用户名: 密码: 验证码:
纤维状多孔超细特种镍钴合金及复合氧化物粉末制备新方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
特种超细粉末的许多特殊功能与它们的化学成分、组织结构以及粒度和形貌密切相关。而特种超细粉末的制备和加工方法是调变粉末特殊功能的一种必要手段,不仅可以不断创制出许多新材料而且也可以改变或精确控制许多传统粉体材料的成分、结构、形态和形貌等理化性能。因此研究制备特种超细粉体材料的新方法具有十分重要的实际应用价值和学术理论意义。
     作者提出了在混合介质中(V_(溶剂A)∶V_(water)≥1∶3)采用配位共沉淀-热分解法制备纤维状多孔超细特种镍钴合金粉及其复合氧化物粉的新方法,并围绕其制备过程中粉末化学成分的均匀性、相组成和纯度、既定镍钴配比的维持、粉末粒度、形态和形貌控制等核心问题,系统地研究并成功解决了混合介质中配位共沉淀-热分解法制备过程中的一系列相关理论和实际应用过程中出现的难题。本论文主要论述了如下几个方面的研究内容:
     发明了Ni~(2+)-Co~(2+)-NH_3-NH_4~+-C_2O_4~(2-)-H_2O-溶剂A体系中采用“配位共沉淀-热分解法”制备多孔特种镍钴合金粉末和镍钴复合氧化物粉末的新方法。新方法主要由配制镍钴均匀混合溶液、纤维状草酸镍钴复盐的合成、气氛调控下的热分解及特种镍钴合金粉末的表面防氧化处理等过程组成。全制备过程在常温常压下进行,易于实现产业化、对环境友好、可控性强,在同一个流程中只要改变热分解气氛即可获得两种完全不同的热分解产品。
     通过理论和实验确定:在水介质中,当pH≤5.0时,可以得到维持设定镍钻配比的固溶体共沉淀物,然而当pH>5.0时,草酸根离子与镍钴离子的共沉淀过程为分步沉淀,共沉淀物为混合物;在以溶剂A和水混合物的介质中,配位共沉淀法合成的镍钴合金或镍钴复合氧化物前驱体粉末,可以在一个很宽的pH值范围(2.0~8.6)内实现共沉淀产物中镍钴离子设定配比的精确控制和既定配比的稳定维持。采用热重/差热分析,X射线衍射分析和热磁分析证明了该pH值范围内得到的草酸镍钴复盐共沉淀产物均为单相共沉淀化合物,在弱还原性气氛中其热分解产物为镍钴合金粉末
     首次在混合沉淀介质中配位共沉淀合成了粒状、棒状和纤维状形貌的草酸镍钴复盐粉末。系统考察了配位共沉淀过程中各工艺条件对共沉淀物粉末的成分、粒度及形貌的影响。结果表明:在制备纤维状草酸镍钴复盐粉末过程中,反应体系的温度,反应物浓度,溶液pH值,阴离子种类,分散剂,加料速度等因素均可影响共沉淀物的成分、形貌、粒度及分散性。以氨水作为配合剂和溶液pH值的调节剂,草酸或草酸铵为沉淀剂,反应温度为50~65℃,反加料方式,镍钴离子总浓度为0.5mol/L~0.8mol/L,阴离子为氯离子,分散剂为PVP,pH值为8.0~8.4条件下制得的草酸镍钴复盐粉末呈纤维状,轴径比大,镍钴离子配比准确,分散性好。同时固定其他条件,当pH≤5.0时,草酸镍钴复盐形貌为粒状聚集体;当pH=6.0~8.0时,草酸镍钴复盐形貌为棒状。
     首次系统研究了不同条件下用配位共沉淀法合成的镍钴合金或镍钴复合氧化物前驱体粉末的形成机理和成分变化:用氨水调节溶液的pH值并当pH≤5.0时,前驱体粉末的分子式为Ni_xCo_(1-x)C_2O_4·2H_2O,其形貌呈粒状聚集体;而当pH=6.0~8.0或pH≥8.0时,由于部分氨参与共沉淀反应,前驱体分子式为Ni_xCo_(1-x)(NH_3)_yC_2O_4·mH_2O-nNH_3,其中x为摩尔分数,m、n和y为摩尔系数。m、n和y随反应pH值、氨浓度和干燥温度的不同而变化,变化范围为:y<0.5,1.0<m<2.0,1.0<n<2.0;x值可通过控制原料中镍、钴离子的摩尔配比而得到精确控制,前驱体形貌分别呈棒状或纤维状。此外,还着重研究了形貌为棒状和纤维状的前驱体粉末(草酸镍钴复盐)的形成机理:草酸镍钴复盐分子晶体为一个二维平面结构的片状分子。在垂直于该片状分子的平面方向配合连接着L配位体,通过这些配体可构成沿轴向方向延伸生长的晶体粒子。当改变这些配位体时,草酸镍钴复盐晶体表面的极性得以改变,共沉淀产物即可通过轴向生长的[(NH_3)M-OX-M(NH_3)]~(2+)生长基元得以取向连生生长为棒状或纤维状草酸镍钴复盐粉末。
     首次系统地研究了不同pH值条件下合成的不同形貌的草酸镍钴复盐粉末在氮气气氛中的热分解机理:
     (a)pH≤5.0时,粒状草酸镍钴复盐粉末的热分解机理为:
     Ni_xCo_(1-x)C_2O_4·2H_2O(?)Ni_xCo_(1-x)C_2O_4(?)Ni_xCo_(1-x)
     (b)6.0≤pH<8.8时,棒状和纤维状草酸镍钴复盐粉末的热分解机理为:
     Ni_xCo_(1-x)(NH_3)_yC_2O_4·mH_2O·nNH_3(?)Ni_xCo_(1-x)(NH_3)_yC_2O_4·mH_2O(?)Ni_xCo_(1-x)(NH_3)_yC_2O_4(?)Ni_xCo_(1-x)C_2O_4(?)Ni_xCo_(1-x) solid solution
     研究了草酸镍钴复盐粉末热分解条件对镍钴合金粉末理化性能的影响以及镍钴合金粉末表面防氧化的处理技术。热分解和表面处理两个过程在同一热分解炉内连续完成。研究结果表明:以配位共沉淀法合成的分散性好的纤维状草酸镍钴复盐粉末为原料,钝化剂C气体作为合金粉末防氧化处理钝化剂,在热分解温度为360℃~450℃,热分解时间为30分钟左右,热分解气氛为弱还原气氛,气流流速为1.2 L/min~1.8L/min以及随炉升温的条件下进行热分解反应即可得到疏松多孔、轴径比大、比表面积大、碳氧含量低、分散性好和不同配比的纤维状面心立方结构的镍钴合金粉末
     本项研究还发现,同样以纤维状草酸镍钴复盐粉末为原料,只要调控热分解温度和热分解气氛,还可制得纤维状多孔特种镍钴复合氧化物粉末。因而还首次系统研究了纤维状草酸镍钴复盐粉末在空气气氛中的热分解机理以及热分解条件对镍钴复合氧化物粉末物相的影响。结果表明:以Ni~(2+)/Co~(2+)=1:2的纤维状草酸镍钴复盐粉末为原料,在空气气氛中进行热分解,热分解温度为500℃左右,热分解时间为3小时条件下即可制得多孔的结构为Co_(1-x)~(2+)Co_x~(3+)[Co~(3+)Ni_y~(2+)Ni_(1-y)~(3+)]O_4的纤维状NiCo_2O_4复合氧化物粉末;热分解机理为首先脱去物理吸附水和代替部分结晶水的氨;随着温度的升高,然后失去结晶水,最后是脱配合氨、草酸镍钴热分解和镍钴氧化反应同时发生。
The distinctive properties of special ultrafine powders are closely related to their chemical compositions, structures and granularity as well as morphology. The preparation techniques and processing methods of ultrafine powders which are the necessary means for changing the product properties are able to not only create new materials, but also change and accurately control their physical and chemical properties such as chemical compositions, structures, granularity and morphology. Therefore, it is of great importance for practical application and fundamental academic study to explore novel preparation methods of ultrafine powders.A novel preparation method of coordination coprecipitation-pyrolytic decomposition was proposed to synthesize fibrous porous special ultrafine Ni-Co alloy and Ni-Co complex oxide powders in the mixed solvent of solvent A and water (V_(solvent A) :V_(water)≥1:3). The key properties of the two types of powders, including the uniformity of the chemical composition, phase composition, purity, specified ratios of Ni~(2+) to Co~(2+), and the control of granularity and morphology, were systematically investigated. The major research accomplishments in this paper are as follows:A novel method of coordination coprecipitation-pyrolytic decomposition in Ni~(2+)-Co~(2+)-NH_3-NH_4~+-C_2O_4~(2-)-H_2O-solvent A system was proposed to prepare fibrous porous special Ni-Co alloy and Ni-Co complex oxide powders. The process involves compounding uniformed mixture solution of nickel and cobalt ions, synthesis of fibrous nickel-cobalt oxalate complex salt, pyrolytic decomposition under the controlled atmospheric condition, and the surface oxidation resistance treatment of the powders. The process is carried out under ambient temperature and pressure. It is friendly to environment, easily operated and controlled, and therefore can be easily scaled up for commercial production. In addition, two different types of products can be obtained from the same process by adjusting pyrolytic decomposition atmosphere.The following conclusions were drawn from the theoretical analysis and experimental test. In the solvent of water, the coprecipitated solid solution with fixed ratio of Ni~(2+) to Co~(2+) can be obtained at pH<5.0, as