用户名: 密码: 验证码:
零价铁和赤铁矿去除污染水体中U(Ⅵ)的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
核工业生产中产生的高、中、低放废物对环境构成的威胁越来越受到重视,它们与医疗、科研、国防事业的核废物一起成为越来越严重的环境问题,尤其是铀矿冶中产生的U(Ⅵ)对地下水的污染。我国南方某大型铀尾矿库经30多年的运营,其中的放射性核素已对周围的地表水和地下水造成了不同程度的污染。本文采用零价铁法研究零价铁对溶液中的U(Ⅵ)在各种条件下的去除情况及其去除机理,并研究了其在反应过程中的主要副产物对溶液中的U(Ⅵ)去除效果。
     本文研究了零价铁粉在不同pH、反应时间、温度等条件下对溶液中U(Ⅵ)的还原沉淀。结果表明,在酸性条件下,零价铁对溶液中U(Ⅵ)的固定效果较好,随着溶液pH的升高,相应的去除率也随之降低。在溶液初始pH=3时,反应2h,铁粉用量为2g时,去除率可达到98%以上。并探讨了温度对化学反应的影响,得出温度对化学反应速率的影响不大,其反应符合一级动力学反应方程。得出溶液中U(Ⅵ)的去除机理为零价铁对U(Ⅵ)的还原沉淀和零价铁腐蚀物对溶液中U(Ⅵ)的吸附沉淀共同作用。
     研究了合成赤铁矿对U(Ⅵ)的吸附规律,考察了pH、平衡时间、温度以及共存的钙、镁离子等因素对吸附效果的影响。结果表明,合成赤铁矿对U(Ⅵ)的吸附在6h基本达到平衡,吸附量随着pH值增大而显著增大,当pH值达到7~8时,吸附效果最佳,吸附效果随温度的升高增加不明显。共存钙、镁离子几乎不影响U(Ⅵ)的吸附去除效果。赤铁矿对U(Ⅵ)的吸附符合Langmuir吸附等温式。温度从293K上升到318K时,饱和吸附量qm从3.36 mg·g~(-1)上升到3.54 mg·g~(-1)。U(Ⅵ)的吸附反应的?G0为负值,说明该吸附过程是自发的反应过程。利用准一级动力学方程、准二级动力学方程以及粒子扩散方程的数学模型检验了吸附过程的动力学性质,表明赤铁矿对U(Ⅵ)的吸附过程符合准二级反应动力学模型,计算给出了温度为293K时三个动力学方程的吸附速率常数K值。
Great attention has been paid to the threat of the highly radioactive and the low-level radioactive waste from nuclear industry and the radioactive waste has become a more and more serious problem with the waste from medical industry and research institutions. The uranium(Ⅵ) from uranium minings has caused the pollution of groundwater around. For example,the radioactive radionuclides have polluted the surface water and groundwater to varying degrees after thirty years’business of the large uranium mining in south china.This paper studied the removal effect of uranium(Ⅵ) in solution and its removal mechanism and also studied the removal effect of uranium(Ⅵ) in solution by the byproduct hemallite.
     The removal rates of uranium(Ⅵ) in solution by zero-valent iron at different pH、reaction time and different temperatures are studied.The experiment results indicated that the removal effect is better when the pH of the solution is bellow 7 and the removal rate rised with the increase of the pH of the solution.The effect of temperature on the chemical reaction was also studied and the conclusion is the impact of temperature is weak.The reaction fitted pseudo-first-order kinetic model well. The removal mechanism of uranium(Ⅵ) was discussed and the immobilization of uranium(Ⅵ) was the reductive precipitation and adsorptive precipitation by the byproduct.
