用户名: 密码: 验证码:
空肠弯曲菌血红素氧合酶ChuZ的结构解析与功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空肠弯曲菌(Campylobacter jejuni, C. jejuni)是一种重要的食源性感染病原菌。全球范围内,空肠弯曲菌感染是急性胃肠炎最常见的病因之一,其严重的并发症为Guillain-Barré和Miller-Fischer综合症。随着日益严重的多重耐药现象的出现,C. jejuni感染的控制和治疗受到严峻的考验,迫切需要寻找新的途径来控制这类致病菌的感染。铁对于细菌的生长是至关重要的,尽管地球上有着非常丰富的铁元素,但是对于致病菌来说铁的生物利用度却相当低。对C. jejuni来说,来自宿主红细胞裂解的血红蛋白血红素(heme)是其铁的主要来源。而血红素氧合酶ChuZ在降解血红素并获取铁的机制中起到非常重要的作用。本研究拟解析ChuZ的晶体结构,从分子水平阐明C. jejuni利用铁元素的机制,从而为以ChuZ为靶点,通过阻断C. jejuni对铁元素的摄取,开发抗C. jejuni感染的的新型药物提供理论依据。
     方法:
     1.chuZ基因克隆及重组ChuZ蛋白的制备。
     以C. jejuni(NCTC11168)全基因组为模板,PCR扩增chuZ基因并构建到原核表达载体pET22b上,采用E. coli BL21工程菌表达ChuZ蛋白。依次采用亲和层析、分子筛层析和离子交换层析方法纯化得到高质量的ChuZ蛋白。
     2.ChuZ结晶条件搜索。
     采用Hampton Research公司的72孔板(HR3-086)和晶体初筛试剂盒Index、crystal screen HR110、SaltRx和PEG/ion等,通过Mircobatch法进行初步的结晶条件筛选,在得到初步结晶条件的基础上,对结晶条件进行优化获得最终的结晶条件。
     3.晶体数据收集处理和结构解析。
     X-射线晶体衍射方法收集到ChuZ-hemin的衍射数据,采用分子置换法以已有结构(3GAS)为模型获得相位并解析得到ChuZ-hemin复合物的晶体结构,并对最终模型进行分析。
     4.酶活相关关键残基功能分析。
     在结构分析的基础上,制备参与结合底物血红素的相关残基突变体,对参与结合底物血红素的相关残基进行突变,检测突变体的酶学活性并与野生型ChuZ活性相比较,验证和评价ChuZ酶活的关键残基。
     5.表面独特的血红素结合位点的分析。
     分别用紫外分光光度法和ITC法测量ChuZ蛋白及其突变体与血红素的结合常数和结合比例。
     6.突变体晶体结构分析。
     制备参与结合底物血红素的相关残基突变体蛋白,结合hemin后采用制备ChuZ晶体同样方法、收集衍射数据并解析突变体蛋白的晶体结构。
     结果:
     1.成功构建了表达ChuZ蛋白的重组质粒pET22b-chuZ,并实现了其以可溶形式表达。经多种层析方法的联合应用后,纯化得到了高纯度的ChuZ蛋白,蛋白纯度达到95%以上。
     2.以出现针状晶体条件优化,最终晶体生长条件为:蛋白浓度168mg/ml,microbatch板生长,池液条件:0.1M MES 23%PEG400 50mM pH6.5 iminazole 50mM ammonium tartrate ,蛋白与池液1:1混合放置3天后即出现红色棍状晶体,七天后晶体大小为0.1×0.1×0.7 mm3。
     3.运用X-射线晶体衍射法收集了一套2.4?分辨率的ChuZ-hemin数据,数据处理结果:空间群C2221,晶胞参数a = 106.474, b = 106.698,c = 52.464 ?,α=β=γ=90°。运用PHASER程序以HugZ(PDB ID 3GAS)为模型,采用分子置换法解析了ChuZ的三维结构,该结构采用split-barrel折叠方式,明显不同于经典的全α螺旋的单体血红素氧合酶的结构。明确了参与底物结合的关键残基如R166、H9和H14。
     4.成功构建了R166A、H245Q/R166A、H245Q/H9A/H14A、R166A/H9A/H14A、H9A/H14A突变体,通过酶活实验明确了R166A/H9A/H14A完全丧失了酶的活性。
     5.紫外吸光度值测定结果表明:H9A/H14A的ChuZ突变体结合一个hemin,野生型ChuZ结合1.5个hemin。ITC结果表明H9A/H14A突变体和wild-type ChuZ的结合常数与其它细菌的HO基本一致,结合比例与紫外结果和晶体结构中一致。
     6.获得了H9A/H14A突变体的晶体,并收集得到一套3?的数据,电子密度图显示,其表面血红素结合位点没有血红素的残余密度,提示该突变体丧失了结合血红素的能力。
     结论:
     ChuZ的三维结构采取独特的split-barrel折叠方式,与大多数获得结构解析的全α螺旋的单体血红素氧合酶的结构明显不同,属于一个以HugZ为代表的新的血红素氧合酶家族。ChuZ在溶液和晶体中以同源二聚体存在。在ChuZ的精细结构中发现一个新的血红素结合位点,它与普遍存在于血红素蛋白中的“经典位点”不同,位于分子表面通过水分子介导的四个组氨酸结合血红素,这样的结合方式在其他血红素氧合酶中尚未发现过。定点突变研究证实了ChuZ是新一类血红素结合蛋白家族的特殊成员,并通过对ChuZ的结构-功能关系分析以及与同源蛋白的对比研究,发现C端结构域的血红素结合“口袋”是ChuZ酶催化机制的关键结构基础。
The gram-negative, micro-aerophilic bacterium Campylobacter jejuni (C. jejuni), is detected in the gut of a wide range of food-supply animals and avian species. It is a major cause of acute gastroenteritis in industrialized countries. C. jejuni infection is also implicated in the development of serious immune-mediated neurological conditions known as Guillain-Barréand Miller-Fischer syndromes. Iron acquisition is essential for