pH>5.0, the precipitation process is fractiona and the precipitant is a mixture. In the mixed solvent of solvent A and water, when the precursor powders of Ni-Co solid solution alloy or Ni-Co complex oxide powders are synthesized by coordination coprecipitation, Ni~(2+) and Co~(2+) ratios can be controlled and maintained accurately within a wide range of pH values (2.0~8.6). For the first time, the coprecipitates synthesized in the mixed solvent with wide range of pH values (2.0~8.6) of solution have been validated as homogeneous Ni-Co oxalate complex salt compound by analytical methods of TGA/DTA and XRD. Similarly, the decomposition product obtained in weak reduce gas atmosphere with nitrogen and little hydrogen gas was confirmed by TGA/DTA, XRD as well as thermomagnetometry.
     It is the first time to synthesize three different morphologies of Ni-Co oxalate complex salt including granular aggregation morphology, rod morphology and fibrous morphology by using coordination coprecipitation method in the mixed precipitating medium. The experimental conditions were investigated on the chemical composition, granularity and morphology of the coprecipitates. It can be concluded that the chemical composition, granularity and morphology of the coprecipitates are dependent on temperature, solution concentration, pH value, the nature of anions, dispersant, etc. The fibrous Ni-Co oxalate complex salt was obtained under the conditions of using ammonia as a complex and pH adjustor, oxalate as coprecipitated agent, reverse-feed method, temperature of 50~65℃, total concentration of Ni~(2+) and Co~(2+) of 0.5mol/L~0.8mol/L, PVP as dispersant, Cl~- as anion and pH value in the range of 8.0~8.4. The type of powders with rod morphology were obtained when pH is 6.0~8.0 and other conditions the same. The coprecipitate powders having granular aggregation morphology can be obtained when pH≤5.0.
     For the first time, the mechanism of Ni-Co oxalate coprecipitation and differentce of the chemical compositions under different conditions were systematically studied. When pH≤5.0 by adjusting ammonia concentration, composition of the precursor is Ni_xCo_(1-x)C_2O_4·2H_2O and the morphology is granular aggregation; when pH=6.0~8.0 or pH≥8.0, the morphology of the precursor powders is rod-like or fibre-like respectively due to the involvement of ammonia in the coprecipitation process. The formula of the precursor were identified as Ni_xCo_(1-x) (NH_3)_yC_2O_4·mH_2O·nNH_3, where x represents molar fraction, while m, n and y represent mole numbers of the components which depend on the solution pH value, the concentration of ammonia and the drying temperature. The changing ranges of y, m, and n are as follows: 0<y<0.5, 1.0<m<2.0 and 1.0<n<2.0. The x value can be controlled accurately by manipulating the ratio of Ni~(2+) to Co~(2+) from the added feed metal salts. Additionally, the formation mechanism of fibrous or rod-like precursor powders (Ni-Co oxalate complex salt) was also investigated. For the Ni-Co oxalate complex salt, the central metal atom was bonded by two C_2O_4~(2-) ions forming a planar molecule. Perpendicular to the molecular plane are two coordinated H_2O molecules by which crystal grain can grow in an elongate way along axial direction. The surface polar of Ni-Co oxalate molecules is different when the complex switches from H_2O to NH_3 at different pH values in the solution by adding NH_3. Therefore, rod-like or fibre-like powders may be formed through [(NH_3)M-OX-M(NH_3)]~(2+) growth units along the axial direction.
     For the first time, pyrolytic decomposition mechanism of Ni-Co oxalate complex salt obtained at different solution pH values with different morphologies were thoroughly explored in nitrogen atmosphere:
     (a) When pH≤5.0, the decomposition mechanism of Ni-Co oxalate complex salt with granular aggregation morphology is described as follows:
     Ni_xCo_(1-x)C_2O_4·2H_2O(?)Ni_xCo_(1-x)C_2O_4(?)Ni_xCo_(1-x) alloy
     (b) when 6.0≤pH<8.8, the decomposition mechanism of Ni-Co oxalate complex salt with rod-like or fibre-like morphology is described as follows:
     Ni_xCo_(1-x)(NH_3)_yC_2O_4·mH_2O·nNH_3(?)Ni_xCo_(1-x)(NH_3)_yC_2O_4·mH_2O (?)Ni_xCo_(1-x)(NH_3)_yC_2O_4(?)Ni_xCo_(1-x)C_2O_4(?) Ni_xCo_(1-x) alloy
     The effects of pyrolytic decomposition conditions of Ni-Co oxalate complex salt powders on the product performance and surface treatment were investigated. The pyrolytic decomposition process and surface treatment were conducted in the same furnace. The results showed that porous fibrous Ni-Co alloy powders with large aspect ratio, large specific surface area, low content of carbon and oxygen, well- dispensability and face-centered cubic structure can be obtained through the decomposition of Ni-Co oxalate complex salt under the condition of the proper decomposition: fibrous Ni-Co oxalate complex salt with good dispersion for precursor, weak reductive atmosphere, 360~450℃for decomposition temperature, 30 min for decomposition time, 1.2 L/min~1.8L/min for gas speed and heating up rates at 5~10℃/min.
