用户名: 密码: 验证码:
铀矿废石堆覆盖处理及稳定化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多年来,我国在铀矿勘探过程中,产生了大量的放射性铀矿废石,由于历史的原因,大部分废石一直处于未治理状态。这些铀矿废石堆严重地影响着当地的生态环境和居民的健康。因此,针对铀矿地质系统放射性废石堆的退役整治,已成为一项紧迫的工作。
     本研究以xx矿田工作区xx矿区的KD-8废石场作为对象,在KD-8废石场顶部划出3块试验场地,分别以红壤、腐殖土和煤渣作为覆盖材料,对铀矿废石堆进行覆盖和稳定化试验。采用双区扩散理论为基础,经相关近似处理后,推导出适用于多层覆盖体系和单层覆盖体系的覆盖层厚度X_c与表面氡析出率J_t之间的数学关系式:X_c≥(?)+A,试验表明,该关系式用于工程实际是合理和可行的。
     进行了红壤、腐殖土和煤渣等三种覆盖材料不同覆盖密度和不同覆盖厚度下氡析出率和贯穿辐射剂量率的监测,研究覆盖密度及气象因素对氡析出率和贯穿辐射剂量率的影响及变化,以及覆盖厚度与氡析出率之间的定量关系。
     将一定密度和厚度为80cm的三种覆盖材料分别覆盖在相应的试验场地,并在覆盖物表面栽种植物,进行喷淋试验,植物根系和渗透液检测,分析植被及降水在不同覆盖材料中对相关核素的吸收及渗透迁移影响。
     试验表明,覆盖物密度和覆盖层厚度越大,氡析出率和贯穿辐射剂量率越低,但有一个适宜的厚度。红壤和煤渣的氡扩散系数比腐殖土要小,降氡效果较好。风速、气温、大气压、空气温度及降雨等气象因素影响氡的扩散系数,使氡的析出率发生变化。植物对特征核素的吸收有限,雨水渗透带出的离子和核素有限,表明植被和雨水未形成对放射源转移的潜在危害,覆盖治理铀矿废石堆具有良好的稳定性。利用固体废物煤渣作为覆盖材料,为铀矿废石堆治理提出了一种以废治废的经济有效方法。
     本研究对我国铀矿地质系统废石堆的退役整治具有借鉴作用和参考价值。
For many years, in the uranium mine exploration course, our country has produced massive radioactive uranium mine scrap rock.. For the historical reason, the majority of scrap rocks is not at the government condition continuously. These uranium mine waste stone piles are affecting the local ecological environment and inhabitant's health seriously. So the uranium mine radioactivity waste stone pile retirement improvement of the geological system has become a urgent work.
     In this paper, the object of cover test is the KD-8 waste rock piles of xx mine of xx diggings. Three testing sites are chosen on the top surface of KD-8. The lateritic soil, humus soil and cinder are used as the cover materials to cover and stabilize these testing sites, respectively. The Radon-attenuation model is built on the basis of the double region diffusion theory with the simplified formula: , which is adapted to the multi-coverage systems and single-coverage system for calculating the radon release rate J_t for various cover thickness X_c. The resultsindicate that it is reasonable and feasible to use the formula to evaluate the project practice.
     The cover materials with different cover density and cover thickness were used to monitor the radon release rate and the gamma radiation dose rate, to analyze the effect and trend of cover density on the radon release rate and gamma radiation dose rate and to analyze the quantitative relationship between the cover thickness and the radon release rate.
     The three cover materials with certain density and 80cm thickness were used to cover the three testing sites, respectively. The plant is planted on the cover surface for spray test and root and penetrating fluid detection. The effects of the vegetation and precipitation in different cover materials on the infiltration and migration of the relative nuclides were investigated.
