. Highly efficient solar cell polymers developed via fine-tuning ofstructural and electronic properties. J. Am. Chem. Soc.131,7792–7799(2009).
    [29] Chen, H. Y. et al. Polymer solar cells with enhanced open-circuit voltage andefficiency. Nature Photon.3,649–653(2009).
    [30] Price, S. C., Stuart, A. C., Yang, L. Q., Zhou, H. X.&You, W. Fluorine substitutedconjugated polymer of medium band gap yields7%efficiency in polymer–fullerenesolar cells. J. Am. Chem. Soc.133,4625–4631(2011).
    [31] Zhou, H. X. et al. Development of fluorinated benzothiadiazole as a structural unitfor a polymer solar cell of7%efficiency. Angew. Chem. Int. Ed.50,2995–2998(2011).
    [32] Su, M. S. et al. Improving device efficiency of polymer/fullerene bulkheterojunction solar cells through enhanced crystallinity and reduced grain boundariesinduced by solvent additives. Adv. Mater.23,3315–3319(2011).
    [33] Yang, J. et al. A robust inter-connecting layer for achieving high performancetandem polymer solar cells. Adv. Mater.23,3465–3470(2011).
    [34] Sun, Y. M. et al. Efficient, air-stable bulk heterojunction polymer solar cells usingMoOx as the anode interfacial layer. Adv. Mater.23,2226–2230(2011).
    [35] Chu, T. Y. et al. Bulk heterojunction solar cells usingthieno[3,4-c]pyrrole-4,6-dione and dithieno3,2-b:2’,3’-d]silole copolymer with a powerconversion efficiency of7.3%. J. Am. Chem. Soc.133,4250–4253(2011).
    [36] Amb, C. M. et al. Dithienogermole as a fused electron donor in bulk heterojunctionsolar cells. J. Am. Chem. Soc.133,10062–10065(2011).
    [37] Hoppe, H.; Glatzel, T.; Niggemann, M.; Schwinger, W.; Schaeffler, F.; Hinsch, A.;Lux-Steiner, M. Ch.; Sariciftci, N. S. Molecular and supramolecular engineering ofπ-conjugated systems for photovoltaic conversion [J]. Thin Solid Films,2006,511-512,587-592.
    [38] Duren, J. K. J.van; Yang, X.; Loos, J.; Bulle-Lieuwma, C. W. T.; Sievel, A. B.;Hummelen, J. C.; Janssen, R. A. J., Relating the morphology of poly(p-phenylenevinylene)/methanofullerene blends to solarcell performance [J]. Adv. Funct. Mater,2004,14,425-434.
    [39] Y. B. Yuan, P. K. Sharma, Z. G. Xiao, S. S. Poddar, A. Gruverman, S.Ducharme, J. S. Huang, Understanding the effect of ferroelectric polarization on powerconversion efficiency of organic photovoltaic device. Energy Environ. Sci.,2012,5,8558–8563.
    [40] He, C. Zhong, X. Huang, W.-Y. Wong, H. Wu, L. Chen, S. Su and Y. Cao,Simultaneous Enhancement of Open-Circuit Voltage, Short-Circuit Current Density, andFill Factor in Polymer Solar Cells. Adv. Mater.,2011,23,4636-4643.
    [41] P. W. M. Blom, V. D. Mihailetchi, L. J. A. Koster and D. E. Markov, DevicePhysics of Polymer: Fullerene Bulk Heterojunction Solar Cells, Adv. Mater.,2007,19,1551–1566.
    [42] R. Steim, F. R.Kogler, C. J. Brabec, Interface materials for organic solar cells. J.Mater. Chem.,2010,20,2499–2512.
    [43] X. L. Chen, B. H. Xu, J. M. Xue, Y. Zhao, C. C. Wei, J. Sun, Y. Wang, X. D. Zhangand X. H. Geng, Boron-doped zinc oxide thin films for large-area solar cells grown bymetal organic chemical vapor deposition Thin Solid Films,2007,515,3753–3759.
    [44] V. Bhosle, J. T. Prater, Fan Yang, D. Burk, S. R. Forrest and J. Narayan,Gallium-doped zinc oxide films as transparent electrodes for organic solar cellapplications, J. Appl. Phys.,2007,102,023501.
    [45] J. Owen, M. S. Som, K.-H. Yoo, B. D. Ahn and S. Y. Lee, Effects of intrinsic ZnObuffer layer based on P3HT/PCBM organic solar cells with Al-doped ZnO electrode,Appl. Phys. Lett.,2007,90,033512.
    [46] Y. Yamamoto, K. Saito, K. Takahashi and M. Konagai, Preparation of boron-dopedZnO thin films by photo-atomic layer deposition, Sol. Energy Mater. Sol. Cells,2001,65,125.
    [47] S. Park, S. J. Tark, J. S. Lee, H. Lim and D. Kim, Effects of intrinsic ZnO bufferlayer based on P3HT/PCBM organic solar cells with Al-doped ZnO electrode, Sol.Energy Mater. Sol. Cells,2009,93(6–7),1020–1023.
    [48] O. Kluth, B. Rech, L. Hoben, S. Wieder, G. Schope, C. Beneking, H. Wagnerand A. Loffl, Texture etched ZnO: Al coated glass substrates for silicon based thinfilm solar cells, Thin Solid Films,1999,351,247.
    [49] M. W. Rowell, M. A. Topinka, M. D. McGehee, H. J. Prall, G. Dennler, N. S.Sariciftci, L. B. Hu and G. Gruner, Electrical properties of transparent carbon nanotubenetworks prepared through different techniques, Appl. Phys. Lett.,2006,88,233506.
    [50] G. Eda, Y. Y. Lin, S. Miller, C. W. Chen, W. F. Su and M. Chhowalla, Transparentand conducting electrodes for organic electronics from reduced graphene oxide, Appl.Phys. Lett.,2008,92,233305.