     Hematite, a type of inorganic sorptive medium, was used for the removal of uranium(Ⅵ) from aqueous solutions. Variables of the batch experiments including solution pH, contact time, initial concentration, temperature ,Ca and Mg ions were studied. The adsorption capacities are strongly affected by solution pH, contact time and initial concentration. Higher pH favors higher uranium(Ⅵ) removal. It was also affected by temperature and Ca and Mg ions and the effect is weak. A two-stage kinetic behavior is observed in the adsorption of uranium(Ⅵ): very rapid initial adsorption in a few minutes, followed by a long period of a slower uptake. It is noted that an increase in temperature results in a higher uranium(Ⅵ) loading per unit weight of the sorbent.. The results indicated that adsorption of uranium by hematite had good efficiency, and the equilibrium time of adsorbing uranium(Ⅵ) was 6h.; The maximum adsorption capacity (qm) only increased from 3.36 mg·g~(-1) to 3.54 mg·g~(-1) when the temperature increased from 293K to 318K. The isothermal data are well fitted with both Langmuir and Freundlich equations, but the Langmuir isotherm fitted better than that of Freundlich. The pseudo-first-order kinetic model, pseudo-second-order kinetic model and intraparticle diffusion model were used to describe the kinetic data. The thermodynamic parameter, ?G0 were calculated. The negative ?G0 values of uranium(Ⅵ) at different temperatures confirmed the adsorption processes were spontaneous.
引文
[1]黄辉,李克峰,我国水资源危机及发展策略[J].四川水力发电.2005,24(2):21-23.
    [2]中国的水资源危机.专题聚焦[J].2004,9:11-25.
    [3]胡国强.我国沿海城市水危机与水资源利用对策[J].科教广角.2004,9:58-59.
    [4]孙化江,钟帮权.黑龙江齐齐哈尔地下水资源污染现状与防治措施.地下水[J].2004,26(3):196-169.
    [6]张建梅.重金属废水处理技术研究进展[J].西安联合大学学报.2003,6(2):55-59.
    [7]梅光泉.金属废水的危害与治理.微量元素与健康研究[J].2004,21(4):54-56.
    [8]胡文玉,梅光泉.化工工人体内微量元素积累与健康的关系[J].广东微量元素科学.1998,5(7):6.
    [8]李国敏.核废物处置实验场环境地质研究综述[J].地质科技情报,1994,13(4):52-57.
    [9]闵茂中.放射性废物处置原理[M].北京:原子能出版社,1998.
    [10]姜举武.采用高密度污渣返回法处理铀矿山酸性废水的研究[J].铀矿冶,1999,18(4):245~254
    [11]罗上庚,李学群放射性废物管理(三),北京,海洋出版社,1982
    [12]吴桂表,周星火.铀尾矿、尾石堆放场地的辐射防护[J].辐射防护通讯,2001年第6期
    [13]周星火,邓文辉.退役铀矿山和水冶厂尾矿、废石治理的代价——利益分析[J].铀矿冶,2002年第1期
    [14]潘英杰.浅论我国铀矿工业的环境保护技术及展望[J].铀矿冶,2002年第1期
    [15]王志章.铀尾矿库的退役环境治理[J].铀矿冶,2003年第2期
    [16]潘英杰.我国铀废石、尾矿最终处置技术探讨[J].铀矿冶,1997
    [17]潘自强.中国核工业三十年辐射环境质量评价文集[M].北京:原子能出版社,1989
    [18]王志明.中日第二期合作研究项目“超铀核素近地表迁移行为及处置安全评价方法学研究”以及其它四个项目研究成果通过鉴定[J].辐射防护,2002年第2期
    [19]“三废治理与利用”编委会. 三废治理与利用. 北京:冶金工业出版社, 1995. 127~131.
    [20] 郭德凡. 我国铀矿山矿井水处理技术的发展概况[J]. 铀矿选冶, 1981, (1):56~60.
    [21] 陈仕安. 铀水冶厂废水治理的主要技术措施与展望[J]. 铀矿冶, 1998, 17(3):175~183.
    [22] 伍庆昌,陈儒庆. 处理铀矿山废水的离子交换工艺技术综述[J]. 铀矿冶, 1984, 3(2):32~39.
