用户名: 密码: 验证码:
白藜芦醇对大鼠皮层神经元GABA_A受体介导电流的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
配体门控离子通道在神经系统中介导快速突触传递从而使细胞能对外部环境的变化快速作出反应。γ氨基丁酸A型受体(GABAA Receptors,GABAARs)是成年哺乳动物中枢神经系统(CNS)内主要的抑制性受体,它们属于配体门控离子超家族。GABAA受体的激活引起氯离子内流,胞内膜电位增加而产生超极化,从而抑制神经元兴奋。因此,GABAA受体在调节神经元兴奋中具有重要的作用。
     白藜芦醇(3,4’,5-三羟基-二苯乙烯)是存在于植物中的一种多酚类化合物,葡萄和红葡萄酒中含有大量该物质。实验表明在体和离体模型中白藜芦醇都发挥着有效的神经保护作用。同时白藜芦醇具有抗炎、抗癌、抗血小板凝集和雌激素等作用。但另外一些研究则检测了白藜芦醇对离子通道和受体的药理作用。例如,白藜芦醇对血管内皮细胞的Ca2+激活K+通道具有刺激作用且加强激活大电导钾通道。它也可以抑制心室肌细胞L-型钙电流,减少背根神经节细胞TTX敏感和TTX耐药的Na+电流,抑制淋巴细胞和海马神经元电压激活的钾电流,抑制急性大鼠海马脑片中AMPA/NMDA受体介导的神经元兴奋性突触后电流。然而,目前并没有白藜芦醇对氯离子通道影响的报道,尤其是对中枢神经系统中GABAARs的报道。在本研究中,我们采用全细胞膜片钳记录方法,检测了白藜芦醇对大鼠皮层培养细胞GABAA受体的作用。
     在本研究中,我们发现白藜芦醇以浓度依赖的方式可逆地抑制GABAA受体介导的电流,半效抑制浓度为48.7±2.4μM。白藜芦醇减小了GABA诱导电流的最大值并明显改变了EC50值和希尔系数。因此,白藜芦醇是以非竞争性的方式拮抗了大鼠皮层神经元上GABAA受体。白藜芦醇抑制GABAA受体的过程非常迅速,并且这种抑制效果在药物洗脱4分钟之内能完全恢复。这些特点说明白藜芦醇是直接作用于GABAA受体。动力学的分析显示白藜芦醇加速了GABAA受体的脱敏,而加速受体的脱敏是非竞争方式的一个机制。在本实验中,白藜芦醇抑制GABAA受体介导电流,在GABA和白藜芦醇被同时洗脱时没有出现尾电流,而尾电流的出现是开放式通道口阻断(open channel block)理论的一个直接的证据。同时,在不同的模式下,白藜芦醇对GABAA受体介导电流的抑制效果不同,在预给药模式下白藜芦醇的抑制效果更强。在顺序给药模式下,白藜芦醇仍然能对GABAA受体介导电流产生有效的抑制作用,这显示,白藜芦醇可以在通道没有开放的情况下就和受体结合并最终抑制GABAA受体介导的电流,提示我们白藜芦醇的这个结合位点不可能在通道中间,这些结果更加支持了非通道口阻断作用机制推测。基于上述事实,我们推测Resveratrol可能通过变构调节作用抑制GABAA受体。白藜芦醇不会和GABA竞争其在GABAA受体的结合位点,而可能是和GABAA受体上的另一个位点结合并通过变构调节降低GABAA受体对GABA的亲和力。
     综上所述,我们的研究结果提示了白藜芦醇能以非竞争性的方式拮抗了皮层神经元上的GABAA受体。白藜芦醇及代谢物可以通过血脑屏障,所以白藜芦醇有可能直接作用于大脑皮层GABAA受体,从而来调节皮层神经系统兴奋性和抑制性以及两者之间的平衡,这为我们研究白藜芦醇受体药理学积累了相关资料。
Ligand-gated ion channels permit cells to respond rapidly to changes in their external environment. They are particularly well known for mediating fast neurotrasmission in the nervous system.γ-Aminobutyric acid type-A receptors (GABA_AR) are the predominant inhibitory neurotransmitter receptors in the mammalian central nervous system (CNS). They belong to the ligand-gated channels superfamily. Activation of GABA_AR leads to an influx of Cl- and increases intracellular membrane potential and generates hyperpolarization,which inhibit neuronal firing. Therefore, the modulation of GABA_AR function would be expected to alter neuronal excitability.
     Resveratrol(trans-3,4',5-trihydroxy-stilbene), a natural polyphenols compounds, is present in grapes and wine, which was found to exert potent neuroprotective effects in different in vivo and in vitro models. It has been reported to have a variety of estrogenic, anti-inflammatory, anti-platelet, and anti-carcinogenic effects . But some another research examine the pharmacology function of resveratrol on the ion channel and receptor. For example, resveratrol increased the activity of large-conductance calcium-activated potassium channels in vascular endothelial cells . And resveratrol strengthen to activate the big electric conductivity of potassium channels. It can also inhibit the L-type calcium current of ventricles muscle cell, reduce the TTX sensitive and TTX drug-fast of Na~+ current on the dorsal root ganglion cell, repress the voltage activate of potassium channels current on lymphoid cell and the hippocampal neurons, restain the EPSC of AMPA/NMDAR-mediated current in the acute rat hippocampal brain slice. However, at present, there is no report on the effect of resveratrol on the chlorine ion channels, particularly in GABAARs in CNS (central nervous system). Thus, in the present study, we decided to examine the modulatory effects of resveratrol on native GABAARs in cultured cortex by using the whole-cell patch–clamp recording technique.