     The results show that the larger the cover density and thickness are the smaller the radon release rate and the level of gamma radiation, but there is a reasonable cover thickness. The radon difrusivity of the humus soil is greater than these of the lateritic soil and cinder, so its radon reduction is less effective. The meteorological parameters, such as wind speed, temperature, atmospheric pressure and others, have dissimilar impact on the radon release rate. The relative nuclides' absorbability of the vegetations and the rainfall penetration are slightly different and very small, which indicates that there is no potential radioactive harm to the vegetation and rainfall. There is a good stability of covering disposing uranium mine waste rock piles. The use of solid wastes as cover materials for the uranium mine radioactivity waste stone pile management presents an effective method for treating waste with waste.
     The research has positive guidance and reference for the uranium mine's decommissioning and disposal in our country.
引文
[1]栾宏.XX地区军工铀矿地质勘探设施“十一·五”退役整治工程可行性研究报告[R].核工业第四研究设计院.2006,6-74.
    [2]曾文乐.应用地球化学工程学治理铀矿地质勘查工程废渣的可行性调研[R].江西省核工业地质局测试研究中心.2005,2-3.
    [3]温志坚,陈璋如.我国干旱地区放射性废(矿)石治理效果研究[J].世界核工业地质协会.2007,24(3):157-160.
    [4]潘英杰,李玉成,薛建新等.我国铀矿冶设施退役治理现状及对策[A].全国核与辐射设施退役学术研讨会论文集[C]北京,中国核学会,2007.
    [5]潘英杰.我国铀矿冶设施退役环境治理现状及应采取的对策[J].铀矿冶,1997,(16)4:227-236.
    [6]张展适,李满根.硬岩型铀矿山氧辐射环境污染及治理[J].地球与环境,2007,35(3):228-232.
    [7]潘英杰,万国斌,薛建新等.铀矿冶设施退役治理的国际交流与技术合作[J].铀矿冶,2007,26(1):29-34.
    [8]李韧杰.美国铀矿山和水冶厂退役工作——赴美考察情况介绍[J].铀矿冶,1988,7(1).
    [9]张晓文.铀矿冶的废渣污染机器治理[J].铀矿冶,1996,15(2).
    [10]潘英杰.浅谈国外铀尾矿库的退役治理[J].铀矿冶,1998,17(2).
    [11]李韧杰.美国铀矿山和水冶厂退役工作——赴美考察情况介绍[J].铀矿冶,1988,7(1).
    [12]铀矿冶退役技术考察团.澳大利亚铀矿冶设施退役技术考察报告[J].铀矿冶,1995,14(4):217-223.
    [13]潘英杰.俄罗斯铀矿通风及退役环境治理技术考察.铀矿冶[J],1996,15(2):73-80.
    [14]唐建文.复合土工膜封闭铀矿废石场降低氡析出率的机理[J].铀矿冶,2001,20(3):205-208.
    [15]秦茂钊.铀矿山废渣治理方法研究[D].重庆.重庆大学.2003.
    [16]潘英杰.铀废石、尾矿最终处置技术探讨[J].铀矿冶,1994,13(4):223-227.
    [17]董成兰.铀尾矿库退役治理有关氡析出率问题的探讨[J].铀矿冶,2001,20(2):93-102.
    [18]潘英杰.浅谈我国铀矿工业的环境保护技术及展望[J].铀矿冶,2002,22(4):183-187.
    [19]吴桂惠,周星火.铀矿废石堆覆土厚度探讨[J].铀矿冶,1994,13(3):149-155.
    [20]吴卫红,夏登桂.721_18废石场覆土试验[J].铀矿冶,1997,16(2):110-114.
    [21]刘林,栾弘.若尔盖高原地区铀矿勘探遗留设施治理与植被恢复技术研究可行性研究报告[R].成都:核工业西南放射性矿产地质管理办公室.2005:35-36.
    [22]I. Gaballah, G. Kilbertus. Recovery of heavy metal ions through decontamination of synthetic solutions and industrial effluents using modified barks Journal of Geochemical Exploration[J]. Volume 62. Issues 1-3. June 1998:241-286.