     It was also found that fibrous and porous special nickel-cobalt complex oxides powders can be produced by adjusting and controlling decomposition temperature and atmosphere if fibrous nickel-cobalt oxalate complex salt powders were taken as precursor of nickel-cobalt complex oxides. The pyrolytic decomposition mechanism of fibrous Ni-Co oxalate complex salt and the effects of pyrolytic decomposition conditions on the formation of Ni-Co complex oxides phase were systematically investigated for the first time. The results showed that porous fibrous NiCo_2O_4 complex oxide powders with Co_(1-x)~(2+)Co_x~(3+)[Co~(3+)Ni_y~(2+)Ni_(1-y)~(3+)]O_4 structure can be produced under the following conditions: fibrous Ni-Co oxalate complex salt powders with Ni~(2+)/Co~(2+)=1:2 (mole ratio) as decomposition material, flowing air or oxygen atmosphere, temperature 500℃and retention time 3 hours. Pyrolytic decomposition mechanism of Ni-Co oxalate complex salt in flowing air or oxygen atmosphere is as follow: First, physical absorbed water and ammonia substitution for hydrated water are deprived; and then dehydration process; last, deamination, decomposition of Ni_xCo_(1-x)CO_4 and oxidation of metal atom take place simultaneously.
引文
[1] 张立德,牟季美.纳米材料和纳米结构.北京:科学出版社,2002:51~68
    [2] 贺跃辉,陈立保,张兆森等.国内外镍钴粉末研究现状及发展趋势.中国镍钴市场报告会,2002:84~89
    [3] 湛菁,张传福,黎昌俊等.镍钴合金粉的制备及其应用现状.硬质合金,2002,19(4):206~209
    [4] Nishizawa T. and Ishida K.. The Co-Ni(Cobalt-Nickel)system. Bull. Alloy Phase Diagrams, 1983, 4(4):390~395
    [5] P.基费尔,Л.施华尔茨柯普弗.硬质合金.中国工业出版社,1953:266~486
    [6] 丘姆勒尔 弗..粉末冶金工艺过程的进展.全苏科学代表会议报告.1982:120~134
    [7] 徐爱东.影响2003—2004年国内外镍钴市场的几个关键问题.全国铜镍钴生产技术、装备、材料及市场研讨会论文集.2003:24~33
    [8] 刘永福.国外无钴少钴硬质合金的发展.四川有色金属,1993,(3):6~8
    [9] 孙宝琦.硬质合金中铁镍代钴问题浅析.硬质合金,1996,13(1):47~55
    [10] 张立,孙宝琦,王柏连等.Ni/Co比与碳含量对WC-11(Co-Ni)硬质合金物理机械性能的影响.硬质合金,1992,9(4):193~197
    [11] Upadhyaya G. S. and Dbasu. Nickel and iron substituted WC-10 Co hard metals. 11th Intemational Plansee Seminar'85, Proceedings,1985, 2: 559.
    [12] Papers C. T. and Brabyn S. M.. Properties of nickel substituted hard metals and their performance in hard rock drill bits. Metal Powder Report, 1987, 42(12):863
    [13] Ekemar S., Lindholm L., Hartzell T.. Nickel as a binder in WC-based cemented carbides. Intemational Journal of Refractory & Hard Metals, 1982, 1(1): 37~40
    [14] 铃木寿等编著.硬质合金和烧结硬质材料.丸善株式会社:1986,287~295
    [15] Eun K. Y., Kim D. Y. and Yoon D. N.. Variation of mechanical properties with Ni/Co ratio in WC-(Co-Ni) hardmetals. Powder Metallurgy, 1984, 27(2):112~114
    [16] G. S. Upahyaya and S.K.Bhaumik. Sintering of submicron WC-10wt.% Co hard metals containing nickel and iron. Materials Science &Engineering A, 1988, 105/106:249~256
    [17] Zhang Li and Sun Baoqi. A new hardmetal for mining with Ni-Co Binder. Int. J. Refractory Metals & Hard Materials, 1996, 14:245~248
    [18] Peters C. T., Brabyn S.M. and Shannon M.. Properties of nickel substituted hardmetals and their performance in hard rock drill bits. Metal Powder Report, 1987, 42(12):863~865
    [19] 王祖南.用Ni-Co作硬质合金粘结相的研究.第三届全国硬质合金学术会议论文摘要,1986
    [20] 刘荣湘,易凯华.镍代钴矿用硬质合金的新进展.稀有金属与硬质合金,1994(6):46~49
    [21] 巴肖K.H.J..金属与陶瓷的电子及磁学性质(Ⅱ).北京:科学出版社,2001.195~231
    [22] 田民波.磁性材料.北京:清华大学出版社,2001.183~196
    [23] 村上志郎,藤井重男,五十檒芳夫等.Co-Ni薄膜 媒体耩造.日立金属技報,1999,2:7~10
    [24] Lodder J.C.. Magnetic thin films for high-density recording. Thin Solid film, 1996, 281-282: 474~483
    [25] 彭勇,周荣洁,肖君军等.Co纳米线阵列膜热处理前后的结构与磁性研究.科学通报,2001,46(1):20~23
    [26] Safrannek W. H.. The properties of electrodeposites metals and Alloy. Elsevier,New York, 1974:291
    [27] Bianco A., Gusmano G., Montesperelli G. et al. Microstructure and surface composition of ferromagnetic thick films prepared with NiCo polyol-derived powders.Thin solid film, 2002, 359:21~27
    [28] Whitney T.M, Jiang J.S., Searson P.C., et al. Fabrication and magnetic properties of arrays of metallic nanowires. Science, 1993, 261 : 1316~1319
    [29] 覃东欢,彭勇,王成伟等.Co-Ni合金纳米线有序阵列得制备与磁性研究.物理学报,2001,50(1):144~148
    [30] 田媛,孙兴国,郑玉峰等.Co-Ni磁性形状记忆合金的显微组织和力学行为.材料科学与工艺,2004,12(2):176~178
    [31] 李亚东,崔大奎和骆苏华.RF磁控溅射工艺对TiNi(1-x)Cu_x合金薄膜组织形貌的研究.材料科学与工艺,2002,10(3):295~298
    [32] 胡心彬,陈菁,陈洪等.Co-Ni合金磁诱发马氏体相变得热力学分析.功能材料,2002,33(2):174~176
    [33] 陈小芹编译.Co-Ni合会的马氏体转变特性和形状记忆效应.国外金属热处理,2004,25(3):20~23(25)
    [34] Bianco A., Gusmano G. Montanari R. et al. Microstructual characterization of Ni, Co and Ni-Co free powders for physical Sensors. Thermochimica Acta, 1995, 269:117~132
    [35] 郑馥,蔡伟,赵连成.Ni_2MnGa合金的价电子结构研究.材料科学与工艺 2002,10(4):416~418
    [36] 刘岩,江伯鸿,周伟敏等.Co-Ni磁控形状记忆合金的相变及显微结构.功能材料,2002,33(1):49~51
    [37] Liu Y., Zhou W. M., Qi X. et al. Magneto-shape-memory effect in Co-Ni single crystals. Applied Physics letters, 2001,78(23): 3660~3662
    [38] 杨仕清,彭斌,王豪才.超细Co-Ni合金复合磁流变液的制备及流变性质.功能材料,2001,32(2):142~143(146)