     In this study, we found that Resveratrol reversibly and concentration-dependently depressed GABA induced current (IGABA), with IC_(50) of 48.7±2.4μM. Resveratrol depressed maximum IGABA, and significant changed the EC_(50) for GABA and Hill coefficient, suggesting that Resveratrol inhibited IGABA through a non-competitive mechanism.The time course of Resveratrol inhibition of GABA_AR was very rapid, and the response was completely reversed after washout for about 4 min. These effects are compatible with the fact that Resveratrol acts directly on GABA_ARs. Kinetic analysis indicated that Resveratrol accelerated the rates of desesnsitization. Enhancement of desensitization is one common mechanism underlying non-competitive inhibition. It is unlikely that Resveratrol acts as an open channel blocker because no rebound current was observed in all experiments after washout of GABA and Resveratrol.The rebound current is the direct evidence of an open channel blocker theory. Besides,the inhibition of Resveratrol on IGABA depended on different drug application mode, and the pre-perfusion of Resveratrol produced the maximal suppressive effect. When applied alone before the application of GABA, Resveratrol also inhibited IGABA, indicating that Resveratrol could bind to the recepter before the channel openning, eliminating the possibility that the acting site of Resveratrol is without the channel center,which further support the idea that the inhibition effect of Resveratrol is not an open channel blocker mechanism. Based on these results, we propose that Resveratrol might exert its action as an allosteric inhibitor. Therefore, Resveratrol is not likely to compete with GABA for its recognition site, but act somewhere else on GABA_ARs that could reduce the GABA’s affinity of GABAARs through changing ion channel conformation.
     Taken together, our data clearly demonstrate that Resveratrol significantly inhibit the GABA_A receptor response on cultured cortical neuron through non-competitive mechanism. Resveratrol and its metabolin are able to pass blood brain barrier.So resveratrol could directly combine on GABA_ARs. Thus,resveratrol can modulate excitability ,inhibition and the blance between them of cortex nervous system. Our findings may be helpful to pile up the related receptor pharmacology data of resveratrol.
引文
[1] Abe K, Niikura Y, Misawa M. GABAA receptor-mediated inhibition by ethanol of long-term potentiation in the basolateral amygdala-dentate gyrus pathway in vivo. Neuroscience, 2004,125(1):113-117.
    [2] Ahmadi S, Lippross S, Neuhuber WL, Zeilhofer, HU. Selectively blocks inhibitory glycinergic neurotransmission onto rat superficial dorsal horn neurons. Nat Neurosci, 2002, 5(2):34-40.
    [3] Barnard EA, Skolnick P, Olsen RW, Mohler H, Sieghart W, Biggio G, Braestrup C, Bateson AN, Langer SZ. Subtypes of gamma-aminobutyric acid A receptors: classification on the basis of subunit structure and receptor function. Pharmacol Rev. International Union of Pharmacology XV, 1998, 50: 291-313.
    [4] Bacon SJ, Smith AD. Preganglionic sympathetic neurones innervating the ratadrenal medulla: immunocytochemical evidence of synaptic input from nerve terminals containing substance P, GABA or 5-hydroxytryptamine. J Auton Nerv Syst, 1988, 24: 97-122.
    [5] Baude A, Sequier JM, McKernan RM, Olivier KR, Somogyi P. Differential subcellular distribution of the alpha 6 subunit versus the alpha 1 and beta 2/3 subunits of the GABAA/benzodiazepine receptor complex in granule cells of the cerebellar cortex. Neuroscience, 1992, 51:739-748.
    [6] Ben-Ari Y, Cherubini E, Corradetti R, Gaiarsa JL. Giant synaptic potentials in immature rat CA3 hippocampal neurones. J Physiol, 1989,416: 303-325.
    [7] Ben-Ari Y, Khazipov R, Leinekugel X, Caillard O, Gaiarsa JL. GABAA, NMDA and AMPA receptors: a developmentally regulated 'menage a trois'. Trends Neurosci, 1997, 20: 523-529.
    [8] Ben-Ari Y. Developing networks play a similar melody. Trends Neurosci, 2001, 24: 353-360.
    [9] Bormann J. The 'ABC' of GABA receptors. Trends Pharmacol Sci, 2000, 21: 16-19.
    [10] Brussaard AB, Devay P, Leyting-Vermeulen JL Kits KS. Changes in properties and neurosteroid regulation of GABAergic synapses in the supraoptic nucleus during the mammalian female reproductive cycle. J Physiol, 1999, 516 (Pt 2): 513-524.
    [11] Chen G, Trombley PQ, van den Pol AN. Excitatory actions of GABA in developing rat hypothalamic neurones. J Physiol, 1996, 494 (Pt 2): 451-464.
    [12] Cherubini E, Gaiarsa JL, Ben-Ari Y. GABA: an excitatory transmitter in early postnatal life. Trends Neurosci, 1991, 14: 515-519.
    [13] Cowley KC, Schmidt BJ. Effects of inhibitory amino acid antagonists on reciprocal inhibitory interactions during rhythmic motor activity in the in vitro neonatal rat spinal cord. J Neurophysiol, 1995,74: 1109-1117.
    [14] Geoffrey B Smith, Richard W Olsen. Founction domains of GABAA receptors REVIEW TiPS– May, 1995, (Vol. 16): 162-168.