survival, persistence, and pathogenicity of the bacterial because free iron is maintained at very low levels by the hosts, partly in order to restrict microbe growth. As a result of iron shortage, C. jejuni tend to use heme as the sole iron source. With the continual emergence of resistant strains, new methods to prevent and control the infection of C. jejuni are urgently needed. The heme oxygenase ChuZ is part of the heme utilization mechanism of C. jejuni, and may serve as a promising candidate for development of novel anti-bacterial drugs, thus we have embarked on structure determination and function analysis of ChuZ from C. jejuni.
     Methods
     1. Cloning, expression and purification of ChuZ.
     The chuZ gene was amplified from the genome of C. jejuni NCTC11168 and cloned into an expression vector derived from the pET22b plasmid and placed between NdeI and XhoI restriction sites, The recombinant plasmid was transformed into Escherichia coli BL21 (DE3) competent cells and the protein was expressed under the induction of IPTG and then purified by affinity, gel-filtration and ion exchange chromatography.
     2. Crystallization of ChuZ-hemin complex
     Hemin solution was slowly added to purified ChuZ, The solution was incubated at overnight and the extra hemin was removed by gel filtration chromatography. The crystals of ChuZ-hemin complex were obtained by the microbatch technique using Hampton 72 well crystallization plates (HR3-086) and several Hampton crystallization kits such as Index, SaltRx, PEG/Ion Screen, Crystal Screen, PEG/Tacsimate, PEGRx were screened.
     3. Data collection and structure determination
     All diffraction data sets were collected at Beam line 17U of Shanghai Synchrotron Radiation Facility (Shanghai, China) using a MAR225 CCD detector . Structure of ChuZ was determined by molecular replacement method.
     4.Enzymes activity assay of wild ChuZ and its mutants
     Based on the structural analysis, key residues that involed in substrate binding were mutated and the enzymatic activities of ChuZ and its mutants were assayed by spectroscopic methods
     5.Analysis of the surface heme binding sites
     ChuZ-hemin and mutants binding stoichiometry was assayed by using spectroscopic method and ITC to test binding constants of ChuZ and its mutants.
     6. Crystallization of mutants H9A/H14A, the mutants was purified and crystallized the same way as wild-type ChuZ.
     Results:
     1. The recombinant plasmid pET22b-chuZ was constructed successfully and confirmed by sequencing. The pET22b-chuZ plasmid was transformed into Escherichia coli BL21 (DE3) competent cells and highly expressed under the induction of IPTG. The resulting protein was purified by affinity, gel-filtration and ion exchange chromatography; the purity of the protein was up to 95%.