    [23] 王宝贞 放射性废水处理[M].北京:科学出版社,1979 年第一版
    [24] 王成祥,李彦 环境放射学[M]. 北京:中国环境科学出版社,1991 年
    [25] 孟祥和,胡国飞 重金属废水处理[M]. 北京:化学工业出版社,2000 年
    [26] 高剑森. 放射性污染漫谈[J]. 现代物理知识,2001,4:12-13
    [27] 俞誉福.环境放射性概论[M].上海:复旦大学出版社,1993 年
    [28] 张 新 华 , 刘 永 . 铀 矿 山 “ 三 废 ” 的 污 染 及 治 理 [J]. 矿 业 安 全 与 环保,2003,30(3):30-33
    [29] 谭大刚. 环境核辐射污染及防治对策[J]. 沈阳师范学院学报(自然科学版),1999,1:68-70
    [30] 常桂兰. 氡与氡的危害[J]. 铀矿地质,2002,18(2):125-126
    [31] 陈 郁 , 全 燮 . 零 价 铁 处 理 污 水 的 机 理 及 应 用 [J]. 环 境 科 学 研 究 ,2000,13(5):24~26.
    [32] 樊冠球.利用废铁屑的微电池原理处理电镀含铬废水[J].环境工程,1984(4):1~7.
    [33] Leah J Mathson ,Paul G Tratngek. Reductive dehalogenation of chlorinated- methods by iron metal [J] . Environ Sci Technol ,1994 (28) :2045~2053.
    [34] Eary L E ,Rai D. Chromate removal from aqueous wastes by reductive with ferrous iron [J] . Environ Sci Technol ,1998 (22) :972~977.
    [35] Schlim C ,Heitz E. Development of a wastewater treatment process : Reductive Dehalogenation of Chlorinated Hydrocarbons by Metals[J] . Environmental Progress ,1996 ,15 (1) :38~47.
    [36] Gregory D Sayles , GuanRong You ,MaoXu Wang ,et al. DDT ,DDD ,and DDEdecholorination by zero2valent iron[J].Environ Sci Technol ,1997 (31) :3448~3454.
    [37] Novak P J ,Danies L , Parkin G F. Enhanced dechlorination of carbontetrachloride and chloroform in the presented of elemented iron and methanosarcina barkeri ,methanosarcina the mophila ,or Methanosueta cocilli [J ] . Environ. Sci Technol ,1998 ( 32) :1438~1443.
    [38] Doong R-A ,Wu S-C. Reductive dechlorination of chlorinated hydrocarbons in aqueous sllutions containing ferrous and sulfide irons[J ] . Chemosphere ,1992 (24) :1063~1075.
    [39] Rosy Muftikan , Quintus Fernando , Nic Korte. A Method for rapid dechlorination of low molecular weight chlorinated hydrocarbons in water[J ] . Water Res ,1995 (29) :2434~2439.
    [40] Hui-ming Hung ,Michael R Hoffman. Kinetics and mechanism of the enhanced reductive degradation of CCl4 by elemental iron in the presented of ultrasond [J] . Environ Sci Technol ,1998 (32) :3011~3016.
    [41] 胡 黎 明 . 地 下 水 污 染 修 复 的 活 性 渗 滤 墙 系 统 [J]. 水 利 水 电 技术,2003,34(7):11~13.
    [42] Cantrell K J, Kaplan D I and Wietama T W. Zero-valent Iron for the in-Site Remediation of Selected Metals in Groundwater[J].Journal of Hazardous Materials.1995,42(2):201~212.
    [43] Vogan J L,.Focht R M,Clark D K,Graham S L.Performance Evaluation of a Permeable Reactive Barrier for Remediation of Dissolved Solvents in Groundwater[J]. Journal of Hazardous Materials 1999,68: 87~108.
    [44] Franz-Georg Simon,Christian Segebade,Martina Hedrich.Behavior of uranium in iron-bearing permeable reactive barriers:investigation with 237U as a radioindicator[J].The science of the total environment.2003,307:231~238.
    [45] Hsing-Lung Lien,Richard T.wilkin.High-level Arsenite Removal from Groundwanter by Zero-valent Iron [J].Chemosphere.2005,59:377~386.