    [15] D Hulst C, Kooy RF. The GABAA receptor: a novel target for treatment of fragile X? Trends Neurosci, 2007, 30(8):425-431.
    [16] Dun NJ, Mo N. Inhibitory postsynaptic potentials in neonatal rat sympathetic preganglionic neurones in vitro. J Physiol,1989, 410: 267-281.
    [17] Fenelon VS, Sieghart W, Herbison AE. Cellular localization and differential distribution of GABAA receptor subunit proteins and messenger RNAs withinhypothalamic magnocellular neurons. Neuroscience, 1995, 64: 1129-1143.
    [18] Fritschy JM, Mohler H. GABAA-receptor heterogeneity in the adult rat brain: differential regional and cellular distribution of seven major subunits. J Comp Neurol, 1995, 359: 154-194.
    [19] Fritschy JM, Paysan J, Enna A, Mohler H. Switch in the expression of ratGABAA-receptor subtypes during postnatal development: an immunohistochemical study.J Neurosci, 1994, 14: 5302-5324.
    [20] Fritschy JM, Kiener T, Bouilleret V, Loup F. GABAergic neurons and GABA(A)-receptors in temporal lobe epilepsy. Neurochem Int, 1999, 34, 435-445.
    [21] Gibbs JW, Sombati S, DeLorenzo RJ, Coulter DA. Physiological and pharmacological alterations in postsynaptic GABA(A) receptor function in a hippocampal culture model of chronic spontaneous seizures. J Neurophysiol, 1997, 77: 2139-2152.
    [22] Glencorse TA, Bateson AN, Hunt SP, Darlison MG. Distribution of the GABAA receptor alpha 1- and gamma 2-subunit mRNAs in chick brain. Neurosci Lett, 1991,133: 45-48.
    [23] Goutman JD, Waxemberg MD, Donate-Oliver F. Flavonoid modulation of ionic currents mediated by GABA(A) and GABA(C) receptors. Eur J Pharmacol, 2003, 461:79-87.
    [24] Gootman PM, Cohen MI. Sympathetic rhythms in spinal cats. J Auton Nerv Syst, 1981, 3: 379-387.
    [25] Harvey RJ, Depner UB, Wassle H, Ahmadi S, Heindl C, Reinold H, Smart TG, Harvey K, Schutz B, Abo-Salem OM, Zimmer A, Poisbeau P, Welzl H, Wolfer DP, Betz H, Zeilhofer HU, Muller U. GlyR alpha3: an essential target for spinal PGE2-mediated inflammatory pain sensitization. Science, 2004, 304: 884-887.
    [26] Hendry SH, Huntsman MM, Vinuela A, Mohler H, de Blas AL, Jones EG. GABAA receptor subunit immunoreactivity in primate visual cortex: distribution in macaques and humans and regulation by visual input in adulthood. J Neurosci, 1994,14: 2383-2401.
    [27] Kardos J, Blandl T. Inhibition of a gamma aminobutyric acid A receptor by caffeine. Neuroreport,1994, 5(10):1249-1252.
    [28] Keramidas A, Moorhouse AJ, Pierce KD, Schofield PR, Barry PH. Cation-selective mutations in the M2 domain of the inhibitory glycine receptor channel reveal determinants of ion-charge selectivity. J Gen Physiol, 2002, 119: 393-410
    [29] Keith A Wafford.GABAA receptor subtypes: any clues to the mechanism of benzodiazepine dependence? Current Opinion in Pharmacology, 2005, 5:47–52.
    [30] Klein Rl, Harris RA. Regulation of GABAA receptor structure and function by chronic drug treatments in vivo and with stably transfected cells. Jpn J Phmacol,1996,70(1):1-15.
    [31] Kumamoto E. The pharmacology of amino - acid responses inseptal neurons. Prog Neurobiology,1997, 52 (3):197-259.
    [32] Laurie DJ, Seeburg PH, Wisden W. The distribution of 13 GABAA receptor subunit mRNAs in the rat brain. II. Olfactory bulb and cerebellum. J Neurosci, 1992, 12:1063-1076.
    [33] Laurie DJ, Wisden W, Seeburg PH. The distribution of thirteen GABAA receptor subunit mRNAs in the rat brain. III. Embryonic and postnatal development. J Neurosci, 1992,12: 4151-4172.
    [34] Li Y, Wu LJ, Legendre P, et al. Asymmetric Cross-inhibition between GABAA and Glycine Receptors in Rat Spinal Dorsal Horn Neurons. J Biol Chem, 2003, 278(40):38637-38645.
    [35] Lynch JW. Molecular structure and function of the glycine receptor chloride channel. Physiol Rev, 2004, 84: 1051-1095.
    [36] Marini, Harkin LA, Wallace RH, Mulley JC, Scheffer IE, Berkovic SF. Childhood absence epilepsy and febrile seizures: a family with a GABA(A) receptor mutation. Brain, 2003,126: 230-240.
    [37] Marksteiner J, Lassnig E, Humpel C, Sieghart W, Kaufmann W, Saria A. Distribution of GABAA receptor alpha 1 subunit-like immunoreactivity in comparison with that of enkephalin and substance P in the rat forebrain. Synapse, 1995, 20: 165-174.
    [38] McKernan RM, Whiting PJ. Which GABAA-receptor subtypes really occur in the brain? Trends Neurosci, 1996,19: 139-143.
    [39] Mitchell EA, Gentet LJ, Dempster J, Belelli D. GABAA and glycine receptor-mediated transmission in rat lamina II neurones: relevance to the analgesic actions of neuroactive steroids. J Physiol, 2007, 583: 1021-1040.