    [23] J. L. T. Hage, M. A. Reuter, R. D. Schuiling, I. S. Ramtahalsing. Reduction of copper with cellulose in an autoclave; an alternative to electrolysis Minerals Engineering[J]. Volume 12, Issue 4.April 1999: 393-404.
    [24] C. Zevenbergen, L. P. Van Reeuwijk, J. P. Bradley, R. N. J. Comans, R. D. Schuiling. Weathering of MSWI bottom ash with emphasis on the glassy constituents Journal of Geochemical Exploration[J]. Volume 62, Issues 1-3. June 1998:293-298.
    [25] J. A. Meima, R. N. J. Comans.Reducing Sb-leaching from municipal solid waste incinerator bottom ash by addition of sorbent minerals Journal of Geochemical Exploration[J]. Volume 62, Issues 1-3 .June 1998:299-304.
    [26] G. Steenbruggen, G. G. Hollman. The synthesis of zeolites from fly ash and the properties of the zeolite products Journal of Geochemical Exploration[J]. Volume 62, Issues 1-3.June 1998: 305-309.
    [27] M. A. T. M. Broekmans, J. B. H. Jansen. Silica dissolution in impure sandstone: application to concrete Journal of Geochemical Exploration[J].Volume 62, Issues 1-3. June 1998: 311-318.
    [28] M. Ding, R. D. Schuiling, H. A. van der Sloot.Self-sealing isolation and immobilization: a geochemical approach to solve the environmental problem of waste acidic jarosite Applied Geochemistry[J]. Volume 17, Issue 2.February 2002:93-103.
    [29] P. J. H. R. Speck, J. W. M. de Graaff, J. D. Nieuwenhuis, J. J. P. Zijlstra.Optimizing the process of sulphuric acid injection into limestones Journal of Geochemical Exploration[J]. Volume 62, Issues 1-3.June 1998:331-335.
    [30] R. C. L. Jonckbloedt.Olivine dissolution in sulphuric acid at elevated temperatures-implications for the olivine process, an alternative waste acid neutralizing process Journal of Geochemical Exploration[J].Volume 62, Issues 1-3.June 1998:337-346.
    [31] 魏广芝,徐乐昌.低浓度含铀废水处理的处理技术及其研究进展[J].铀矿冶,2007,26(2):90-95.
    [32] 马尧,胡宝群,孙占学.浅论铀矿山的三废污染及治理方法[J].铀矿冶,2007,26(1):35-39.
    [33] 张新华,刘永.铀矿山“三废”的污染及治理[J].矿业安全与环保,2003,30(3).
    [34] 张展适,李满根.赣、粤、湘地区部分硬岩型铀矿山辐射环境污染及治理现状[J].铀矿冶,.2007,26(4):191-196.
    [35] 李合莲,陈家军.铀尾矿对地下水的环境影响研究[J].环境污染治理技术与设备,2000,1(3):82-88.
    [36] 王敬群.地球化学反应建模与计算机模拟[D].武汉:中国地质大学,2002.
    [37] 高尚雄,叶开发,李承.德国铀尾矿库退役治理技术考察报告[J].铀矿冶,2003,22(4):208-211.
    [38] 徐乐昌,薛建新,高尚雄.铀矿冶设施退役治理中若干问题的探讨[J].辐射防护,2007,27(2):111-117.
    [39]孙凯男.土壤氡析出率的研究[D].北京:清华大学.2004.
    [40]郭秋菊,许寿元.氡的危害及剂量估算[J].中华放射医学与防护杂志,2004,24(1):85-87.
    [41]刘亚民等.氡的性质及空气中氡浓度的测量综述[J].中国测试技术,2005,31(5):121-124.
    [42]李韧杰.氡析出率的测定及其影响因素的探讨[J].铀矿冶,2000,19(1):56-61.
    [43]常桂兰.氡与氡的危害[J].铀矿地质,2002,18(2):122-128.