    [39] Tong Liuniu, Du Jun, Pan Minhu et al. Magnetooptical, optical and GMR effect in Ni-Co/Cu multilayers. J. Magn. Magn. Mater., 1999,198-199:273~275
    [40] 管登高,黄婉霞,陈家钊等.10KHz~1GHz镍基电磁波屏蔽复合涂料的研制及其在EMC中的工程应用.电讯技术,2000,(6):13~18
    [41] 王方林,韩艳霞.电磁辐射污染及其防护织物的研究进展.环境污染与防治,2006(1):1~7
    [42] 崔升,沈晓冬,袁林生等.电磁屏蔽和吸波材料的研究进展.电子元件与材料,2005,2(1):57~61
    [43] 王海.雷达吸波材料德研究现状和发展方向.上海航天,1999,1:55~59
    [44] 王桂香.铁系元素纳米合金德合成及性能研究:[硕士学位论文].哈尔宾:哈尔宾工业大学,2002:14~15
    [45] 陈立民,朱学琴,葛副鼎等.纳米合金颗粒的微观结构及其微波吸收特性.微波学报,1999,15(4):312~316
    [46] 吴越.催化化学.北京:科学出版社,2000.899~920
    [47] Zeng H. C., Lin J., Teo W. K., et al. Monoclinic ZrO_2 and its supported materials Co/Ni/ZrO_2 for N_2O decomposition. J. Mater. Res., 1995, 10(3): 545~552
    [48] Ishihara Tatsumi, Horiuchi Nobuhiko, Inoue Takanori, et al. Effect of alloying on CO Hydrogenation activity over SiO_2-supported Co-Ni alloy catalysts. J. Catal., 1992, 136(1) :232~241
    [49] Virginia Heffeman. A new catalyst for fuel cells. Nickel, 2005, 21(1):7
    [50] Tans Sander J., Devoret Michel H., Dai Hongjie et al. Individual single- wall carbon nanotubes as quantum wires. Nature, 1997, 386:474~477
    [51] http://www.nanotech.com.cn/nmkg/pl/4.htm
    [52] Zhang X. Y., Zhang L.D., Li G. H. et al. Template synthesis of well-graphitized carbon nanotube arrays. Materials science and Engineering A, 2001, 308:9~12
    [53] 丹尼斯J.K.,萨奇T.E..镍钴合金装饰性应用孙大梁(,张玉华,苏效轼译).镀镍和镀铬新技术.北京:科学技术文献出版社,1990
    [54] 王占华,沈卓身和郭育雄.陶瓷封装电沉积Ni-Co合金的研究.材料保护.2003,36(2):30~32
    [55] 朱龙章,张庆元,陈宇飞等.镍钴合金镀层的电沉积及其耐蚀性的研究.材料保护,1997,30(5):4~6
    [56] 张义成,封成起,王建宇等.电沉积Ni-Co合金的研究.电镀与精饰,1995,17(6):4~7
    [57] Chang L. M., An M. Z. and Shi S. Y.. Corrosion behavior of electrodeposited Ni-Co alloy coatings under the presence of NaCl deposite at 800℃. Materials Chemistry and Physics, 2005, 94(1):125~130
    [58] Aml Raj I. and Vasu K. I.. Transition metal-based hydrogen electrodes in alkaline solution-electrocatalysis on nickel based binary alloy coatings. J. Appl. Electrochem, 1990, 20(1) : 32~38
    [59] 查全性.电极过程动力学导论.北京:科学出版社,2002:244~257
    [60] Plzak V., Rohland B., Wendt H. Conway BE et al. Modem aspects of electrochemistry. New York: Plenum Press, 1994. 105
    [61] Suffredini H. B., Ceme J. L., Crnkovic f. C. et al. Recent developments in electrode materials for water electrolysis. International Journal of Hydrogen energy, 2000, 25 : 415~423
    [62] Adriana N. Correia, Sergio A. S. Machado and Luis A. Avaca. Studies of the hydrogen evolution reaction on smooth Co and electrodeposited Ni-Co ultmmicroelectrodes. Electrochemistry Communications, 1999, 1 : 600~604
    [63] Ryu B. H., Yoon S. P., Han J. et al. In situ oxidation/Lithiation of Ni-Co alloy in the molten Li_(0.62)/K_(0.38) carbonates eutectics. Electrochemica Acta, 2004, 50:189~198
    [64] Boo Young Yang and Kyoo Young Kim. Electrochemical study of the oxidation behaviors of Ni and Ni-Co alloy electrodes in molten Li+K carbonate eutectic. Electrochimica Acta, 1998, 43 (21-22): 3343~3352
    [65] Kato.Kikuko and Ineto.Teruhiko. Hydrogen-absorbing alloy anodes and their manufacture. Jpn.Kokai Tokkyo Koho JP 10302790, 1998
    [66] 陈长聘,王春生.高性能贮氢电极合金.物理,1998,27(3):156~163
    [67] http://www.pep.com.cn/200410/ca539305.htm
    [68] Chi Bo, Yang Xiaozhan, Li Jianbao et al. Preparation of Ni-Co spinel oxide by alloy oxidation method. Engineering Materials, 2005,280-283 : 561~564
    [69] Ye Mao, Wei Jin-ping, Cao Xiaoyan et al. Synthesis of LiCoxNi_(1-x)O_2 cathode materials from electrolysis Co-Ni alloys. Trans. Nonferrous Met. Soc. China, 2005, 15(4): 784~788
    [70] 蔡虎.ZrO_2-Ni纳米复合粉末及材料的研究:[硕士学位论文].武汉:武汉理工大学,2002
    [71] 卡恩R.W..金属与合金工艺.北京:科学出版社,1999:144~146
    [72] Aymard L., Dumont B. and Viau G.. Production of Co-Ni alloys by mechanical-alloying. J. alloys Compd., 1996, 242 :108~113
    [73] 刘吉平和廖莉玲.无机纳米材料.北京:科学出版社,2004.118~120
    [74] 费多尔钦科 И.М.著.粉末冶金原理.北京:冶金工业出版社,1974:55
    [75] 柴立元,彭超群等.微细镍粉制备技术的现状及展望.有色金属科学技术进展,长沙:中南工业大学出版社,1996:373~376
    [76] Verezub N. A., Nutsubiolge M. N.. Chemical Vapor transport of intermetallic systems: chemical transport of Co/Ni mixed crystals. Zeitschrift fuer Anorganische und Allgemeine Chemie, 1996, 622(1): 17~25
    [77] 王世敏,许祖勋,傅晶.纳米材料制备技术.北京:化学工业出版社,2002:17~19
    [78] Li X. G., Murai T., Chiba A. et al. Particle features, oxidation behaviors and magnetic properties of ultrafine particles of Ni-Co alloy prepared by hydrogen plasma metal reaction. Journal of Applied Physics, 1999, 86(4): 1867~1873
    [79] Shaft Kurikka V. P. M., Gedanken Aharon and Prozorov Ruslan. Sonochemical preparation and characterization of nanosized amorphous Co-Ni alloy powders. J. Mater. Chem., 1998, 8(3): 769~773
    [80] Shaft K. V. P. M., Gedanken A.. Sonochemical preparation of nanosized amorphous Fe-Ni alloys. J. Appl. Phys., 1997, 81(10):6901~6905