    [40] Mohler H, Fritschy JM, Rudolph U. A new benzodiazepine pharmacology. J Pharmacol Exp Ther, 2002, 300:2-8.
    [41] Montpied P, Martin BM, Cottingham SL, Stubblefield BK, Ginns EI, Paul S M. Regional distribution of the GABAA/benzodiazepine receptor (alpha subunit) mRNA in rat brain. J Neurochem,1988, 51: 1651-1654.
    [42] M Song, RO Messing. Review Protein kinase C regulation of GABAA receptors. CMLS, Cell. Mol. Life Sci, 2005, 62: 119–127.
    [43] Oliveras JL, Montagne-Clavel J. The GABAA receptor antagonist picrotoxin nduces a 'pain-like' behavior when administered into the thalamic reticular nucleus of the ehaving rat: a possible model for 'central' pain? Neurosci Lett, 1994, 179: 21-24.
    [44] Roberts LA, Beyer C, Komisaruk BR. Nociceptive responses to altered GABAergic activity at the spinal cord. Life Sci, 1986, 39: 1667-1674.
    [45] Rossler AS, Launay JM, Venault P, Dodd RH, Chapouthier G. Changes in enzodiazepine binding in a subkindling situation. Epilepsia, 2000, 41: 651-654.
    [46] Seutin V, Scuvee-Moreau J, Dresse A. Evidence for a non-GABAergic action of quaternary salts of bicuculline on dopaminergic neurones. Neuropharmacology,1997, 36 (11-12):1653-1657.
    [47] Sieghart W, Fuchs K, Tretter V, Ebert V, Jechlinger M, Hoger H, Adamiker D. Structure and subunit composition of GABA(A) receptors. Neurochem Int, 1999, 34: 379-385.
    [48] Suzuki T, Mizoguchi H, Noguchi H, Yoshii T, Misawa M. Effects of flunarizine and diltiazem on physical dependence on barbital in rats. Pharmacol Biochem Behav, 1993, 45: 703-712.
    [49] Van Eden CG, Parmar R, Lichtensteiger W, Schlumpf M. Laminar distribution of GABA_AR receptor alpha 1, beta 2, and gamma 2 subunit mRNAs in the granular and agranular frontal cortex of the rat during pre- and postnatal development. Cereb Cortex, 1995, 5: 234-246.
    [50] Wafford KA, Macaulay AJ, Fradley R, et al. Differentiating the role of gamma-aminobutyric acid type A (GABA_AR) receptor subtypes. Biochem Soc Trans, 2004, 32(3):553-556.
    [51] Wilke K, Gaul R, Klauck SM, Poustka A. A gene in human chromosome band Xq28 (GABRE) defines a putative new subunit class of the GABA_AR neurotransmitter receptor. Genomics, 1997, 45:1-10.
    [52] Wisden W, Gundlach AL, Barnard EA, Seeburg PH, Hunt SP. Distribution of GABA_AR receptor subunit mRNAs in rat lumbar spinal cord. Brain Res Mol Brain Res, 1991,10:179-183.
    [53] Wisden W, Laurie DJ, Monyer H, Seeburg PH. The distribution of 13 GABA_AR receptor subunit mRNAs in the rat brain. I. Telencephalon, diencephalon, mesencephalon. J Neurosci, 1992,12:1040-1062.
    [54] Wisden W, Korpi ER, Bahn S. The cerebellum: a model system for studying GABA_AR receptor diversity. Neuropharmacology, 1996, 35:1139-1160.
    [55] Zhang JH, Araki T, Sato M, Tohyama M. Distribution of GABA_AR-receptor alpha 1 subunit gene expression in the rat forebrain. Brain Res Mol Brain Res, 1991,11:239-247.
    [56]朱海雷,王殿仕,李继硕. GABA在中枢神经系统发育的早期阶段具有兴奋作用.生理科学进展, 2003, 34(1): 60-63.
    [1] Algefi S. Red wine extract blocks apotosis induced by glutamate in cultured cerebellar granule cells. Soc Neuro Sei Abst, 1999, 25:1780.
    [2] Atten MJ, Godoy-Romero E, Attar BM. Resveratrol regulates cellular PKCαandδto inhibit growth and induce apoptosis in gastric cancer cells. Nvestigational New Drugs, 2005, 23:111-119.
    [3] Baur JA, Ainclair DA, Paul F. Therapeutic potential of resveratrol: the in vivo evidence. Nature Reviews Drug Discovery, 2006, 5:493-507.
    [4] Cai YJ, Fang JG, MA LP, et al. Inhibition of free radical - induced peroxidation of rat liver microsomes by resveratrol and its analogues. Biochim Biophys Acta, 2003, 1637:31.
    [5] Campos-Toimil M, Elíes J, Alvarez E, Verde I, Orallo F. Effects of trans- and cis-resveratrol on Ca2+ handling in A7r5 vascular myocytes. Eur J Pharmacol. Epub 2007 Aug 14.
    [6] Chang Y, Wang SJ. Inhibitory effect of glutamate release from rat cerebrocortical nerve terminals by resveratrol. Neurochem Int. Epub 2008 Nov 19.
    [7] Chen YR, Yi FF, Li XY, Wang CY, Chen L, Yang XC, Su PX, Cai J. Resveratrol attenuates ventricular arrhythmias and improves the long-term survival in rats with myocardial infarction. Cardiovasc Drugs Ther. Epub 2008 Oct 14.