    [51] Y. H. Zhou, F. L. Zhang, K. Tvingstedt, S. Barrau, F. H. Li, W. J. Tian and O.Inganas, Organic Semiconductor: Insulator Polymer Ternary Blends for Photovoltaics,Appl. Phys. Lett.,2008,92,233308.
    [52] K. Tvingstedt and O. Inganas, Electrode grids for ITO free organic photovoltaicdevices, Adv. Mater.,2007,19,2893–2897.
    [53] J. Y. Lee, S. T. Connor, Y. Cui and P. Peumans, Solution-processed metal nanowiremesh transparent electrodes, Nano Lett.,2008,8,689–692.
    [54] B. O’Connor, C. Haughn, K. H. An, K. P. Pipe and M. Shtein, Transparent andconductive electrodes based on unpatterned, thin metal films, Appl.Phys.Lett.,2008,93,223304.
    [55] C. Guillen and J. Herrero, ITO/metal/ITO multilayer structures based on Ag and Cumetal films for high-performance transparent electrodes, Sol. Energy Mater. Sol. Cells,2008,92,938–941.
    [56] B. V. Andersson, D. M. Huang, H. J. Moule and O. Inganās, Appl. Phys. Lett.,2009,94,043302.
    [57] J.Y. Kim, S. H. Kim, H. H. Lee, K. Lee, W. Ma, X. Gongand, A. J. Heeger, NewArchitecture for High‐Efficiency Polymer Photovoltaic Cells Using Solution‐BasedTitanium Oxide as an Optical Spacer, Adv. Mater.,2006,18,572.
    [58] K. Suemori, M. Yokoyama and M. Hiramoto, Electrical shorting of organicphotovoltaic films resulting from metal migration, J. Appl. Phys.,2006,99,036109.
    [59] M. O. Reese, A. J. Morfa, M. S. White, N. Kopidakis, S. E. Shaheen, G. Rumblesand D. S. Ginley, Pathways for the degradation of organic photovoltaic P3HT: PCBMbased devices, Sol. Energy Mater. Sol. Cells,2008,92,746–752.
    [60] S. T. Lee, Z. Q. Gao and L. S. Hung, Metal diffusion from electrodes in organiclight-emitting diodes, Appl. Phys. Lett.,1999,75,10.
    [61] K. Lee, J. Y. Kim, S. H. Park, S. H. Kim, S. Cho and A. J. Heeger, Air‐StablePolymer Electronic Devices, Adv. Mater.,2007,19,2445.
    [62] M. D. Irwin, B. Buchholz, A. W. Hains, R. P. H. Chang and T. J. Marks, p-Typesemiconducting nickel oxide as an efficiency-enhancing anode interfacial layer inpolymer bulk-heterojunction solar cells, Proc. Natl. Acad. Sci. U. S. A.,2008,105,2783–2787.
    [63] A. R. Schlatmann, D. Wilms Floet, A. Hilberer, F. Garten, P. J. M. Smulders, J. M.Klapwijk and G. Hadziioannou, Appl. Phys. Lett.,1996,69,1764.
    [64] P. Peumans and S. R. Forrest, Very-high-efficiency double-heterostructure copperphthalocyanine/C60photovoltaic cells, Appl. Phys. Lett.,2001,79,126.
    [65] Y. Hirose, A. Kahn, V. Aristov, P. Soukiassian, V. Bulovic and S. R. Forrest,Chemistry and electronic properties of metal-organic semiconductor interfaces: Al, Ti,In, Sn, Ag, and Au on PTCDA, Phys. Rev. B: Condens. Matter,1996,54,13748.
    [66] P. Peumans, V. Bulovic and S. R. Forrest, Efficient photon harvesting at highoptical intensities in ultrathin organic double-heterostructure photovoltaic diodes, Appl.Phys. Lett.,2000,76,2650.
    [67] Herbert B. Michaelson, The work function of the elements and its periodicity, J.Appl. Phys.,1977,48(11),4729.
    [68] C. Tao, S. Ruan, G. Xie, X. Kong, L. Shen, F. Meng, C. Liu, X. Zhang, W. Dongand W. Chen, Role of tungsten oxide in inverted polymer solar cells, Appl. Phys. Lett.,2009,94,043311.
    [69] M. Y. Chan, C. S. Lee, S. L. Lai, M. K. Fung, F. L. Wong, H. Y. Sun, K. M. Lauand S. T. Lee, Efficient organic photovoltaic devices using a combination of excitonblocking layer and anodic buffer layer, Appl. Phys. Lett.,2006,100,094506.
    [70] S. Han, W. S. Shin, M. Seo, D. Gupta, S.-J. Moon and S. Yoo, Improvingperformance of organic solar cells using amorphous tungsten oxides as an interfacialbuffer layer on transparent anodes, Org. Electron.,2009,10,791, DOI:10.1016/j.orgel.2009.03.016.
    [71] M. D. Irwin, B. Buchholz, A. W. Hains, R. P. H. Chang and T. J. Marks, p-Typesemiconducting nickel oxide as an efficiency-enhancing anode interfacial layer inpolymer bulk-heterojunction solar cells, Proc. Natl. Acad. Sci. U. S. A.,2008,105,2783–2787.
    [72] V. Shrotriya, G. Li, Y. Y. Yao, C. W. Chu and Y. Yang, Transition metal oxides asthe buffer layer for polymer photovoltaic cells, Appl. Phys. Lett.,2006,88,073508.
    [73] K. Takanezawa, K. Tajima and K. Hashimoto, Efficiency enhancement of polymerphotovoltaic devices hybridized with ZnO nanorod arrays by the introduction of avanadium oxide buffer layer, Appl. Phys. Lett.,2008,93,063308.
    [74] J. S. Huang, C. Y. Chou, M. Y. Liu, K. H. Tsai, W. H. Liand, C. F. Lin,Solution-processed vanadium oxide as an anode interlayer for inverted polymer solarcells hybridized with ZnO nanorods, Org. Electron.,2009,10,1060–1065.