     2. During the initial crystallization condition screening experiments, needle-like crystals were observed after 2 days and grew to dimensions of about 0.1×0.1×0.7 mm3 in a few days. As the result of optimization, crystals suitable for high resolution diffraction data collection were obtained via microbatch method in 0.1M MES, 24% PEG400 (v/v), and 0.1M imidazole pH 6.5.
     3. The crystal diffracted to a resolution of 2.4 ? and belonged to space group C2221, with unit cell parameters a = 106.474, b = 106.698, and c = 52.464 ?,α=β=γ=90°. The crystal structure was solved by the molecular replacement method with the program PHASER, using the structure of HugZ (PDB accession code 3GAS) as the search model. There was one ChuZ-hemin complex in the asymmetric unit.
     4. Several mutants including R166A, H245Q/R166A, H245Q/H9A/H14A, R166A/H9A/H14A, H9A/H14A mutants were successfully constructed, enzymatic activity assay indicate that R166A/H9A/H14A will result in complete loss of enzyme activity.
     5. UV absorbance measurements and ITC assay showed that: these results correlated very well with the observation that 1 heme molecule is bound on the surface of the ChuZ dimer in addition to 1 heme per ChuZ monomer inside the binding pocket. The results also suggest that mutation of His9 and His14 removes the surface heme-binding site and resulted in a 1:1 ChuZ-hemin binding stoichiometry.
     6.A data set diffracted to a resolution of 3? was collected with crystal growed by mutant H9A/H14A, no electronic density was observed in the surface hemin binding site, indicting the mutant lost the capacity to bind hemin.
     Conculsion:
     Based on structural and biochemical studies on ChuZ and several functionally relevant mutants, this work demonstrates that ChuZ is a new member of the split-barrel HO family. Although the structure of ChuZ and its interactions with heme are highly conserved with respect to those of H. pylori HugZ, a novel heme-binding site on the surface of ChuZ, which was not observed in HugZ, points to the possibility that in addition to its role as an HO, ChuZ may participate in heme accumulation. These studies greatly improve our understanding of this new bacterial HO family.
引文
[1] D.G. Abraham NG, Lutton JD, and Kappas A, The physiological significance of heme oxygenase, Cell Physiol Biochem 6 (1996) 129-168.
    [2] W.R. Cornejo J, and Beale SI., Phytobilin biosynthesis: cloning and expression of a gene encoding soluble ferredoxin-dependent heme oxygenase from Synechocystis sp. PCC 6803, Plant J . 15 (1998).
    [3] R.C.a.Z. G., The heme oxygenase gene (pbsA) in the red alga Rhodella violacea is discontinuous and transcriptionally activated during iron limitation, Proc Natl Acad Sci USA 94 (1997) 11736-11741.
    [4] W.A. Zhu W, and Stojiljkovic I. , Degradation of heme in Gram-negative bacteria: the product of the hemO gene of Neisseriae is a heme oxygenase, J Bacteriol. 182 ( 2000) 6783-6790.
    [5] M.M.a.T. GM., Purification and characterization of human biliverdin reductase, Arch Biochem Biophys 300 (1993) 320-326.
    [6] E.P. Skaar, A. H. Gaspar, and O. Schneewind., IsdG and IsdI,heme-degrading enzymes in the cytoplasm of Staphylococcus aureus J. Biol.Chem. 279 (2004) 436-443.
    [7] Z.X. Migita CT, and Yoshida T. , Expression and characterization of cyanobacterium heme oxygenase, a key enzyme in the phycobilin synthesis. Properties of the heme complex of recombinant active enzyme, Eur J Biochem 270 (2003) 687-698.
    [8] M.K. Frankenberg N, Kohchi T, and Lagarias JC., Functional genomic analysis of the HY2 family of ferredoxin-dependent bilin reductases from oxygenic photosynthetic organisms, Plant Cell 13 (2001) 965-978.
    [9] M.L. Singh AK, and Sherman LA., Microarrayanalysis of the genome-wide response to iron deficiency and iron reconstruction in the cyanobacterium Synechocystis sp. PCC6803, Plant Physiol 132 (2003) 1828-1839.