    [8] Do Amaral CL, Francescato HD, Coimbra TM, Costa RS, Darin JD, Antunes LM, Bianchi Mde L. Resveratrol attenuates cisplatin-induced nephrotoxicity in rats Arch Toxicol. Epub 2007 Nov 20.
    [9] Dobrydneva Y, Williams RL, Morris GZ,et a1. Dietary phytoestrogens and their synthetic structural analogues as calcium channel blockers in human platelets.Cardiovasc Phannacol, 2002, 40: 399-410.
    [10] Gao ZB, Hu GY. Trans-resveratrol, a red wine ingredient, inhibits voltage-activated potassium currents in rat hippocampal neurons.Brain Res ,2005,1056: 68-75.
    [11] Gao D, Zhang X, Jiang X, Peng Y, Huang W, Cheng G, Song L. Resveratrol reduces the elevated level of MMP-9 induced by cerebral ischemia-reperfusion in mice. Life Sci, 2006,78(22):2564-2570.
    [12] Gong QH, Wang Q, Shi JS, Huang XN, Liu Q, Ma H. Inhibition of caspases and intracellular free Ca2+ concentrations are involved in resveratrol protection against apoptosis in rat primary neuron cultures. Acta Pharmacol Sin, 2007, 28(11):1724-1730.
    [13] Guo L, Wang LH, Sun B, Yang JY, Zhao YQ, Dong YX, Spranger MI, Wu CF.Direct in vivo evidence of protective effects of grape seed procyanidin fractions and other antioxidants against ethanol-induced oxidative DNA damage in mouse brain cells. J Agric Food Chem. Epub 2007 Jun 13.
    [14] Hajra L, Evans AI,Chen VI,eta1.The NF-kappa B signal transduction pathway in aorticendothelial cells is primed for activation in regions predisposed toatheroscleroticlesion fonnation. Proc Natl Acad Sci USA, 2000, 97: 9052-9076.
    [15] Holmes-Mc, Na-M, Baldwin AS Jr. Chemopreventive properties of transresvcratrol are associated with inhibition of activation of the IkappaB kinase. Cancer Res, 2000, 60: 3477-3483.
    [16] Hsieh TC, Juan G, Darzynkiewicz Z, et al. Resveratrol increases nitric oxide synthase, induces accumulation of p53 and p21 (WAF1/ CIP1), and suppresses cultured bovine pulmonary artery endothelial cell proliferation by perturbing progression through S and G2. Cancer Res, 1999, 59 :2596 - 2601.
    [17] Karuppagounder SS, Pinto JT, Xu H, Chen HL, Beal MF, Gibson GE. Dietary supplementation with resveratrol reduces plaque pathology in a transgenic model of Alzheimer's disease. Neurochem Int. Epub 2008 Nov 8.
    [18] Kim HI, Kim TH, Song JH. Resveratrol inhibits Na+ currents in rat dorsal root ganglion neurons.Brain Res, 2005, 1045:134-141.
    [19] Latruffe N, Nelmas D, Jannin B, et al. Molecular analysiss on the chemopreventive properties of resveratrol, a plant polyphend microcosm ponent. Int J MolMed, 2002, 10 (6) : 755 - 760.
    [20] Li HF, Chen SA, Wu SN. Evidence for the stimulatory effect of resveratrol on Ca(2+)-activated K+ current in vascular endothelial cells.Cardiovasv Res, 2000, 45:1035-1045.
    [21] Liew R, Stagg MA, Macleod KT, Collins P. The red wine polyphenol, resveratrol, exerts acute direct actions on guinea-pig ventricular myocytes.Eur J Pharmacol 2005, 519:1-8.
    [22] Lin MT, Yen ML, Lin CY, et al. Inhibition of vas cular endothelial growth factor - induced angiogenesis by resveratrol through interruption of Src–dependent vascular endothelial cadherin tyrosine phosphorylation.Mol Pharmacol, 2003, 64:1029 - 1036.
    [23] Lucia M, Vieira de Almeiday. Protective effects of resveratrol on hydrogen peroxide induced toxicity in primary cortical astrocyte cultures. Neurochem Res, 2008, 33:8-15.
    [24] Maccarrone M, Lorenzon T, Guerrieri P, et al.Resveratrol prevents apoptosis in K562 cells by inhibiting lipoxygenase and cycooxygenase activity. Eur JBiochem,1999,265(1):27-34.
    [25] Prochaska HJ, Santamaria AB. Direct measurement of NAD (p)H; quinone reductase from cells culfured inmicrotierwells: a screening as2say for anticarcinogen icenzyme inducers. AnalBiochem, 1998, 169: 328-336.
    [26] Roy P, Kalra N, Prasad S, et al. Chemopreventive potential of resveratrolin mouse skin tumors through regulation of mitochondrial andPI3K/AKT signaling pathways. Pharmaceutical Research, 2008, 8:211-217.
    [27] Schmatz R, Mazzanti CM, Spanevello R, Stefanello N, Gutierres J, Corrêa M, daRosa MM, Rubin MA, Chitolina Schetinger MR, Morsch VM. Resveratrol prevents memory deficits and the increase in acetylcholinesterase activity in streptozotocin-induced diabetic rats. Eur J Pharmacol. Epub 2009 Mar 19.
    [28] S?nmez U, S?nmez A, Erbil G, Tekmen I, Baykara B. Neuroprotective effects of resveratrol against traumatic brain injury in immature rats. Neurosci Lett. Epub 2007 May 6.