    [75] H.-H. Liao, L.-M. Chen, Z. Xu, G. Li and Y. Yang, Highly efficient invertedpolymer solar cell by low temperature annealing of CsCO interlayer, Appl. Phys. Lett.,2008,92,173303.
    [76] A. K. K. Kyaw, X. W. Sun, C. Y. Jiang, G. Q. Lo, D. W. Zhao, D. L. Kwong, Aninverted organic solar cell employing a sol-gel derived ZnO electron selective layer andthermal evaporated MoO3hole selective layer, Appl. Phys. Lett.,2008,93,221107.
    [77] Park, S. H. et al. Bulk heterojunction solar cells with internal quantum efficiencyapproaching100%. Nature Photon.3,297–302(2009).
    [78] A. A. Zakhidov, J. K. Lee, H. H. Fong, J. A. DeFranco, M. Chatzichristidi, P. G.Taylor, C. K. Ober and G. G. Malliaras, Hydrofluoroethers as orthogonal solvents for thechemical processing of organic electronic materials, Adv. Mater.,2008,20,3481–3484.
    [79] S. E. Saheen, C. J. Brabec, N. S. Sariciftci, F. Padinger, T. Fromberz and J. C.Hummelen,2.5%efficient organic plastic solar cells, Appl. Phys. Lett.,2001,78,841.
    [80] Y. Cao, G. Yu, C. Zhang, R. Menon and A. J. Heeger, Polymer light-emitting diodeswith polyethylene dioxythiophene–polystyrene sulfonate as the transparent anode,Synth. Met.,1997,87,171.
    [81] S. A. Carter, M. Angelopoulos, S. Karg, P. J. Brock and J. C. Scott, Polymericanodes for improved polymer light-emitting diode performance, Appl. Phys. Lett.,1997,70,2067.
    [82] J. C. Carter, I. Grizzi, S. K. Heeks, D. J. Lacey, S. G. Latham, P. G. May, O. R. d. l.Panos, K. Pichler, C. R. Towns and H. F. Wittman, Operating stability of light-emittingpolymer diodes based on poly (p-phenylene vinylene), Appl. Phys. Lett.,1997,71,34.
    [83] C. Y. Li, T. C. Wen, T. H. Lee, T. F. Guo, J. C. A. Huang, Y. C. Lin and Y. J. Hsu,An inverted polymer photovoltaic cell with increased air stability obtained byemploying novel hole/electron collecting layers, J. Mater. Chem.,2009,19,1643.
    [84] C. Y. Li, T. C. Wen, T. F. Guo and S. S. Hou, A facile synthesis of sulfonated poly(diphenylamine) and the application as a novel hole injection layer in polymer lightemitting diodes, Polymer,2008,49,957.
    [85] G. Gustafsson, Y. Cao, G. M. Treacy, F. Klavetter, N. Colaneri and A. J. Heeger,Flexible light-emitting diodes made from soluble conducting polymers, Nature,1992,357,477.
    [86] Y. Yang and A. J. Heeger, A new architecture for polymer transistors, Appl. Phys.Lett.,1994,64,1245.
    [87] J. Jang, J. Ha and K. Kim, Organic light-emitting diode with polyaniline-poly(styrene sulfonate) as a hole injection layer, Thin Solid Films,2008,516,3152.
    [88] Y. Kim, A. M. Ballantyne, J. Nelson and D. D. C. Bradley, Effects of thickness andthermal annealing of the PEDOT: PSS layer on the performance of polymer solar cells,Org. Electron.,2009,10,205–209.
    [89] A. Kumar, G. Li, Z. Hong and Y. Yang, High efficiency polymer solar cells withvertically modulated nanoscale morphology, Nanotechnology,2009,20,165202.
    [90] K. Walzer, B. Maennig, M. Pfeiffer and K. Leo, Highly efficient organic devicesbased on electrically doped transport layers, Chem. Rev.,2007,107,1233–1271.
    [91] Z. C. He, C. M. Zhong, S. J. Su, M. Xu, H. B. Wu*and Y. Cao, Enhancedpower-conversion efficiency in polymer solar cells using an inverted device structure.Nature Photonics6,591–595(2012)
    [92] H.L.Yip,S.K.Hau,N.S.Baek,H.MaandA.K.Y.Jen,Appl. Self-assembled monolayermodified ZnO/metal bilayer cathodes for polymer/fullerene bulk-heterojunction solarcells, Phys. Lett.,2008,92,193313.
    [93] S. K. Hau, H. L. Yip, O. Acton, N. S. Baek, H. MaandA. K. Y. Jen, Interfacialmodification to improve inverted polymer solar cells, J. Mater. Chem.,2008,18,5113–5119.
    [94] H. L. Yip, S. K. Hau, N. S. Baek, H. MaandA. K. Y. Jen, Polymer Solar Cells ThatUse Self‐Assembled‐Monolayer‐Modified ZnO/Metals as Cathodes, Adv. Mater.,2008,20,2376.
    [95] J. Huang, G. Li and Y. Yang, A Semi‐transparent Plastic Solar Cell Fabricated bya Lamination Process, Adv. Mater.,2008,20,415–419.
    [96] H. H. Liao, L. M. Chen, Z. Xu, G. Li and Y. Yang, Highly efficient invertedpolymer solar cell by low temperature annealing of CsCO interlayer, Appl. Phys. Lett.,2008,92,173303.
    [97] Yuan, Y.; Reece, T. J.; Sharma, P.; Poddar, S.; Ducharme, S.; Gruverman, A.;Yang, Y.; Huang, J. Efficiency enhancement in organic solar cells with ferroelectricpolymers, Nat. Mater.,2011,10,296-302.
    [1] B.C. Thompson, J.M.J. Frechet, Angew. Chem. Int. Ed.47(2008)58–77.
    [2] Y.H. Zhou, F.L. Zhang, K. Tvingstedt, S. Barrau, F.H. Li, W.J. Tian, O. Inganas,Appl. Phys. Lett.92(2008)233308.