    [10] L.S. Czjzek M, Wandersman C, Delepierre M, Lecroisey A,Izadi-Pruneyre N., The crystal structure of the secreted dimeric form of the hemophore HasA reveals a domain swapping with an exchanged heme ligand, J Mol Biol. 365 (2007) 1176-1186.
    [11] J.G. Yukl ET, Alontaga AY, Pautsch L, Rodriguez JC,Rivera M,Moenne-Loccoz P:, Kinetic and spectroscopic studies of hemin acquisition in the hemophore HasAp from Pseudomonas aeruginosa, Biochemistry 49 (2010) 6646-6654.
    [12] R.K. Lukat-Rodgers GS, Caillet-Saguy C, IzadiPruneyre N, Lecroisey A: , Novel heme ligand displacement by CO in the soluble hemophore HasA and its proximal ligand mutants: implications for heme uptake and release., Biochemistry 47 (2008) 2087-2098.
    [13] R.S. Pilpa RM, Villareal VA,WongML, PhillipsM, Clubb RT:, Functionally distinct NEAT (NEAr Transporter) domains within the Staphylococcus aureus IsdH/HarA protein extract heme from methemoglobin, J. Biol Chem. 284 (2009) 1166-1176.
    [14] S.E. Fabian M, Olson JS, Maresso AW:, Heme transfer to the bacterial cell envelope occurs via a secreted hemophore in the Gram-positive pathogen Bacillus anthracis, J. Biol Chem 284 (2009) 32138-32146.
    [15] W.C. Aranda R, Liu M, Bitto E, Cates MS, Olson JS, Lei B:, Bis-methionyl coordination in the crystal structure of the heme-binding domain of the streptococcal cell surface protein shp, J. Mol Biol 374 (2007) 374-383.
    [16] T.W. Liu M, Zhu H, Xie G, Dooley DM, L. B. , Direct hemin transfer from IsdA to IsdC in the iron-regulated surface determinant (Isd) heme acquisition system of Staphylococcus aureus, J. Biol Chem. 283 (2008) 6668-6676.
    [17] S.S. Sharp KH, Cockayne A, PaoliM., Crystal structure of the heme-IsdC complex, the central conduit of the Isd iron/heme uptake system in Staphylococcus aureus, J. Biol Chem. 282 (2007) 10625-10631.
    [18] P.R. Villareal VA, Robson SA, Fadeev EA, Clubb RT., The IsdC protein from Staphylococcus aureus uses a ?exible binding pocket to capture heme, J Biol Chem 283 (2008) 31591-31600.
    [19] P.M. Caillet-Saguy C, Turano P, Izadi-Pruneyre N,Delepierre M, Bertini I, Lecroisey A:, Mapping the interaction between the hemophore HasA and its outer membrane receptorHasR using CRINEPT-TROSY NMR spectroscopy, J.Am Chem Soc 131 (2009) 1736-1744.
    [20] V.C. Grigg JC, Heinrichs DE, Murphy MEP:, Heme coordination by Staphylococcus aureus IsdE, J.Biol Chem 282 (2007) 28815-28822.
    [21] D.P. Lefevre J, Delepierre M, Izadi-Pruneyre N:, Modulation by substrates of the interaction between the HasR outer membrane receptor and its specific TonB-like protein HasB, J.Mol Biol. 378 (2008) 840-851.
    [22] W.A. Burkhard KA, Characterization of the outer membrane receptor ShuA from the heme uptake system of Shigella dysenteriae. Substrate specificity and dentification of the heme protein ligands, J.Biol Chem. 282 (2007) 15126-15136.
    [23] L.H. Ho WW, Eakanunkul S, Tong Y, Wilks A, Guo M, Poulos TL:, Holo- and apo-bound structures of bacterial periplasmic heme-binding proteins, J.Biol Chem. 282 (2007) 35796-35802.
    [24] M.S. Rajasekaran MB, Gibson TM, Hussain R, Siligardi G,Andrews SC, Watson KA:, Isolation and characterisation of EfeM, a periplasmic component of the putative EfeUOBM iron transporter of Pseudomonas syringae pv. syringae, Biochem Biophys Res Commun 398 (2010) 366-371.
    [25] G.M. Tong Y, Cloning and characterization of a novel periplasmic heme-transport protein fromthe human pathogen Pseudomonas aeruginosa, J Biol Inorg Chem 12 (2007) 735-750.