    [81] Gao Jinzhang, Guan Fei, Ma Yongjun et al. Preparation and characterization of Ni/Co bimetallic nanoclusters. Journal of University of science and Technology, 2003, 10(4): 46~49
    [82] 张楠,翟秀静,翟玉春.纳米Ni-Co合金粉末的溶液还原法制备与表征.中国有色金属学报,1998,8(s2):39~42
    [83] Li Y. D., Li L. O., Liao H.W. et al. Preoaration of pure nickel, cobalt, nickel-cobalt and nickel-copper alloys by hydrothermal reduction. J. Mater. Chem., 1999, (9): 2675~2677
    [84] Viau G.., Ravel F., Acher O. et al. Preparation and microwave charaterization of spherical and monodisperse Co-Ni particles. J. Magn. Magn.Mater., 1995,144: 377~380
    [85] Viau G, Fievet-Vincent F. and Fievet F.. Nucleation and growth of bimetallic CoNi and FeNi monodisperse particles prepared in polyols. Solid State Ionies, 1996, 84(4): 259~270
    [86] Saravanan P., Jose T. A., John Thomas P. et al. Submieron of Co, Ni and Co-Ni alloys. Bull. Mater. Sci., 2001, 24(5):515~521
    [87] 余洪斌,聂彦,赵振声等.多元醇还原法制备Co-Ni和Fe-Co-Ni磁粉.信息记录材料,2002,3(1):14-16
    [88] 梁燕萍,史启祯,吴振森等.模板法合成Co纳米线有序阵列的偏光特性.无机化学学报,2003,19(4):391~395
    [89] 朱浩,杨绍光,锁志勇等.金属Ni纳米线阵列的制备及其磁性能.物理学报,1999,48:S110~S115
    [90] 葛世慧,黎超,马骁等.外加磁场对Co纳米线生长过程的影响.物理学报,2001,50(1):149~151
    [91] Khan H. R., Petrikowski K. J.. Anisotropic structural and magnetic properties of arrays of Fe_(26)Ni_(74) nanowires electrodeposited in the pores of anodic alumina. J. Magn. Magn. Mater., 2000, 215-216:526~528
    [92] Correia A. N., Machado S. A. S.. Electrodeposition and characterization of thin layers of Ni-Co alloys obtained from dilute chloride baths. Electrochimica Acta, 2000, 45:1733~1740
    [93] 封万起,王建宇,张义程等.由氨基磺酸盐和硫酸盐电解液电沉积Ni-Co合金的对比研究.电镀与精饰,1996,18(2):4~8
    [94] 徐国财,张立德.纳米复合材料.北京:化学工业出版社,2002:53~54
    [95] 李维,赵秦生.共沉淀法制备硬质合金用微细球形Ni-Co合金粉末的研究.粉末冶金技术,1998,16(1):33~35
    [96] 谭映国,刘卓然.硬质合金用Ni/Co复合粉末的研究.有色冶炼,1998,(2):43~45
    [97] 船津 英司,上田聡弘..合金粉末 制造方法.日本专利,特平4—358010,1992
    [98] 张传福,吴琳琳,黎昌俊等.纤维状镍钴合金粉的制备.中国有色金属学报,2002,12(1):182~185
    [99] 吴越.催化化学(下册).北京:科学出版社,2000:685~686
    [100] WestA.R..固体化学及其应用,(苏勉曾,谢高阳,申泮文等译).上海:复旦大学出版社,1989
    [101] http://www.techfak.uni-kiel.de/matwis/amat/def_en/kap_2
    [102] Marco J. F., Gancedo J. R., Gracia M. et al. Characterization of the Nickel Cobaltite, NiCo_2O_4, Prepared by several methods: an XRD, ANES, EXAFS, and XPS study. J. Solid State Chemistry, 2000,153:74~81
    [103] Klissurski D. G. and Uzunova. A comparative study of the thermal stability of nickel, copper and zinc spinel cobaltites. Thermochimica Acta, 1991,189:143~149
    [104] Trasatti S.. Electrodes of conductive metallic oxides: part A.. Amsterdam: Elsevier, 1980, 221:5
    [105] 陈敏,罗孟飞,袁贤鑫.钾对镍—钴复合氧化物催化剂表面状态及电子性能的影响.科技通报,1998,14(2):84~87
    [106] Papadatos K. and Shelstad K. A.. Catalyst screening using a stone DTA apparatus: Ⅰ. Oxidation of toluene over cobalt-metal-oxide catalysts. J Catal., 1973, 28(1):116~123
    [107] 董文生,王心葵,彭少逸.尖晶石的性质、制备及在催化中的应用.石油化工高等学校学报,1996,9(4):10~14
    [108] Panayotov D.and Mehandjiev D.. Surface state and activity of CuCo_2O_4 during the reduction of nitric oxide with carbon monoxide. Appl. Catal., 1987,34:65~76
    [109] 胡吉明,张鉴清,王建明等.金属及活性氧化物表面的析氧电催化活性.功能材料,2002,33(4):363~365
    [110] 王鹏,姚力广,王明贤等.La_(1-x)Sr_xCoO_3钙钛矿在碱性溶液中的析氧电催化.催化学报,2000,21(1):23~26
    [111] Trasatti S.. Electrodes of conductive metallic oxides: part B. Studies in Physical and Theoretical Chemistry. Journal of electroanalytical chemistry, 1982, 136(2):371~374
    [112] Singh R. N., Hamdani M., Koeing J.F. et al. Thin films of Co_3O_4 and NiCo_2O_4 obtained by the method of chemical spray pyrolysis for electrocatalysis Ⅲ. The electrocatalysis of oxygen evolution. J. Appl. Electrochem., 1990, 20(3):442~446
    [113] Boggio R., Carugati A., Trasatti S.. Electrochemical surface properties of CO_3O_4 electrodes. J. Appl. Electrochem., 1987, 17(4):828~840
    [114] 陈敏,罗孟飞,袁贤鑫.制备因素对Ni-Co-O复合氧化物结构及氧化活性的影响.化学研究与应用,1997,9(3):230~234
    [115] Nkeng P., Koening J. F., Gautier J. L. et al. Enhancement of surface areas of Co_3O_4 and NiCo_2O_4 electrocatalysts prepared by spray pyrolysis. Journal of Electroanalytical Chemistry, 1996, 402 : 81~89
    [116] Kim J. G., Pugmire D .L., Battaglia D. et al. Analysis of the NiCo_2O_4 spinel surface with Auger and X-ray photoelectron spectroscopy. Applied surface Science, 2000, 165 : 70~84
    [117] Mustapha EI Baydi, Shashi Kant Tiwari, Ravindra Nath Singh et al. High Specific surface area nickel mixed oxide powder LaNiO_3(Perovskite) and NiCo_2O_4(Spinel) via Sol-Gel Type routes for oxygen electrocatalysis in alkaline media. Journal of solid state chemistry, 1995, 116:157~169
    [118] Singh R.N., Pandey J.P., Singh N.K et al. Sol-gel derived spinel M_xCo_(3-x)O_4 (M=Ni, Cu; 0≤x≤1) films and oxygen evolution. Electrochmica Acta, 2000, 45: 1911~1919.