    [3] S.H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J.S. Moon, D. Moses, M. Leclerc,K. Lee, A.J. Heeger, Nat. Photonics3(2009)297–303.
    [4] G. Li, V. Shrotriya, J.S. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang, Nat. Mater.4(2005)864–868.
    [5] K. Tvingstedt, S. Dal Zilio, O. Inganas, M. Tormen, Opt. Express16(2008)21608–21615.
    [6] S.K. Hau, H.L. Yip, K. Leong, A.K.Y. Jen, Org. Electron.10(2009)719–723.
    [7] C. Girotto, B.P. Rand, S. Steudel, J. Genoe, P. Heremans, Org. Electron.10(2009)735–740.
    [8] Y.H. Zhou, F.H. Li, S. Barrau, W.J. Tian, O. Inganas, F.L. Zhang, Sol. Energy Mater.Sol. Cells93(2009)497–500.
    [9] S.K. Hau, H.L. Yip, J. Zou, A.K.Y. Jen, Org. Electron.10(2009)1401–1407.
    [10] Y.F. Lim, S. Lee, D.J. Herman, M.T. Lloyd, J.E. Anthony, G.G. Malliaras, Appl.Phys. Lett.93(2008)193301.
    [11] R.F. Bailey-Salzman, B.P. Rand, S.R. Forrest, Appl. Phys. Lett.88(2006)233502.
    [12] H. Schmidt, H. Flügge, T. Winkler, T. Bülow, T. Riedl, W. Kowalsky, Appl. Phys.Lett.94(2009)243302.
    [13] J. Meiss, M.K. Riede, K. Leo, Appl. Phys. Lett.94(2009)013303.[14] G.M. Ng,E.L. Kietzke, T. Kietzke, L.W. Tan, P.K. Liew, F.R. Zhu, Appl.Phys. Lett.90(2007)103505.
    [15] J.S. Huang, G. Li, Y. Yang, Adv. Mater.20(2008)415–419.
    [16] C. Waldauf, M. Morana, P. Denk, P. Schilinsky, K. Coakley, S.A.Choulis, C.J. Brabec, Appl. Phys. Lett.89(2006)233517.
    [17] S.K. Hau, H.L. Yip, O. Acton, N.S. Baek, H. Ma, A.K.Y. Jen, J. Mater.Chem.18(2008)5113–5119.
    [18] L. Wang, X. Wang, M.F. Xu, D.D. Chen, J.Q. Sun, Langmuir24(2008)1902–1909.
    [19] W.J.E. Beek, M.M. Wienk, M. Kemerink, X.N. Yang, R.A.J. Janssen, J. Phys.Chem. B109(2005)9505–9516.
    [20] S.K. Hau, H.L. Yip, N.S. Baek, J.Y. Zou, K. O’Malley, A.K.Y. Jen, Appl. Phys. Lett.92(2008)253301.
    [21] K. Sato, I. Suzuki, J. Anzai, Langmuir19(2003)7406–7412.
    [1] H.Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu, G. Li, NaturePhotonics3(2009)649–653.
    [2] S.H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J.S. Moon, D. Moses, M.Leclerc, K. Lee, A.J. Heeger, Nature Photon3(2009)297–303.
    [3] G. Yu, J. Gao, J.C. Hummelen, F. Wudl, A.J. Heeger, Science270(5243)(1995)1789–1791.
    [4] N.S. Sariciftci, L. Smilowitz, A.J. Heeger, F. Wudl, Science258(1992)1474–1476.
    [5] W. Yu, H. Zhang, Z. Fan, J. Zhang, H. Wei, D. Zhou, B. Xu, F. Li, W. Tian, B. Yang,Energy and Environmental Science4(2011)2831–2834.
    [6] Y. Liang, Z. Xu, J. Xia, S.-T. Tsai, Y. Wu, G. Li, C. Ray, L. Yu, Advanced Materials22(2010)1–4.
    [7] Y. Liang, D. Feng, Y. Wu, S.T. Tsai, G. Li, C. Ray, L. Yu, Journal of the AmericanChemical Society131(2009)7792–7799.
    [8] J.Y. Kim, K. Lee, N.E. Coates, D. Moses, T.Q. Nguyen, M. Dante, A.J. Heeger,Science317(2007)222–225.
    [9] Y. Yuan, T.J. Reece, P. Sharma, S. Poddar, S. Ducharme, A. Gruverman, Y. Yang, J.Huang, Nature Materials10(2011)296–302.
    [10] Y. Liang, Y. Wu, D. Feng, S. Tsai, H. Son, G. Li, L. Yu, Journal of the AmericanChemical Society131(2009)56–57.
    [11] R. S ndergaard, M. Helgesen, M. J rgensen, F.C. Krebs, Advanced EnergyMaterials1(2011)68–71.
    [12] Q. Qiao, J.T. McLeskey, Applied Physics Letters86(2005)153501-1–153501-3.
    [13] J.H. Yang, A. Garcia, T.Q. Nguyen, Applied Physics Letters90(2007)103514-1–103514-3.
    [14] S.D. Chavhan, R.S. Mane, W. Lee, S. Senthilarasu, S.H. Han, J. Lee, S.H. Lee,Electrochimica Acta54(2009)3169–3175.
    [15] I. Haeldermans, I. Truijen, K. Vandewal, W. Moons, M.K. Van Bael, J.D0Haen,J.V. Manca, J. Mullens, Thin Solid Films516(2008)7245–7250.
    [16] J.K. Mwaura, M.R. Pinto, D. Witker, N. Ananthakrishnan, K.S. Schanze, J.R.Reynolds, Langmuir: The ACS Journal of Surfaces and Colloids21(2005)10119–10126.
    [17] T.R. Andersen, T.T. Larsen-Olsen, B. Andreasen, A.P.L. BO¨ttiger, J.E. Carle,M. Helgesen, E. Bundgaard, K. Norrman, J.W. Andreasen, M. J rgensen, F.C. Krebs,ACS Nano5(2011)4188–4196.