    [26] W.A. Burkhard KA, Functional characterization of the Shigella dysenteriae heme ABC transporter, Biochemistry 47 (2008) 7977-7979.
    [27] D.R. Block, G.S. Lukat-Rodgers, K.R. Rodgers, A. Wilks, M.N. Bhakta, I.B. Lansky, Identification of Two Heme-Binding Sites in the Cytoplasmic Heme-Trafficking Protein PhuS from Pseudomonas aeruginosa and Their Relevance to Function?, Biochemistry 46 (2007) 14391-14402.
    [28] L.I. Kaur AP, Wilks A:, The role of the cytoplasmic heme-binding protein (PhuS) of Pseudomonas aeruginosa in intracellular heme trafficking and iron homeostasis, J. Biol Chem. 284 (2009) 56-66.
    [29] F.A. Lechardeur D, Robert B, Gaudu P, Trieu-Cuot P,Lamberet G, Gruss A., The 2-Cys peroxiredoxin alkyl hydroperoxide reductase c binds heme and participates in itsintracellular availability in Streptococcus galactiae, J. Biol Chem. 285 (2010) 16032- 16041.
    [30] R.M. Lee WC, Skaar EP, Murphy MEP:, Ruf?ing of metalloporphyrins bound to IsdG and IsdI, two heme-degrading enzymes in Staphylococcus aureus, J.Biol Chem 283 (2008) 30957-30963.
    [31] U.G. Reniere ML, Harry SR, Stec DF, Krull R, Wright DW,Bachmann BO, Murphy ME, Skaar EP., The IsdG-family of haem oxygenases degrades haem to a novel chromophore, Mol. Microbiol 75 (2010) 1529-1538.
    [32] I.A. Chim N, Nguyen TQ, Goulding CW., Unusual diheme conformation of the heme-degrading protein from Mycobacterium tuberculosis, J Mol Biol 395 (2010) 595-608.
    [33] H.G. Letoffe S, Delepelaire P, Lange N, Wandersman C.. Bacteria capture iron from heme by keeping tetrapyrrol skeleton intact, Proc Natl Acad Sci 106 (2009) 11719-11724.
    [34] Y. Nitzan, H. M. Wexler, and S. M. Finegold., Inactivation of anaerobic bacteria by various photosensitized porphyrins or by hemin, Curr.Microbiol. 29 (1994) 125-131.
    [35] Y. Nitzan, H. Ladan, and Z.Malik., Growth-inhibitory effect of hemin on staphylococci, Curr. Microbiol. 14 (1987) 279-284.
    [36] J. Everse, and N. Hsia., The toxicities of native and modified hemoglobins, Free Radic. Biol. Med. 22 (1997) 1075-1099.
    [37] W.C. Lee, M. L. Reniere, E. P. Skaar, and M. E. Murphy., Ruf?ing of metalloporphyrins bound to IsdG and IsdI, two heme-degrading enzymes in Staphylococcus aureus, J. Biol. Chem. 283 ( 2008) 30957-30963.
    [38] I. Stojiljkovic, V. Kumar, and N. Srinivasan., Non-iron metalloporphyrins: potent antibacterial compounds that exploit haem/Hb uptake systems of pathogenic bacteria, Mol. Microbiol. 31 (1999) 429-442.
    [39] A. Chou, and C. Fitch., Mechanism of hemolysis induced by ferriprotoporphyrin IX, J. Clin. Invest. 68 (1981) 6.
    [40] R.L. Aft, and G. C. Mueller., Hemin-mediated DNA strand scission, J Biol Chem 258 (1983) 12069-12072.
    [41] P.A. Daskaleros, and S. M. Payne. , Congo red binding phenotype is associated withhemin binding and increased infectivity of Shigella ?exneri in the HeLa cell model, Infect Immun 55 (1987) 1393-1398.
    [42] D. Grenier, Hemin-binding property of Porphyromonas gingivalis outer membranes, FEMS Microbiol Lett 61 (1991) 5.
    [43] I.D. Hirst, T. S. Hastings, and A. E. Ellis. , Utilization of haem compounds by Aeromonas salmonicida, J. Fish Dis 17 (1994) 365-373.
    [44] J.W. Smalley, and A. J. Birss. , Iron protoporphyrin IX-albumin complexing increases the capacity and avidity of its binding to the periodontopathogen Porphyromonas ingivalis, Microb Pathog 26 (1999) 131-137.