    [29] Subbaramaiah k, Dannenberg aj.Resveratrol inhibits the expression of cyclooxygenase - 2 in mammary eptithelial cells. Adv Exp Med Biol, 2001 , 492: 147.
    [30] Tsai sh ,Lin - Shiau SY,Lin JK. Suppression of nitric oxide synthase and down - regulation of the activation of NF -κB in macrophages by resveratrol. Br. J Pharmacol ,1999 ,126 :673.
    [31] Teisseyre A, Michalak K. Inhibtion of the activity of human lymphocyte Kv1.3 potassium channels by resveratrol. J Membr Biol, 2006, 214:123-129
    [32] Vieira de Almeida LM, Pi?eiro CC, Leite MC, Brolese G, Leal RB, Gottfried C,Gon?alves CA. Protective effects of resveratrol on hydrogen peroxide induced toxicity in primary cortical astrocyte cultures. Neurochem Res. Epub 2007 Jun 27.
    [33] Wang R, Xiao L. Resveratrol inhibits electricalactivity of Paraventricuar nucleusneurons inrathy pothalamicslice. Acta Physiolegica Sinica, 2008, 60(2): 279-283.
    [34] Yanglc ,Wang F ,Liu M. A study of an endothelin antagonist from a Chinese anti - snake venom medicinal herb. J Cardiovasc Pharmacol ,1998 ,31:249 - 250.
    [35] Zhang H, Schools GP, Lei T, Wang W, Kimelberg HK, Zhou M. Resveratrol attenuates early pyramidal neuron excitability impairment and death in acute rat hippocampal slices cause by oxygen-glucose deprivation. Exp Neurol, 2008, 212: 44-52.
    [36] Zhang LP, Yin JX, Liu Z, Zhang Y, Wang QS, Zhao J. Effect of resveratrol on L-type calcium current in rat ventricular myocytes. Acta Pharmacol Sin, 2006,27:179-183.
    [37] Zou JG, Wang ZR, Huang YZ, et al. Effect of red wine and wine polyphenol resveratrol on endothelial function in hypercholesterolemic rabbits. Int J Mol Med, 2003,11:317 - 320.
    [38]李国洪,金美娟.白藜芦醇对氧化型LDL所致血管内皮细胞损伤的保护作用[J].解放军医学杂志, 2008, 33(6): 719-721.
    [39]刘兆平,于波.白藜芦醇的雌激素样作用研究.卫生研究, 2002, 31(3): 188-190.
    [40]唐旭东.白藜芦醇诱导CNE-2Z细胞凋亡过程中caspase3的活化.免疫学杂志, 2003, 19(1): 23.
    [41]田雪梅,张展霞.白藜芦醇抑制HepG2细胞生长及诱导细胞凋亡的初步研究.中国药理学通报, 2001, 17(5):522.
    [42]王世君,王兴祥.白藜芦醇抑制血管紧张素Ⅱ诱导的大鼠心脏成纤维细胞增殖的实验研究.中国中西医结合杂志, 2008, 28(4):334-338.
    [43]于良.白藜芦醇对小鼠移植性肝癌组织中细胞周期蛋白的影响.第四军医大学学报, 2002, 23(23): 2172.
    [44]张海燕,刘忠锦.顺铂与白藜芦醇联合应用对人胃癌MGC803细胞作用的研究.齐齐哈尔医学院学报, 2008, 29(9):1025-1027.
    [45]周海波.白藜芦醇诱导胃癌细胞凋亡的分子机制.中华消化杂志, 2003, 23(3):188.
    [1] AleksandrovaMA, PodgornyiOV, MareiMV, et al. Characteristics of human neural stem cells in vitro and after transp lantation into rat brain. bull Exp Bio lMed, 2005 (1) : 114 - 120.
    [2] Brewer GJ, Torricelli JR, Evege EK, et al. Optimized survival of hippocampal neurons in B27-supplemented Neurobasal, a new serum-free medium combination. J Neurosci Res, 1993, 35(5):567-576.
    [3] Brewer GJ. Serum-free B27/neurobasal medium supports differentiated growth of neurons from the striatum, substantia nigra, septum, cerebral cortex, cerebellum, and dentate gyrus. J Neurosci Res, 1995, 42(5):674-683.
    [4] EslamboliA, Georgievska B, Ridvey RM, et al. Continuous low level gliney cell line derived neurotrophic factor delivery using recombine adeno associated viral rectors provides neuron protection and induces behavioral recovery in primate model of Parkionsons disease . J Neurosci, 2005 (4) : 769 - 777.
    [5] HA Yashi K, Kawaihirai R, Ishikawa K, et al.Reversal of neuronal polarity characterized by conversion of dendrites into axons in neonatal rat cortical neurons in vitro. Neuroscience, 2002, 110 (1) :7217.
    [6] Huang HM, Ou HC, Hsieh SJ. Amyloid Beta Peptide Impaired Carbachol but not Glutamate-Mediated Phosphoinositide Pathways in Cultured Rat Cortical Neurons.Neurochemical Research, 2000, 25(2):303-312.
    [7] Moore EJ, Hall DB, Narahashi T. Auditory cortex neurons: primary culture and ion channel activity in rat. Acta Otolaryngol, 1995,115: 776-782.
    [8] Murase K, Ryu PD, Randic M. Excitatory and inhibitory amino acids and peptide-induced responses in acutely isolated rat spinal dorsal horn neurons. Neurosci Lett, 1989, 103: 56-63.