    [18] F.C. Krebs, R. S ndergaard, M. J rgensen, Solar Energy Materials&Solar Cells95(2011)1348–1353.
    [19] T.T. Larsen-Olsen, B. Andreasen, T.R. Andersen, A.P.L. BO¨ ttiger, E. Bundgaard,K. Norrman, J.W. Andreasen, M. J rgensen, F.C. Krebs, Solar Energy Materials&SolarCells97(2012)22–97.
    [20] T.T. Larsen-Olsen, T.R. Andersen, B. Andreasen, A.P.L. BO¨ ttiger, E. Bundgaard,K. Norrman, J.W. Andreasen, M. J rgensen, F.C. Krebs, Solar Energy Materials&SolarCells97(2012)43–49.
    [21] M. Ogawa, M. Tamanoi, H. Ohkita, H. Benten, S. Ito, Solar Energy Materials&Solar Cells93(2009)369–374.
    [22] F. Tran-Van, M. Carrier, C. Chevrot, Synthetic Metals142(2004)251–258.
    [23] D.A. Rider, B.J. Worfolk, K.D. Harris, A. Lalany, K. Shahbazi, M.D. Fleischauer,M.J. Brett, J.M. Buriak, Advanced Functional Materials20(15)(2010)2404–2415.
    [24] H.M. Li, Y.L. Li, J. Zhai, G.L. Cui, H.B. Liu, S.Q. Xiao, Y. Liu, F.S. Lu, L. Jiang,D.B. Zhu, Chemistry—A European Journal9(2003)6031–6038.
    [25] V. Sgobba, A. Troeger, R. Cagnoli, A. Mateo-Alonso, M. Prato, F. Parenti, A.Mucci, L. Schenetti, D.M. Guldi, Journal of Materials Chemistry19(2009)4319–4324.
    [26] J.S. Treger, V.Y. Ma, Y. Gao, C.C. Wang, H.L. Wang, M.S. Johal, Journal ofPhysical Chemistry B112(2008)760–763.
    [27] J.H. Yang, A. Garcia, T.Q. Nguyen, Applied Physics Letters90(2007)103514-1–103514-3.
    [28] B.H. Xie, M. Bagui, R. Guo, K. Li, Q. Wang, Z.H. Peng, Journal of PolymerScience Part A: Polymer Chemistry45(2007)5123–5135.
    [29] A.O. Patil, Y. Ikenoue, F. Wudl, A.J. Heeger, Journal of the American ChemicalSociety109(1987)1858–1859.
    [30] I. Haeldermans, I. Truijen, K. Vandewal, W. Moons, M.K. Van Bael, J. D0HaenHaen, J.V. Manca, J. Mullens, Thin Solid Films516(2008)7245–7250.
    [31] Q. Qiao, L. Su, J. Beck, J.T. McLeskey, Journal of Applied Physics98(2005)094906-1–094906-3.
    [32] M.Q. Wang, X.G. Wang, Polymer49(2008)1587–1593.
    [33] J.H. Burroughes, D.D.C. Bradley, A.R. Brown, R.N. Marks, K. Mackay,R.H. Friend, P.L. Burns, A.B. Holmes, Nature347(1990)539–541.
    [34] P. Wang, S.M. Zakeeruddin, P. Comte, R. Charvet, R. Humphry-Baker,M. Gra1tzel, Journal of Physical Chemistry B107(2003)14336–14341.
    [35] D.R. Gagnon, J.D. Capistran, F.E. Karasz, R.W. Lenz, S. Antonn, Polymer28(1987)567–571.
    [36] M. Bjerring, J.S. Nielsen, A. Siu, N.C. Nielsen, F.C. Krebs, Solar Energy Materials&Solar Cells92(2008)772–784.
    [37] F.C. Krebs, H. Spanggaard, Chemistry of Materials17(2005)5235–5237.[38]M.H. Petersen, S.A. Gevorgyan, F.C. Krebs, Macromolecules41(2008)8986–8994.
    [39] M. J rgensen, K. Norrman, S.A. Gevorgyan, T. Tromholt, B. Andreasen,F.C. Krebs, Advanced Materials24(2012)580–612.
    [40] B. Yang, J. Cox, Y. Yuan, F. Guo, J. Huang, Applied Physics Letters99(2011)133302-1–133302-3.
    [41] D. Gupta, S. Mukhopadhyay, K.S. Naraya, Solar Energy Materials&Solar Cells94(2010)1309–1313.
    [1] H.Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu, G. Li, NaturePhotonics3(2009)649–653.
    [2] S.H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J.S. Moon, D. Moses, M.Leclerc, K. Lee, A.J. Heeger, Nature Photon3(2009)297–303.
    [3] G. Yu, J. Gao, J.C. Hummelen, F. Wudl, A.J. Heeger, Science270(5243)(1995)1789–1791.
    [4] N.S. Sariciftci, L. Smilowitz, A.J. Heeger, F. Wudl, Science258(1992)1474–1476.
    [5] W. Yu, H. Zhang, Z. Fan, J. Zhang, H. Wei, D. Zhou, B. Xu, F. Li, W. Tian, B. Yang,Energy and Environmental Science4(2011)2831–2834.
    [6] Y. Liang, Z. Xu, J. Xia, S.-T. Tsai, Y. Wu, G. Li, C. Ray, L. Yu, Advanced Materials22(2010)1–4.
    [7] Y. Liang, D. Feng, Y. Wu, S.T. Tsai, G. Li, C. Ray, L. Yu, Journal of the AmericanChemical Society131(2009)7792–7799.
    [8] J.Y. Kim, K. Lee, N.E. Coates, D. Moses, T.Q. Nguyen, M. Dante, A.J. Heeger,Science317(2007)222–225.
    [9] Y. Yuan, T.J. Reece, P. Sharma, S. Poddar, S. Ducharme, A. Gruverman, Y. Yang, J.Huang, Nature Materials10(2011)296–302.