    [119] 武刚,李宁,戴长松等.阳极电沉积Co-Ni混合氧化物在碱性介质中的电催化析氧性能.催化学报,2004,25(4):319~325
    [120] Kissurski D. G. and Uzunova E. L.. Synthesis of nickel cobalt spinel from coprecipitated nickel-cobalt hydroxide carbonate. Chem.Mater., 1991,3: 1060~1063
    [121] Mehandjiev D. and Nikolova-Zhecheva E.. A magnetic study of the formation ofNiCo_2O_4. Thermochim. Acta, 1981, 51 : 343~351
    [122] Markov L. and Petrov K.. Nickel-cobalt oxides spinels prepared by thermal decomposition of nickel-cobalt hydroxide nitrate. React. Solids, 1986, 1 : 319~327
    [123] 张克立,袁继兵,朱高锋等.由草酸盐先驱物制备尖晶石型化合物M_2CoO_4.武汉大学学报,1997,3(4):428~432
    [124] Bo Chi, Li Jian-Bao, Han Yong-Sheng et al. Effect of precipitation on preparation of Ni-Co spinel oxide by coprecipition method. Materials Letters, 2004, 58: 1415~1418
    [125] Peshev P., Toshev A., Gyurov G. Preparation ofhigh-dispersity MCo_2O_4 (M=Mg, Ni, Zn) spinels by thermal dissociation of coprecipitated oxalates. Mat. Res. Bull., 1989, 24:33~40
    [126] 张克立,袁继斌,孙聚堂.用草酸胍制备钴酸盐尖晶石.无机化学学报,1997,13(3):336~339
    [127] Vidyasagar K., Gopalakrishnan J., Rao C. N. R.._A convenient route for the synthesis of complex metal oxides employing solid-solution precursors. Inorg. Chem., 1984, 23(9): 1206~1210
    [128] Guan Hongyu, Shao Changlu, Liu Yichun et al. Fabrication of NiCo_2O_4 nanofibers by electrospinning. Solid state communications, 2004, 131 : 107~109
    [129] 陆厚根.粉体技术导论.上海:同济大学出版社,1998:15~23
    [130] 路庆华,田弘.新型导电胶的研究(Ⅱ).功能材料,1997,28(5):546~549
    [131] 陈利民,朱雪琴,葛副鼎等.纳米γ-(Fe,Ni)合金颗粒的微观结构及其微波吸收特性.微波学报,1999,15(4):312~316
    [132] Adair J. H., Suvaci E.. Morphological Control of Particles. Curr. Opin. Colloid. Interf. Sci., 2000, 5(1-2): 160~167
    [133] Bradley J. S., Tesche B., Busser W. et al. Surface spectroscopic study of the stabilization mechanism for shape-selectively synthesized nanostructured transition metal colloids. J. Am. Chem. Soc., 2000,122:4631~4636
    [134] Goia D. V., Matijevie E.. Preparation of monodispersed metal particles. New J.Chem.1998, 22(11): 1203~1215
    [135] 符小艺,王远,吴念祖等.铂胶体粒子的形貌控制研究.化学学报,2002,60(7):1324~1330
    [136] 吕仁江.模板法制备纳米线阵列:[硕士学位论文].兰州:西北师范大学,2004
    [137] 姜国伟,姚连增,晋传贵等.Fe-Co-Ni合金纳米线有序阵列的模板合成与磁性.物理化学学报,2003,19(7):597~600
    [138] PileniM. P., Ninham B.W., Gulik-Krzywicki T., et al. Direct relationship between shape and size of template and synthesis of copper metal particles. Adv. Mater., 1999, 11 (16): 1358~1362
    [139] Sun Y., Gates B., Mayers B., et al. Crystalline silver nanowires by soft solution processing. NanoLett., 2002, 2(2):165~168
    [140] 徐建,李亚栋.单晶Pb纳米线及纳米粒子的溶液法制备.高等学校化学学报,2004,25(4):595~597
    [141] Mo Xiao, Wang Gguiying. A novel ultraviolet-irradiation route to CdS nanocrystallities with different morphplogies. Mater.Res.Bulletin, 2001, 36:2277~2282
    [142] Ahmadi T. S., Wang Z. L., Green T. C., et al. Shape-controlled synthesis of colloidal platinum nanoparticles. Science, 1996, 272:1924~1126
    [143] Petroski J. M., Green T. C., El-Sayed. Self-assembly of platinum nano particles of various size and shape. J. Phys. Chem (A), 2001, 105 : 5542~5547.
    [144] 张传福,湛菁,长谷川良佑,等.超声波喷雾液相还原法制备超细镍粉.矿冶工程,2001,21(23):48~51
    [145] 刘雪宁,杨治中,唐康泰等.高分子模板法合成特殊形态的氧化锌纳米结构材料.化学通报,2000,11:46~49
    [146] Whetten Robert L., Khoury Joseph T., Alvarez Marcos M., et al. Nanocrystal gold molecules. Adv. Mater., 1996, 8(5) :428~433
    [147] 曾京辉,曾柯兴.金属磁粉合成进展.信息记录材料,1999,(3):1~5
    [148] 邬建辉.特种镍粉制备新方法研究:[博士学位论文].长沙:中南大学,2004
    [149] Ishikawa T., Matijevic E.. Formation of uniform particles of cobalt compounds and cobalt. Colloid. Polym. Sci., 1991, (269): 179~186
    [150] 陈松.湿法制备单分散Co_3O_4粉末的形貌和粒度控制研究:[博士学位论文].长沙:中南大学,2004
    [151] Zhang Chuanfu, Zhanjing, Wu Jianhui et al.Preparation and characterization of NiO fibres by thermal decomposition of nickelous complex precipitation precursors. Trans. Nonferrous Met. Soc. China, 2004, 14(4):713~717.