    [46] Turlough F.Guerin, Stuart Horner, Terry Mcgovern,Brent Darey.An application of permeable reactive barrier technology to petroleum hydrocarbon contaminatedgroundwater[J].Water Research. 2002,36:15~24
    [47]丁振华,冯俊明.氧化铁矿物对重金属离子的吸附及其表面特征矿物学报[J],2000 20(4):349~351
    [48] Balistrieri L.S and Murray J W.The adsorption of Cu、Pb、Zn and Cd on goethite from major ion seawater[J].Geochim. Cosmochim. Acta.1982,46:1253~1265
    [49] 陆雅海,朱祖祥,袁可能,黄昌勇等.针铁矿对重金属离子的竞争吸附研究[J].土壤学报,1996,33:78~84
    [50] 陆雅海,黄昌勇,袁可能等.砖红壤及其矿物表面对重金属离子的专性吸附研究[J].土壤学报,1995,32(4):370~376
    [51] 周代华,李学垣,徐风琳.重金属在氧化物表面的吸附形态[J].土壤学报,1997,34(3):348~351
    [52] 栾兆坤,汤鸿霄.硫酸铁氧化物的表征及其对重金属离子吸附作用的研究[J].环境科学学报,1994,14(2):129~136
    [53] 田宝珍,汤洪霄.含磷酸盐的三氯化铁水溶液的化学特征[J].环境化学,1995,14(4):329~336
    [54] 冉勇,刘铮.稀土元素在土壤和氧化物表面的吸附和解吸研究[J].环境科学学报,1993,13:288~293
    [55] 邵孝侯,侯文华,邢光熹.土壤固相不同组分对镉、锌吸持的研究[J].环境化学,1994,13(4):340~345
    [56] 徐莉英,邢光熹.铁氧化物和层状硅酸盐矿物在土壤吸持重金属离子中的作用[J].土壤学报,1995,32(增刊):201~208
    [57] Kooner Z.S.Comparative study of adsorption behavior of lead and zinc onto goethite in aqueous system [J]. Environment. Geol, 1993, 21: 242~250
    [58] Coston J A,Fuller C C and Davis J A.Pb2+ and Zn2+ adsorption by a natural aluminum and iron-bearing surface coating on an aquifer and[J].Geochim. Cosmochim. Acta, 1995, 59:3535~3547.
    [59] Bruno J,De Pablo J and Duro L,et al.Experimental study and modeling of the U( Ⅵ)-Fe(OH)3 surface precipitation/coprecipitation equilibria[J]. Geochim. Cosmochim.Acta,1995, 59: 4113 ~4123.
    [60] Bonnissel-Gissinger P,Alnot M and Lickes J-P,et-al.Modeling the adsorption ofmercury( Ⅱ ) on (hydr)oxides Ⅱ :FeOOH (goethite) and amorphous silica[J].J.Colloid Interface Sci.,1999,215:313~322.
    [61] Bowell R J.Sorption of arsenic by iron oxides and oxyhydroxides in soils[J].Appl.Geochem.,1994,9:279~286.
    [62] Dzombak D A,Morel F M M.Surface complexation modeling hydrous ferric oxides[M].New York:John Wiley,1990.
    [63] Davis J A,James R O,Leckie J Q.Surface ionization and complexation at the oxide water interface.I Computation of electrical double layer properties in simple electrolytes[J].J.Colloid Interface Sci.,1978,63:480~499.
    [64] Robertson A P and Leckie J O.Acid base,copper binding,and Cu2+ H+exchange properties of goethite,an experimental and modeling study[J]. Environ. Sci.Technol.,1998,2006:122~130.
    [65] Pivovarov S.Acid-base properties and heavy and alkaline earth metal adsorption on the oxide-solution interface:non-electrostatic model[J].J.Colloid Interface Sci.,1998,206:122~130.
    [66] Hiemstra T and Van Riemsduk W H.A surface structural approach to ion adsorption:the charge distribution model[J].J.Colloid Interface Sci.,1996 ,179:488~508.
    [67] Hiemstra T and Van Riemsduk W H.Intrinsic proton affinity of reactive surface groups of metal (hydr)oxides:the bond valance principle[J].J.Colloid Interface Sci.,1996,184:680~692.
    [68] Pan G and Liss P S.Metastable-equilibrium adsorption theory:1.theoretical [J].J.Colloid Interface Sci.,1998,201:71-76.