    [9] Ricart KC, Fiszman ML. Hydrogen Peroxide-Induced Neurotoxicity in Cultured Cortical Cells Grown in Serum-Free and Serum-Containing Media. Neurochemical Research, 2001, 26 (7): 801-808.
    [10] Xie C, Markesbery WR, Lovell MA. Survival of hippocampal and cortical neurons in a mixture of MEM+ and B27-supplemented neurobasal medium. Free Radic Biol Med, 2000, 28(5):665-672.
    [11] Xu H, Gong N, Chen L, Xu TL. Sodium salicylate reduces gamma aminobutyric acid-induced current in rat spinal dorsal horn neurons. Neuroreport, 2005, 16:813-816.
    [12] Yu X, An LA. Serum- and Antioxidant-Free Primary Culture Model of Mouse Cortical Neurons for Pharmacological Screen and Studies of Neurotrophic and Neuroprotective Agents. Cell Mol Neurobiol, 2002, 22(2):197-206.
    [13]杜怡峰,张晨.新生大鼠海马神经细胞原代培养方法的改良.青岛大学医学院学报, 2002, 38(1):55-56.
    [14]胡钧涛,涂汉军,张力等.大鼠胚胎神经干细胞两种不同分离、传代方法的比较.中国神经精神疾病杂志, 2006, 32 (2) : 164.
    [15]邵延坤,王溪原,王越晖等.乳鼠皮层神经元原代培养与观察.吉林医学, 2003, 24(2):103-104.
    [16]宋岳涛,洪庆涛,唐一鹏.阿糖胞苷对原代培养的大鼠大脑皮层神经元的影响.解剖学杂志, 2004, 27(6):696-699.
    [17]肖伟,罗卓荆,黄明等.不同营养因子组合对大鼠脊髓神经元的作用研究.中国矫形外科杂志, 2008,16(12):940-943.
    [18]叶蓓,高建,张立光.大鼠脊髓神经元的原代无血清培养及鉴定.安徽医药, 2008,12 (3):1208-1209.
    [19]张俐,聂光瑞.体外培养原代脊髓神经细胞.中国中医骨伤科杂志, 2008,16(2):13-15.
    [1] Alan C Foster1, John A Kemp. Glutamate- and GABA-based CNS therapeutics Current Opinion in Pharmacology, 2006, 6:7–17.
    [2] Ban JY, Choi SH, Ju S,Kim JY, Bac K, et al. Neuroprotective effect of Smilacis chinae rhizome on NMDA-induced neurotoxicity in vitro and focal cerebral ischemia in vivo.J Pharmacol Sci, 2008, 106:68-77.
    [3] Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C, Kalra A, et al. Resvertrol improves health and survival of mice on a high-calorie diet. Nature, 2006, 444: 337-342.
    [4] Baur JA, Sinclair DA.Therapeutic potential of resveratrol:the in vivo evidence.Nat Rev Drug Discov, 2006, 5:493-506
    [5] Bhat KPL, Kosmeder JW, Pezzuto JM. Biological effects of resveratrol. Antioxid Redox Signal, 2001, 3:1041-1064
    [6] Bonabi S, Caelers A, Monge A, Huber A, Bodmer D. Resveratrol protects auditory hair cells from gentamicin toxicity. Ear, nose,﹠throat journal, 2008, 87:570-573.
    [7] Boocock DJ, Faust GE, Patel KR, Schinas AM, Brown VA, Ducharme MP, et al. Phase I dose escalation pharmacokinetic study in healthy volunteers of resveratrol, a potential cancer chemopreventive agent.Cancer Epidemiol Biomarkers Prev, 2007,16:1246-1252.
    [8] Borra MT, Smith BC, Denu JM. Mechanism of human SIRT1 activation by resveratrol. J Biol Chem, 2005, 280:17187-17195.
    [9] Brakenhielm E, Cao R, Cao Y. Suppression of angiogenesis, tumor growth, and wound healing by resveratrol, a natural compound in red wine and grapes.FASEB J ,2001, 15:1798-1800.
    [10] Breuer C, Wolf G, Andrabi SA, Lorenz P, Horn TF. Blood–brain barrier permeability to the neuroprotectant oxyresveratrol. Neurosci Lett, 2006, 393: 113-118.
    [11] De Almeida LM Pi?eiro CC, Leite MC, Brolese G, Tramontina F, Feoli AM, Gottfried C, Gon?alves CA. Resveratrol increases glutamate uptake, glutathione content, and S100B secretion in cortical astrocyte cultures. Cell Mol Neurobiol, 2007, 27(5): 661-8.
    [12] De la Lastra CA, Villegas I. Resveratrol as an antioxidant and prooxidant agent: mechanisms and clin ical implications. Biochem Soc Trans, 2007, 35(5): 1156-1160
    [13] Dos Santos AQ, Nardin P, Funchal C, et al. Resveratrol increases glutamate uptake and glutamine synthetase activity in C6 glioma cells. Arch Biochem Biophys, 2006,453(2):161-167
    [14] Gao ZB, Chen XQ, Hu GY. Intibition of excitatory synaptic transmission by trans-resveratrol in rat hippocampus.Brain Res, 2006, 1111:41-47.
    [15] Gao ZB, Hu GY. Trans-resveratrol, a red wine ingredient, inhibits voltage-activated potassium currents in rat hippocampal neurons. Brain Res, 2005, 1056:68-75.