    [44]程冠,程建平,郭秋菊.土壤氡析出率影响因素及估算模型[J].中华放射医学与防护杂志,2006,26(5):520-524.
    [45]丘寿康.有关氡危害与评价的认识问题[J].辐射防护通讯,2001,21(6):3-7.
    [46]王作元等.氡致肺癌的相对危险度[J].中华放射医学与防护杂志,2001,21(5):395-396.
    [47]王洁,黄晓乃.铀矿冶退役后的固废治理方法探讨[J].矿业快报,2008,24(2):49-53.
    [48]付锦,韩耀照.氡射气系数与铀尾矿含水率关系讨论[J].南华大学学报(理工版),2003,17(3):29-32.
    [49]刘静,谭凯旋,刘岩.多孔介质对氡析出规律影响的研究进展[J].现代矿业,2009,25(5):20-23.
    [50]石玉春等.土壤氡浓度随气象因素变化规律及其应用[J].中国科学(B辑),1994,24(11).
    [51]苏日娜.大气压力变化对于土壤氡析出率的影响[D].武汉:中国地质大学,2008.
    [52]陈凌,谢建伦,黄隆.氡面析出率的测量及相关因素的考虑[J].辐射防护通讯,1998,18(6):28-36.
    [53]田志恒.辐射剂量学[M].北京:原子能出版社,1992,281.
    [54]Anon.Current Practices for the Management and Confinement of Uranium Mill Tailings. IAEA Technical Reports Series No. 335[R]. Vienna: IAEA ,1992.
    [55]Anon.Measurement and Calculation of Radon Releases from Uranium Mill Tailings, IAEA Technical Reports Series No.333[R]. Vienna: IAEA ,1992.
    [56]Anon. Decommissioning of Facilities for Mining and Milling of Radioactive Ore and Closeout of Residues. IAEA Technical Reports No. 362[R]. Vienna: IAEA , 1994.
    [57]Skoski G, Re L, Robinson K E.Determining Radon Attenuation of Cover Materials Using Field Experimentation[C]//Anon. ed. Proceedings of First International Conference on Uranium Mine Waste Disposal, Chapter 23. 1980.
    [58]Anon. Uranium Mill Tailings Remedial Action Project[C]//U. S. Department of Energy Technical Approach Document 050425. U. S. Department of Energy .1986.
    [59]Rogers..V.C, Nielson K.K Radon Attenuation Handbook for Uranium-Mill Tailings[]. Cover Design V.S. NUCLEAR REGULATORY COMMSSION BIBLIOG RAPHICDATA SHEET. 1984.
    [60]吴桂惠等.退役铀尾矿覆盖厚度的确定[J].铀矿开采,1996,20(2):25-35.
    [61]叶维荣.用黄土覆盖废石场降低氡析出率的研究[J].工业安全与防尘,1991,(10):1-2.
    [62]吴桂惠,周星火,徐乐昌.铀尾矿覆盖厚度的确定.工业安全与防尘,1997,(1):25-29.
    [63]张启锐.实用回归分析[M].北京:地质出版社,1988:14-43.
    [64]范金城,梅长林.数据分析[M].北京:科学出版社,2002:94-106.
    [65]张小蒂.应用回归分析[M].杭州:浙江大学出版社,1991.
    [66]《中国环境天然放射性水平》[S].国家环境保护局,1995:412-420.
    [67]GB14586-93《铀矿冶设施退役环境管理技术规定》[S].国家环境保护局,1993.
    [68]李利红,葛良全,程锋等.空气中氡浓度时间变化规律探讨[J].辐射防护,2007,27(1):13-18.
    [69]李先杰,丘寿康,刘纯魁.氡析出率测量仪的检定装置[J].辐射防护,2008,28(4).
    [70]金益和,郭秋菊.氡浓度测定的时间代表性[J].中华放射医学与防护杂志,2002,22(2).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700