    [69] Pan G and Liss P S.Metastable-equilibrium adsorption theory:1.Experimental [J].J.Colloid Interface Sci.,1998,201:77-85.
    [70] Rustad J R,Felmy A R and Hay B P.Molecular statics calculation for iron oxide and oxyhydroxide minerals:Toward a flexible model of the reactive mineral-water interface[J].Geochim.Cosmochim.Acta,1996,60(9):1553~1562.
    [71] Felmy A R and Rustad J R.Molecular statics calculations of proton binding to goethite surface:thermodynamic modeling of the surface charging andprotonation of goethite in aqueous solution[J]. Geochim. Cosmochim. Acta, 1998,62:25~31.
    [72] Sahai N and Sverjensky D A.Evalution of internally consistent parameters for the triple-layer model by the systematic analysis of oxide surface titrple-layer model by the systematic analysis of oxide surface titration data[J].Geochim. Cosmochim.Acta, 1997,61(14):2801~2826.
    [73] Sverjensky D A and Sahai N.Theoretical prediction of single-site enthalpies of surface proton for oxides and silicates in water[J].Geochim. Cos-mochim.Acta, 1998,62(14):3703~3716.
    [74] Barron V and Torrent J.Surface hydroxyl configuration of various crystal faces of hematite and goethite [J].J.Colloid Interface Sci.,1996,177:407~410.
    [75] Junta-Ross J L and Hochella M F Jr.The chemistry of hematite {001} surface[J].Geochim.Cosmochim.Acta,1996,60:305~314.
    [76] Manning B A,Fendorf S E and Goldberg S.Surface structures and stability of arsenic(Ⅲ) on goethite:spectroscopic evidence for inner-sphere complexes[J]. Envion.Sci. Technol., 1998,32:2383~2388.
    [77] Manceau A.The mechanism of anion adsorption on iron oxides:evidence for the bonding of arsenate tetrahedral on free FeO(OH)6 edges[J].Geochim.Cosmochim. Acta,1995, 59(17): 1647~3653.
    [78] Waychunas G A,Davis J A and Fuller C C.Geometry of sorbed arsenate on ferrihydrite and crystalline FeOOH:re-evaluation of EXAFS results and topological factors in predicting sorbate geometry,and evidence for monodentate complexes[J].Geochim. Cosmochim.Acta,1995, 59 (17):3655~3661.
    [79] Axe L,Bunker G B and Anderson P R,et al,An XAFS analysis of strontium at the hydrous ferric oxide surface[J].J.Colloid Interface Sci.,1998,199,44~52.
    [80] Guthrie G D Jr and Mossman B T.Health effects of mineral dusts[J].Mineral.Rev., 1994,28:584.
    [81] Hochella M F Jr and With A F.Mineral-water interface geochemistry [J].Mineral.Rev., 1990,23:87~132.
    [82] Parifitt R L and Runssell J D.Adsorption on hydrous oxides Ⅳ:Mechanism of adsorption of various ions on Goethite[J].J.Soil.,1977,28:297~305.
    [83] Parifitt R L and Smart R.The mechanism of sulfate adsorption on iron oxides[J].Soil.,1977,28:297~305.
    [84] Eggleslon C M,Hug S and Stumm W,et al.Sulface adsorption on iron oxides [J].Soil Sci.,1978,42:48~50.
    [85] Hochella M F Jr Eggleston C M and Elings V B,et al.Mineralogy in two dimensions:scanning tunneling microscopy of semiconducting minerals with implications for geochemical reactivity[J].Am.Mineral.,1989,74:1233~1246.
    [86] 陈旭俊,黄惠金,蔡亚汉.金属腐蚀与保护基本教程[M].机械工业出版社,1988,6.
    [87] 赵麦群,雷阿丽.金属的腐蚀与防护[M].国防工业出版社,2002,9:6~7.
    [88] Puls R W, Paul C, Powell R M.The Application of in-situ Permeable Reactive (zero-valent iron) Barrier Technology for The Remediation of Chromate-contaminated Ground-water:a Field Test[J]. Applied Geochemmistry. 1999, 14 :989~1000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700