    [45] R.A. Garduno, and W. W. Kay. , Interaction of the fish pathogen Aeromonas salmonicida with rainbow trout macrophages, Infect Immun 60 (1992) 4612-4620.
    [46] B. Hinnebusch, R. Perry, and T. Schwan. , Role of the Yersinia pestis hemin storage (hms) locus in the transmission of plague by ?eas, Science 273 (1996) 367-370.
    [47] A.P. Kaur, and A. Wilks., Heme inhibits the DNA binding properties of the cytoplasmic heme binding protein of Shigella dysenteriae (ShuS), Biochemistry 46 (2007) 2994-3000.
    [48] M. Kristiansen, J. H. Graversen, C. Jacobsen, O. Sonne, H. J. Hoffman,S. K. Law, and S. K. Moestrup., Identification of the haemoglobin scavenger receptor, Nature 409 (2001) 198-201.
    [49] L.A. Lewis, E. Gray, Y. P. Wang, B. A. Roe, and D. W. Dyer. , Molecular characterization of hpuAB, the haemoglobin-haptoglobin-utilization operon of Neisseria meningitidis, Mol Microbiol 23 (1997) 737-747.
    [50] U. Nir, H. Ladan, Z. Malik, and Y. Nitzan., In vivo effects of porphyrins on bacterial DNA, J Photochem Photobiol B Biol 11 (1991) 295-306.
    [51] M. Reniere, V. Torres, E. Skaar, Intracellular metalloporphyrin metabolism in <i>Staphylococcus aureus</i>, Biometals 20 (2007) 333-345.
    [52] H. Lin, and J. Everse., The cytotoxic activity of hematoheme: evidence for two different mechanisms, Anal. Biochem 161 (1987) 323-331.
    [53] I. Stojiljkovic, B. D. Evavold, and V. Kumar., Antimicrobial properties of porphyrins, Expert Opin Invest Drugs 10 (2001) 309-320.
    [54] V.J. Torres, D. L. Stauff, G. Pishchany, J. S. Bezbradica, L. E. Gordy, J.Iturregui, K. L.Anderson, P. Dunman, S. Joyce, and E. P. Skaar., A Staphylococcus aureus regulatory system that responds to host heme and modulates virulence, Cell Host Microbe (2007) 109-119.
    [55] D.L. Stauff, D. Bagaley, V. J. Torres, R. Joyce, K. L. Anderson, L. Kuechenmeister, P. M. Dunman, and E. P. Skaar., Staphylococcus aureus HrtA is an ATPase required for protection against heme toxicity and prevention of a transcriptional heme stress response., J Bacteriol 190 (2008) 3588-3596.
    [56] A. Fernandez, D. Lechardeur, A. Derre-Bobillot, E. Couve, P. Gaudu, and A. Gruss. , Two coregulated ef?ux transporters modulate intracellular heme and protoporphyrin IX availability in Streptococcus agalactiae, PLoS Pathog (2010) e1000860.
    [57] M.B. Pedersen, C. Garrigues, K. Tuphile, C. Brun, K. Vido, M. Bennedsen, H. Mollgaard, P. Gaudu, and A. Gruss., Impact of aeration and heme-activated respiration on Lactococcus lactis gene expression: identification of a heme-responsive operon, J Bacteriol 190 (2008) 4903-4911.
    [58] D.L. Stauff, and E. P. Skaar., Bacillus anthracis HssRS signalling to HrtAB regulates haem resistance during infection, Mol Microbiol 72 (2009) 763-778.
    [59] K.E. Hagman, W. Pan, B. G. Spratt, J. T. Balthazar, R. C. Judd, and W. M. Shafer., Resistance of Neisseria gonorrhoeae to antimicrobial hydrophobic agents is modulated by the mtrRCDE ef?ux system, Microbiology 141 (1995) 611-622.
    [60] J. Bozja, K. Yi, W. M. Shafer, and I. Stojiljkovic., Porphyrin-based compounds exert antibacterial action against the sexually transmitted pathogens Neisseria gonorrhoeae and Haemophilus ducreyi, Int J Antimicrob Agents 24 (2004) 578-584.
    [61] P.L. Olliaro, and D. E. Goldberg., The Plasmodium digestive vacuole:metabolic headquarters and choice drug target, Parasitol. Today 11 (1995) 294-297.