    [10] Y. Liang, Y. Wu, D. Feng, S. Tsai, H. Son, G. Li, L. Yu, Journal of the AmericanChemical Society131(2009)56–57.
    [11] Weickert, J.; Dunbar, R. B.; Hesse, H. C.; Wiedemann, W.;Schmidt-Mende, L.Nanostructured Organic and Hybrid Solar Cells Adv. Mater.2011,23,18101828.
    [12] Lin, Y.-Y.; Chu, T.-H.; Li, S.-S.; Chuang, C.-H.; Chang, C.-H.;Su, W.-F.; Chang,C.-P.; Chu, M.-W.; Chen, C.-W. Interfacial Nanostructuring on the Performance ofPolymer/TiO2Nanorod Bulk Heterojunction Solar Cells J. Am. Chem. Soc.2009,131,36443649.
    [13] Boucle, J.; Chyla, S.; Shaffer, M. S. P.; Durrant, J. R.; Bradley,D. D. C.; Nelson, J.Hybrid Solar Cells from a Blend of Poly(3-hexylthiophene) and Ligand-Capped TiO2Nanorods, Adv. Funct. Mater.2007,18,622–633.
    [14] Goh, C.;Scully, S. R.; McGehee, M. D. Effects of molecular interface modificationin hybrid organic-inorganic photovoltaic cells J. Appl. Phys.2007,101,114503.
    [15] Kudo,N.; Honda, S.; Shimazaki, Y.; Ohkita, H.; Ito, S.; Benten, H. Improvement ofcharge injection efficiency in organic-inorganic hybrid solar cells by chemicalmodification of metal oxides with organic molecules Appl. Phys. Lett.2007,90,183513.
    [16] Lin, Y.-Y.; Chu, T.-H.; Chen, C.-W.; Su, W.-F. Improved performance ofpolymer/TiO2nanorod bulk heterojunction photovoltaic devices by interfacemodification Appl. Phys. Lett.2008,92,053312.
    [17] Jiang, K.-J.; Manseki, K.; Yu,Y.-H.; Masaki, N.; Suzuki, K.; Song, Y.-L.; Yanagida,S. Adv. Funct. Mater.2009,19,2481–2485.
    [18] Tai, Q.; Zhao, X.; Yan, F. Photovoltaics Based on Hybridization of EffectiveDye-Sensitized Titanium Oxide and Hole-Conductive Polymer P3HT J. Mater. Chem.2010,20,7366–7371.
    [19] Mor, G. K.; Kim, S.; Paulose, M.; Varghese, O. K.;Shankar, K.; Basham, J.; Grimes,C. A. Visible to Near-Infrared Light Harvesting in TiO2Nanotube Array-P3HT BasedHeterojunction Solar Cells Nano Lett.2009,9,4250–4257.
    [20] Peir_o, A. M.; Ravirajan, P.; Govender, K.; Boyle, D. S.;O’Brien, P.; Bradley, D. D.C.; Nelson, J.; Durrant, J. R. Hybrid polymer/metal oxide solar cells based on ZnOcolumnar structures J. Mater. Chem.2006,16,2088–2096.
    [21] Ravirajan, P.; Peir_o, A. M.; Nazeeruddin,M. K.; Graetzel, M.; Bradley, D. D. C.;Durrant, J. R.; Nelson, J. Hybrid Polymer/Zinc Oxide Photovoltaic Devices withVertically Oriented ZnO Nanorods and an Amphiphilic Molecular Interface Layer J.Phys.Chem. B2006,110,7635–7639.
    [22] Said, A. J.; Poize, G.; Martini, C.; Ferry, D.; Marine, W.; Giorgio,S.; Fages, F.;Hocq, J.; Boucl_e, J.; Nelson, J.; Durrant, J. R.; Ackermann, J. J. Phys. Chem. C2010,114,11273–11278.
    [23] Liu, Y.; Scully, S. R.; McGehee, M. D.; Liu, J.; Luscombe, C. K.; Fr_echet, J. M. J.;Shaheen, S. E.; Ginley, D. S. Dependence of Band Offset and Open-Circuit Voltage onthe Interfacial Interaction between TiO2and Carboxylated Polythiophenes J. Phys.Chem. B2006,110,3257–3261.
    [24] Lee, W.; Shin, S.; Han, S.-H.; Cho, B. W. Manipulating interfaces in a hybrid solarcell by in situ photosensitizer polymerization and sequentialhydrophilicity/hydrophobicity control for enhanced conversion efficiency Appl. Phys.Lett.2008,92,193307.
    [25] Briseno, A. L.; Holcombe, T. W.; Boukai,A. I.; Garnett, E. C.; Shelton, S. W.;Fr_echet, J. J. M.; Yang, P. Oligo-and Polythiophene/ZnO Hybrid Nanowire Solar CellsNano Lett.2010,10,334–340.
    [26] Cao, Y.; Bai, Y.; Yu, Q.; Cheng, Y.; Liu, S.; Shi, D.; Gao, F.;Wang, P.Dye-Sensitized Solar Cells with a High Absorptivity Ruthenium Sensitizer Featuring a2-(Hexylthio)thiophene Conjugated Bipyridine J. Phys. Chem. C2009,113,62906297.
    [27] Dongqin Bi, Fan Wu, Qiyun Qu, Wenjin Yue, Qi Cui, Wei Shen, Ruiqiang Chen,Changwen Liu, Zeliang Qiu, Mingtai Wang. Device Performance Related toAmphiphilic Modification at Charge Separation Interface in Hybrid Solar Cells withVertically Aligned ZnO Nanorod Arrays J. Phys. Chem. C2011,115,3745-3752.
    [28] Wen-Pin Liao; Shu-Chien Hsu; Wan-Hsien Lin; Jih-Jen Wu. Hierarchical TiO2Nanostructured Array/P3HT Hybrid Solar Cells with Interfacial Modification J. Phys.Chem. C2012,116,15938-15945.