    [152] 全学军,李大成.草酸络合物沉淀法制备钛酸钡超细粉末的研究.四川大学学报(工程科学版),2001,33(4):78~81
    [153] Li Songli, Guo Ruisong, Li Jinyou, et al. Synthesis of NiO-ZrO_2 powders for solid oxide fuel cells[J]. Ceramics Intemational, 2003, 29(8): 883~886
    [154] 陈建峰.混合反应过程的理论和实验研究:[博士学位论文].杭州:浙江大学化工系,1992
    [155] 李继光,孙旭东,茹如强等.湿化学合成单分散陶瓷超微粉体的基本原理.功能材料,1997,28(4):333~336
    [156] Matijevic Egon. Mono-dispersed inorganic colloids: achievements and problems. Pure&Appl. Chem, 1992, 64(11): 1703~1707
    [157] Matijevic Egon. Colloid science of ceramic powders. Pure&Appl.Chem, 1988, 60(10): 1479~1491
    [158] Kratohvil Stanka and Matihevic Egon. Preparation of copper compounds of different compositions and particle morphologies. J. Mater. Res., 1991, 6(4): 766~777
    [159] Matijevi c Egon. Preparation and properties of uniform size colloids. Chem. Mater, 1993, (5):412~426
    [160] Matijevic Egon. Production of monodispersed colloidal particles. Ann. Rev. Mater .Sci., 1985, 15 : 483~516
    [161] Matijevic Egon. Preartion and properities of monodispersed metal hydrous oxides. Pure & Appl. Chem, 1988, 50:1193~1210
    [162] Matijevic Egon. The role of chemical complexing in the formation and stability of colloidal dispersions. J. Colloid and surface Sci., 1977, 58(2): 374~389
    [163] 仲维卓.人工水晶(第二版).北京:科学出版社,1994
    [164] 仲维卓.晶体生长形态学.北京:科学出版社,1999
    [165] 林树昌.溶液平衡.北京:北京师范大学出版社,1993.302~426
    [166] 张祥麟,康衡.配位化学平衡.长沙:中南工业大学出版社,1986.101
    [167] 傅崇说.有色冶金应用基础研究.北京:科学出版社,1993,12
    [168] DEAN J. A.. Lange's Handbook ofChemistry(兰氏化学手册).北京:科学出版社,1985.9~17,9~36
    [169] 梁英教.无机物热力学数据手册.沈阳:东北大学出版社,1993,
    [170] 姚兆斌等编.物理化学手册.上海:上海科技出版社,1985:813
    [171] 刘海霞.化学位图软件系统的开发与研究:[博士学位论文].长沙:中南工业大学,1999
    [172] Lamer V. K. and Dineger R. H.. Theory production and mechanism of formation of monodispersed hydrosols. J. Am .Ceram. Soc., 1950, 72:4847
    [173] Sugimoto T.. Preparation ofmonodispersed colloidal particles. Adv. In Colloid &Interface Sci., 1987, 28 : 65~108
    [174] 郑忠.胶体化学导论.北京:高等教育出版社,1989,78~80
    [175] 胡黎明,古宏晨.化学工程的前沿—超细粉末的制备.化工进展,1996,(2):1~7
    [176] 曹茂盛.超细颗粒制备科学与技术.哈尔滨:哈尔滨工业大学出版社,1995,10~14
    [177] 顾艳芳,胡黎明.沉淀过程中超细颗粒的凝并与生长模型.华东化工学院学报,1992,18(4):551~554
    [178] 黄锡文,葛庆仁.超细铜粉制备工艺过程中的粒度分布行为研究.化学反应工程与工艺,1996,12(4):419~423
    [179] 李春花,娄彦良.PH值对ZrO_2粉体的收得率、晶体结构和粒度的影响.功能材料,2000,31(2):219~222
    [180] 娄彦良,李春花,李元科.溶胶共沉淀法过程pH值的确定.功能材料,2001,32(3):317~318
    [181] 李洪桂.湿法冶金学.长沙:中南工业大学出版社,1998:198
    [182] 徐华蕊,李凤生.沉淀法制备纳米级粒子的研究—化学原理及影响因素.化工进展,1996,(5):29~31,57
    [183] Kaliszewski M. S. and Heuer A. H.. Alcohol interaction with zirconia powders. J. Am. Ceram. Soc., 1990, 73(4): 1504~1509
    [184] Shaw William H. R., Bordeaux John J.. The Decomposition of Urea in Aqueous Media. J. Am. Chem. Soc., 1995, 77(18): 4729-4733
    [185] Pampach R., Haberkc K.. Ceramic powders. Amsterdam:Elsevier Scientific Pub. Company, 1983 : 623
    [186] 葛荣德,赵天从.氧化锆超细粉未二次团聚状态的控制.中南矿冶学院学报,1993,24(2):199~205
    [187] Scheret G. W.. Drying gels (Ⅰ):General Theory. Nonocryst solids. 1986, 87 (1-2): 199~225
    [188] Maskra A. Agglomeration during the drying of fine silica powders. Part Ⅰ. The role particle solubility. J Am. Ceram. Soc., 1997, 80(7): 1715~1722
    [189] Jones S. L. and Norman C. J.. Dehydration of hydrous zirconia with methanol. J. Am. Ceram Soc, 1988, 71(4):c-190~c-191.
    [190] Rolf Wasche, Makio Naito, Vincent A. Hackley. Experimental study on zeta potential and streaming potential of advanced ceramic powders. Powder Technology, 2002, 123 : 275~281
    [191] Hunter R. J.. Zeta potential in colloid science. London: Academic Press, 1981:69~72
    [192] 王连洲,范福康.pH值对化学共沉淀法制备SrTiO_3粉末性能的影响.硅酸盐学报,1999,(1):3~8
    [193] Zhou Rongcan, Jiang Yuqi, Liang Yong, et al. Dispersion behaviour of laser-synthesized nanometric SiC powders in aqueous medium with ammonium polyacrylate. Ceramics intemational, 2002, (28): 847~853
    [194] 栾伟玲,高濂,郭景坤.纳米粉体干燥方法的研究.无机材料学报,2000,15(6):1097~1101
    [195] 宁桂玲,吕秉玲.纳米颗粒的干燥及其研究进展.化工进展,1996,(5):22~25,
    [196] 曹爱红.微波干燥制备Al_2O_3纳米粉体的研究.天津工业大学学报,2002,21(4):25~27
    [197] Coble R L.. Sitering Crystalline solids. Intermediate and final state diffusion models. J. Appl. Phys. 1961, 32(5): 787~792
    [198] 郭建成,林敏聪.3d过渡金属超薄膜及其合金之磁性.台湾物理双月刊,2000,22(6):563~569
    [199] Heller-Ling N., Prestat M., Gautier J.-L. et al. Oxygen electroreduction mechanism at thin Ni_xCo_(3.x)O_4 spinel films in a double channel electrode flow cell(DCEFC). Electrochimica Acta, 1997, 42(2): 197~202
    [200] Nydegger M. W., Couderc G., Langell M. A.. Surface composition of Co_xNi_(1-x)O solid solutions by X ray photoelectron and Auger spectroscopies. Applied Surface Science, 1999,147:58~66
    [201] Wu Jianhui, Zhang Chuan-fu, Zhan Jing, et al. Precursor synthesis of fibrillar Nano-crystalline nickel powders. TMS Annual Meeting, EPD CONGRESS 2005, San Francisco, USA, p.375~383
    [202] Zhang Chuanfu, Zhan Jing, Wu Jianhui, et al. Preparation of fibrous Ni-Co alloy precursor particles by modified co-precipitation method. TMS Annual Meeting, EPD CONGRESS 2005, San Francisco, USA, p.231~244.