    [62] C.D. Fitch, Involvement of heme in the antimalarial action of chloroquine, Trans Am Clin Climatol Assoc 109 (1998) 97-106.
    [63] D. Jani, R. Nagarkatti, W. Beatty, R. Angel, C. Slebodnick, J. Andersen, S.Kumar, and D. Rathore. , HDP-a novel heme detoxilcaton protein from the malatia parasite, Plos Pathog 4 (2008) e.1000053.
    [64] I. Stojiljkovic, and K. Hantke. , Transport of haemin across the cytoplasmic membrane through a haemin-specific periplasmic binding-protein-dependent transport system inYersinia enterocolitica, Mol Microbiol 13 (1994) 719-732.
    [65] M.D. Suits, G. P. Pal, K. Nakatsu, A. Matte, M. Cygler, and Z. Jia, Identification of an Escherichia coli O157:H7 heme oxygenase with tandem functional repeats, Proc. Natl. Acad. Sci. USA 102 (2005) 16955-16960.
    [66] E.E. Wyckoff, G. F. Lopreato, K. A. Tipton, and S.M. Payne., Shigella dysenteriae ShuS promotes utilization of heme as an iron source and protects against heme toxicity, J Bacteriol 187 (2005) 5658-5664.
    [67] J.M. Thompson, H. A. Jones, and R. D. Perry., Molecular characterization of the hemin uptake locus (hmu) from Yersinia pestis and analysis of hmu mutants for hemin and hemoprotein utilization, Infect. Immun. 67 (1999) 3879-3892.
    [68] S. Negari, J. Sulpher, F. Pacello, K. Ingrey, A. Battistoni, and B. Lee., A role for Haemophilus ducreyi Cu,ZnSOD in resistance to heme toxicity, Biometals 21 (2008) 249-258.
    [69] F. Pacello, P. R. Langford, J. S. Kroll, C. Indiani, G. Smulevich, A. Desideri, G. Rotilio, and A. Battistoni. , A novel heme protein, the Cu,Zn-superoxide dismutase from Haemophilus ducreyi., J Biol Chem 276 (2001) 30326-30334.
    [70] E. Wyckoff, M. Schmitt, A. Wilks, and S. Payne., HutZ is required for efficient heme utilization in Vibrio cholerae, J BacterioL 186: (2004) 4142-4151.
    [71] Y. Tong, and M. Guo., Bacterial heme-transport proteins and their heme-coordination modes, Arch Biochem Biophys (2009) 1-15.
    [72] M. Unno, et al. , Crystal structure of the dioxygen-bound heme oxygenase from Corynebacterium diphtheriae: implications for heme oxygenase function, J Biol Chem 279 (2004) 21055-21061.
    [73] e.a. Ratliff. M., Homologues of neisserial heme oxygenase in gram-negative bacteria: degradation of heme by the product of the pigA gene of Pseudomonas aeruginosa, J Bacteriol. 183 (2001) 6394-6403.
    [74] N. Frankenberg-Dinkel, Bacterial heme oxygenases., Antioxid Redox Signal 6 (2004) 825-834.
    [75] E.P. Skaar, A.H. Gaspar, O. Schneewind, Bacillus anthracis IsdG, a Heme-Degrading Monooxygenase, J. Bacteriol. 188 (2006) 1071-1080.
    [76] A.W. Rasmussen, H. L. Alexander, D. Perkins-Balding, W. M. Shafer, and I.Stojiljkovic., Resistance of Neisseria meningitidis to the toxic effects of heme iron and other hydrophobic agents requires expression of ght, J Bacteriol 187 (2005) 5214-5223.
    [77] C. von Eiff, C. Heilmann, R. A. Proctor, C. Woltz, G. Peters, and F. Gotz. , A site-directed Staphylococcus aureus hemB mutant is a small-colony variant which persists intracellularly, J Bacteriol 179 (1997) 4706-4712.
    [78] M. Stevens, S. Porcella, J. Klesney-Tait, S. Lumbley, S. Thomas, M. Norgard, J. Radolf, and E. Hansen. , A hemoglobin-binding outer membrane protein is involved in virulence expression by Haemophilus ducreyi in an animal model, Infect Immun 64 (1996) 1724-1735.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700