    [29] Mor, G. K.; Kim, S.; Paulose, M.; Varghese, O. K.; Shankar, K.;Basham, J.; Grimes,C. A. Visible to Near-Infrared Light Harvesting in TiO2Nanotube Array P3HT BasedHeterojunction Solar Cells Nano Lett.2009,9,42504257.
    [30] Yu, B. Y.; Tsai, A.; Tsai, S. P.; Wong, K. T.; Yang, Y.; Chu, C. W.; Shyue, J. J.Efficient inverted solar cells using TiO2nanotube arrays Nanotechnology2008,19,255202.
    [31] Zeng, W.; Cao, Y.; Bai, Y.; Wang, Y.; Shi, Y.; Zhang, M.; Wang, F.; Pan, C.; Wang,P. Efficient Dye-Sensitized Solar Cells with an Organic Photosensitizer FeaturingOrderly Conjugated Ethylenedioxythiophene and Dithienosilole Blocks Chem. Mater.2010,22,1915.
    [32] Jonas Weickert, Florian Auras, Thomas Bein, Lukas Schmidt-Mende.Characterization of Interfacial Modifiers for Hybrid Solar Cells J. Phys. Chem. C2011,115,15081–15088
    [33] Zhu, R.; Jiang, C.-Y.; Liu, B.; Ramakrishna, S. Adv. Mater.2009,21,9941000.
    [34] Moon, S.-J.; Baranoff, E.; Zakeeruddin, S. M.; Yeh, C.-Y.; Diau,E. W.-G.; Graetzel,M.; Sivula, K. Enhanced light harvesting in mesoporous TiO2/P3HT hybrid solar cellsusing a porphyrin dye Chem. Commun.2011,47,82448246.
    [35] Gra tzel, M. Solar Energy Conversion by Dye-Sensitized Photovoltaic Cells Inorg.Chem.2005,44,68416851.
    [1] Dou, L.; You, J.; Yang, J.; Chen, C. C.; He, Y.; Murase, S.; Moriarty, T.; Emery, K.;Li, G.; Yang, Y. Tandem polymer solar cells featuring a spectrally matched low-bandgappolymer, Nat. Photonics,2012,6,180-185.
    [2] Li, X.; Choy, W. C. H.; Huo, L.; Xie, F.; Sha, W. E. I.; Ding, B.; Guo, X.; Li, Y.;Hou, J.; You, J. Dual Plasmonic Nanostructures for High Performance Inverted OrganicSolar Cells, Adv. Mater.,2012,24,3046-3052.
    [3] Small, C. E.; Chen, S.; Subbiah, J.; Amb, C. M.; Tsang, S. W.; Lai, T. H.; Reynolds,J. R.; So, F. High-efficiency inverted dithienogermole-thienopyrrolodione-basedpolymer solar cells, Nat. Photonics,2011,115-119.
    [4] He, Z.; Zhong, C.; Huang, X.; Wong, W. Y.; Wu, H.; Chen, L.; Su, S.; Cao, Y.Simultaneous Enhancement of Open‐Circuit Voltage, Short‐Circuit Current Density,and Fill Factor in Polymer Solar Cells, Adv. Mater.,2011,23,4636-4643.
    [5] Zhou, Y.; Fuentes-Hernandez, C.; Shim, J.; Meyer, J.; Giordano, A. J.; Li, H.;Winget, P.; Papadopoulos, T.; Cheun, H.; Kim, J. A Universal Method to ProduceLow–Work Function Electrodes for Organic Electronics, Science,2012,336,327-332.
    [6] Reese, M. O.; White, M. S.; Rumbles, G.; Ginley, D. S.; Shaheen, S. E. Optimalnegative electrodes for poly (3-hexylthiophene):[6,6]-phenyl C61-butyric acid methylester bulk heterojunction photovoltaic devices, Appl. Phys. Lett.,2008,92,053307.
    [7] Yuan, Y.; Reece, T. J.; Sharma, P.; Poddar, S.; Ducharme, S.; Gruverman, A.; Yang,Y.; Huang, J. Efficiency enhancement in organic solar cells with ferroelectric polymers,Nat. Mater.,2011,10,296-302.
    [8] Yuan, Y.; Sharma, P.; Xiao, Z.; Poddar, S.; Gruverman, A.; Ducharme, S.; Huang, J.Understanding the effect of ferroelectric polarization on power conversion efficiency oforganic photovoltaic devices, Energy and Environmental Science,2012,5,8558-8563.
    [9] Yang, B.; Yuan, Y.; Sharma, P.; Poddar, S.; Korlacki, R.; Ducharme, S.; Gruverman,A.; Saraf, R.; Huang, J. Tuning the Energy Level Offset between Donor and Acceptorwith Ferroelectric Dipole Layers for Increased Efficiency in Bilayer OrganicPhotovoltaic Cells, Adv. Mater.,2012,24,1455-1460.
    [10] Liang, Y.; Wu, Y.; Feng, D.; Tsai, S. T.; Son, H. J.; Li, G.; Yu, L. Development ofnew semiconducting polymers for high performance solar cells, J. Am. Chem. Soc.,2008,131,56-57.
    [11] Chen, W.; Xu, T.; He, F.; Wang, W.; Wang, C.; Strzalka, J. W.; Liu, Y.; Wen, J.;Miller, D.; Chen, J. Hierarchical Nanomorphologies Promote Exciton Dissociation inPolymer: Fullerene Bulk Heterojunction Solar Cells, Nano Lett.,2011,11,3707-3713.
    [12] Park, S. H.; Roy, A.; Beaupré, S.; Cho, S.; Coates, N.; Moon, J. S.; Moses, D.;Leclerc, M.; Lee, K.; Heeger, A. J. Bulk heterojunction solar cells with internal quantumefficiency approaching100&percnt, Nat. Photonics,2009,3,297-302.