    [16] G Campiani, C Fattorusso, M De Angelis, et al. Neuronal high-affinity sodium-dependent glutamate transporters (EAATs):targets for the development of novel therapeutics against neurodegenerative dis- eases. Curr Pharm Des, 2003, 9(8): 599-625
    [17] Gehm D, McAndrews JM, Chien PY,Jameson JL. Resveratrol, a polyphenolic compound found in grapes and wine, is an agonist for the estrogen receptor. Proc Natl Acad Sci USA , 1997, 94:14138-14143.
    [18] Gupta YK, Briyal S, Chaudhary G. Protective effect of trans-resveratrol against kainic acid-induced seizures and oxidative stress in rats. Pharmacol Biochem Behav, 2002, 71:245-249.
    [19] Kim HI, Kim TH, Song JH. Resveratrol inhibits Na+ currents in rat dorsal root ganglion neurons.Brain Res, 2005, 1045:134-141.
    [20] Lagouge M, Argmann C, Gerhart-Hines Z, Meziane H, Lerin C, Daussin F, et al. Resveratrol improves mitochondrial function and protects against metaboliv disease by activating SIRT1 and PGC-1alpha.Cell, 2006, 127:1109-1122.
    [21] Li HF, Chen SA, Wu SN. Evidence for the stimulatory effect of resveratrol on Ca(2+)-activated K+ current in vascular endothelial cells. Cardiovasv Res, 2000, 45:1035-1045.
    [22] Liew R, Stagg MA, Macleod KT, Collins P. The red wine polyphenol, resveratrol, exerts acute direct actions on guinea-pig ventricular myocytes.Eur J Pharmacol, 2005, 519:1-8.
    [23] Lopez-Velez M, Martinez-Martinez F, Del Valle-Ribes C. The study of phenolic compouds as natural antioxidants in wine. Crit Rev Food Sci Nutr, 2003, 43: 233-244.
    [24] Murase K, Ryu PD, Randic M. Excitatory and inhibitory amino acids and peptide-induced responses in acutely isolated rat spinal dorsal horn neurons. Neurosci Lett, 1989, 103:56-63.
    [25] Olas B, Wachowicz B. Resveratrol and vitamin C as antioxidants in blood platelets. Thromb Res, 2002, 106:143-148.
    [26] Pervaiz S. Chemotherapeutic potential of the chemopreventive phytoalexin resveratrol. Drug Resist Updat, 2004, 7(6):333-344.
    [27] Pirola L, Frojdo S. Resveratrol:one molecule, many targets. IUBMB Life, 2008,60:323-332.
    [28] Rotti D, Danbolt NC, Volterra A. Glutamate transporters are oxidantvulnerable: a molecular link between oxidative and excitotoxic neurodegeneration. Trends Pharmacol Sci, 1998, 19(8):328-334.
    [29] Seidman M, Babu S, Tang W, Naem E, Quirk WS. Effects of resveratrol on acoustic trauma. Otolaryngol Head Neck Surg, 2003, 129:463-470.
    [30] Sun H, Cheng XP, You-Ye Z, Jiang P, Zhou JN. Quercetin subunit specifially reduces GlyR-mediated current in rat hippocampal neurons. Neuroscience, 2007, 148:548-559.
    [31] Sun NJ, Woo SH, Cassady JM, et al. DNA polymerase and topoisomeraseⅡinhibitors from psoralea corylifolia. J Nat Prod, 2003, 66(5):734.
    [32] Tang ZQ, Lu YG, Zhou KQ, Xu TL, Chen L. Amiloride attenuates glycine-induced currents in cultured neurons of rat inferior colliculus. Biochem Biophys Res Commun, 2006, 350:900-904.
    [33] Teisseyre A, Michalak K. Inhibtion of the activity of human lymphocyte Kv1.3 potassium channels by resveratrol. J Membr Biol, 2006, 214:123-129.
    [34] Virgili M, Contestabile A. Partial neuropotection of in vivo excitotoxic brain damage by chronic administration of the red wine antioxidant agent, trans- resveratrol in rats. Neurosci Lett, 2000, 281:123-126.
    [35] Wang J, Ding D, Salvi RJ. Functional reorganization in chinchilla inferior colliculus asssociated with chronic and acute cochlear damage. Hear Res, 2002, 168:238-249.
    [36] Wang Q, Yu S, Simonyi A, Rottinghaus G, Sun GY, Sun AY. Resveratrol protects against neurotoxicity induced by kainic acid. Neurochem Res, 2004, 29:2105-2112.
    [37] Zbikowska HM, Olas B, Wachowicz B, Krajewski T. Response of blood platelets to resveratrol. Platelets, 1999, 10:247-252.
    [38] Zhang H, Schools GP, Lei T, Wang W, Kimelberg HK, Zhou M. Resveratrol attenuates early pyramidal neuron excitability impairment and death in acute rat hippocampal slices cause by oxygen-glucose deprivation. Exp Neurol, 2008, 212: 44-52.
    [39] Zhang LP, Yin JX, Liu Z, Zhang Y, Wang QS, Zhao J. Effect of resveratrol on L-type calcium current in rat ventricular myocytes. Acta Pharmacol Sin, 2006, 27:179-183.
    [40]钱掩映,杨慧民,郑荣远. SD大鼠脑皮质星形胶质细胞的纯化.医学研究杂志, 2008, 37(5):111-113.
    [41]郑小华,曹颖平,侯娟王,梅华,郑培烝.白藜芦醇对培养大鼠脑皮层星形胶质细胞增殖及谷氨酸代谢的影响.中国现代医药杂志, 2009, 11(1): 56-60.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700