    [13] Seo, J. H.; Gutacker, A.; Sun, Y.; Wu, H.; Huang, F.; Cao, Y.; Scherf, U.; Heeger, A.;Bazan, G. C. Improved High Efficiency Organic Solar Cells via Incorporation of aConjugated Polyelectrolyte Interlayer, J. Am. Chem. Soc.,2011,133,8416-8419.
    [14]Wang, D. H.; Moon, J. S.; Seifter, J.; Jo, J.; Park, J. H.; Park, O.; Heeger, A. J.Sequential Processing: Control of Nano-Morphology in Bulk Heterojunction Solar Cells,Nano Lett.,2011,21,3163-3168.
    [15] Guo, J.; Liang, Y.; Szarko, J.; Lee, B.; Son, H. J.; Rolczynski, B. S.; Yu, L.; Chen,L. X. Structure, dynamics, and power conversion efficiency correlations in a new lowbadgap polymer: PCBM solar cell, J. Phys. Chem. B,2010,114,742-748.
    [16] Ducharme, S.; Gruverman, A. Ferroelectrics: Start the presses, Nat. Mater.,2009,8,9-10.
    [17] Hu, Z.; Tian, M.; Nysten, B.; Jonas, A. M. Regular arrays of highly orderedferroelectric polymer nanostructures for non-volatile low-voltage memories, Nat. Mater.,2008,8,62-67.
    [18] Edqvist, E.; Hedlund, E. Design and manufacturing considerations of low-voltagemultilayer P (VDF-TrFE) actuators, J. Micromech. Microeng.,2009,19,115019.
    [19] Cottinet, P. J.; Guyomar, D.; Lallart, M.; Guiffard, B.; Lebrun, L. Investigation ofelectrostrictive polymer efficiency for mechanical energy harvesting, IEEE Transactionson Ultrasonics,2011,58,1842-1851.
    [20] Choi, S. W.; Kim, J. R.; Ahn, Y. R.; Jo, S. M.; Cairns, E. J. Characterization ofelectrospun PVdF fiber-based polymer electrolytes, Chem. Mater.,2007,19,104-115.
    [21] Liu, Y.; Weiss, D. N.; Li, J. Rapid nanoimprinting and excellent piezoresponse ofpolymeric ferroelectric nanostructures, ACS Nano,2009,4,83-90.
    [22] Hong, C. C.; Huang, S. Y.; Shieh, J.; Chen, S. H. Enhanced Piezoelectricity ofNanoimprinted Sub-20nm Poly (vinylidene fluoride–trifluoroethylene) CopolymerNanograss, Macromolecules,2012,45,1580-1586.
    [23] Hu, Z.; Baralia, G.; Bayot, V.; Gohy, J. F.; Jonas, A. M. Nanoscale control ofpolymer crystallization by nanoimprint lithography, Nano Lett.,2005,5,1738-1743.
    [24] Lutkenhaus, J. L.; McEnnis, K.; Serghei, A.; Russell, T. P. Confinement Effects onCrystallization and Curie Transitions of Poly (vinylidene fluoride-co-trifluoroethylene),Macromolecules,2010,43,3844-3850.
    [25] García-Gutiérrez, M. C.; Linares, A.; Hernández, J. J.; Rueda, D. R.; Ezquerra, T.A.; Poza, P.; Davies, R. J. Confinement-induced one-dimensional ferroelectric polymerarrays, Nano Lett.,2010,10,1472-1476.
    [26] Serghei, A.; Lutkenhaus, J. L.; Miranda, D. F.; McEnnis, K.; Kremer, F.; Russell, T.P. Density Fluctuations and Phase Transitions of Ferroelectric Polymer Nanowires,Small,2010,6,1822-1826.
    [27] Yang, Y.; Mielczarek, K.; Aryal, M.; Zakhidov, A.; Hu, W. Nanoimprinted PolymerSolar Cell, ACS Nano,2012,6,2877-2892.
    [28] Sun, Y.; Takacs, C. J.; Cowan, S. R.; Seo, J. H.; Gong, X.; Roy, A.; Heeger, A. J.Efficient, Air‐Stable Bulk Heterojunction Polymer Solar Cells Using MoOx as theAnode Interfacial Layer, Adv. Mater.,2011,23,2226-2230.
    [29] Silverstein, T. P. The Real Reason Why Oil and Water Don't Mix, J. Chem. Educ.,1998,75,116.
    [30] Koga, K.; Nakano, N.; Hattori, T.; Ohigashi, H. Crystallization, field‐inducedphase transformation, thermally induced phase transition, and piezoelectric activity in P(vinylidene fluoride‐TrFE) copolymers with high molar content of vinylidene fluoride,J. Appl. Phys.,1990,67,965-974.
    [31] Bai, M.; Ducharme, S. Ferroelectric nanomesa formation from polymerLangmuir–Blodgett films, Appl. Phys. Lett.,2004,85,3528-3530.
    [32] Guo, S.; Sun, X.; Wang, S.; Xu, S.; Zhao, X. Z.; Chan, H. L. W. Thermal andstructural properties of high-energy electron irradiated poly (vinylidenefluoride-trifluoroethylene) copolymer blends, Mater. Chem. Phys.,2005,91,348-354.
    [33] Li, J.; Luo, Y.; Bai, M.; Ducharme, S. Nanomesa and nanowell formation inLangmuir–Blodgett polyvinylidene fluoride trifluoroethylene copolymer films, Appl.Phys. Lett.,2005,87,213116.
    [34] Quist, P. A. C.; Savenije, T. J.; Schins, J. M.; Kroeze, J. E.; Rijkers, P. A.; Siebbeles,L. D. A. Electron diffusion in polymer: fullerene bulk heterojunctions, Phys. Rev. B,2007,75,195317.
    [35] Peters, C. H.; Sachs‐Quintana, I.; Kastrop, J. P.; Beaupré, S.; Leclerc, M.;McGehee, M. D. High efficiency polymer solar cells with long operating lifetimes,Advanced Energy Materials,2011,1,491-494.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700