    [203] Zhang Chuanfu, Zhan Jing, Wu Jianhui, et al. Preparation and characterization of fibrous Ni-Co alloy powders by thermal decomposition of solid solutions of complex Ni-Co oxalates. TMS Annual Meeting, EPD CONGRESS 2005, San Francisco, USA, p.289~302.
    [204] 吴琳琳.纤维状镍钴合金粉末的制备新方法:[硕士学位论文].长沙:中南大学,2001
    [205] 张传福,邬建辉,黎昌俊等.一种纤维状镍粉制备的制备方法.专利号:ZL02147655.1,2005-6-15
    [206] 陈镜泓,李传儒.热分析及其应用.北京:科学出版社,1985,179~180
    [207] 张克从,张乐漶.晶体生长科学与技术.北京:科学出版社,1997,188~195
    [208] 毛传斌,杜泽华,周濂.共沉淀法制备Bi系超导体原始粉末的热力学分析.稀有金属材料与工程,1996,25(2):10~16
    [209] 李承恩,薛军民,殷文之等.功能陶瓷粉体制备液相包裹技术的理论基础与应用.上海:上海科学出版社,1997
    [210] Moon Y. T., Park H. K. Kin D.K. et al. Preparation of monodisperse and spherical zirconia powders by heating of alcohol-aqueous salt solutions. J. Am. Ceram.Soc., 1995, 78 : 2690~2694
    [211] Zhang Chuanfu, Zhan Jing, Guo Xueyi, et al. Preparation of fibrous nickel oxide particles by the method of chemical precipitation and pyrolysis. 2003 TMS , aqueous and electrochemical processing V, 417~428,
    [212] Zhang Chuanfu, Zhan Jing, Wu Jianhui, et al. Preparation of fibrious nickel oxide particles. Trans. Nonferrous Met. Soc. China, 2003, 13(6): 1440~1445
    [213] Wu Jianhui, Zhang Chuan-fu, Zhan Jing, et al. Preparation of fibrillar nanocrystalline nickel powder by precursor thermal decomposition. TMS Annual Meeting, EPD CONGRESS 2005, San Francisco, USA, p.473~483.
    [214] 高晋,王洪军.前驱物颗粒的形貌对钴粉形貌的影响.稀有金属与硬质合金,2002,30(2):15~18.27
    [215] 文德荣.草酸钻和氧化钴.江西冶金,1997,17(5):78~79
    [216] Tikkanen M. H., Taskinen A., Tsakinen P.. Characteristic properties of cobalt powder suitable for hard metal production. Powder metallurgy, 1975, 18(36): 259~283
    [217] Rawlings J. B., Miller S. M., Witkowski W. R.. Model identification and control solution crystallization process:a review. Industrial & Engineering Chemistry Research, 1993, 32 (7): 1275~1296
    [218] Jung Taesuing, Kim Woo-sik, Chang Kyun Choi. Crystal structure and morphology control of calcium oxalate using biopolymeric additives in crystallization. Journal of Crystal growth, 2005, 279(1-2): 1~9
    [219] Helmut Colfen. Precipitation of carbonates:recent progress in controlled production of complex shapes. Curren Opinion in Colloid and Interface science, 2003, 8:23~31
    [220] Adair James H., Suvaci Ender. Morphological control of particles. Current Opinion in Colloid &Interface science, 2000, 5:160~167
    [221] Bajley Joseph K., Jeffrey C., Mecartney Martha L.. Growth mechanisms of iron oxide particles of differing morphologes from the forced hydrolysis of ferric chloride solutions, Journal of colloid and interface science,2003,157:1~13
    [222] Sugimoto Tadao, Muramatsu Atsushi, Sakato Kazuo, et al. Characterization of Hematite particles of different shapes. Journal of colloid and interface science, 1993, 158: 420~428
    [223] 黄凯.可控缓释沉淀—热分解法制备超细氧化镍粉末的粒度和形貌控制研究:[博士学位论文].长沙:中南大学,2003:125~127
    [224] Haberko K., Ciesla A. and Pron A.. Sintering behavior of yttria-stabilized zirconia powder prepared from gels. Ceramurgia Int, 1975, 1 (3): 111~118
    [225] Haberko K.. Characteristics and sintering behavior of zirconia ultrafine powders. Ceramurgia Int, 1979, 5(4): 148~154
    [226] Suzuki T., Osaka S. and Aikawa N.. Micronized zirconia and method for producing thereof. Eur. Pat. Appl., 0171736A2, Feb. 19, 1986.
    [227] 尹邦跃.ZrO_2纳米粉末的制备及其复合陶瓷的力学性能和低温时效:[博士学位论文].长沙:中南工业大学,1999,33~62
    [228] 刘雪霆,许煜汾,范文元.共沸蒸馏法制备ZrO_2纳米晶微粉的研究.合 肥工业大学学报,1998,21(5):43~47
    [229] 仇海波,高濂,冯楚德等.纳米氧化锆粉体德共沸蒸馏法制备及研究.无机材料学报,1994,9(3):366~369
    [230] Garcia-clavel M. E., Martinez-lope M. J., Casais-alvarez M. T.. Thermal study of NiC_2O_4 ·H_2O obtained by solid state reaction at room temperature and normal pressure. Thermochimica Acta, 1987, 118: 123~134.
    [231] 孙尔康,吴琴媛,周以泉等.化学实验基础.南京:南京大学出版社,1991,392~399
    [232] Ingier-Stocka Ewa, Maciejewski Marek. Thermal decomposition of[Co(NH_3)_6]_2(C_2O_4)_3·4H_2O I. Identification of the solid products. Thermochimica Acta, 2000, 354:45~57
    [233] 印永嘉.物理化学简明手册.北京:高等教育出版社,1988,463~502
    [234] Gao X., Chen D., Dollimore D., et al. Identification of solid solutions of coprecipitated Ni-Co oxalates using XRD, TG and SEM techniques. Thermochimica Acta, 1993, 220: 75~89.
    [235] Panias D., TaxArchou M., Douni I., et al. Thermodynamic analysis of the reactions of iron oxides: dissolution in oxalic acid. Canadian Metallurgical Quarterly, 1996, 35(4): 363~373
    [236] Donia Ahmed. M., Dollimore David. Prepration, identification and thermal investigation of solid solution of cobalt-copper oxalates. Thermochimica Acta, 1996, 290:139~147
    [237] JCPDS No.25~582, No.25~250, No.01~0534
    [238] Jongen N., Bowen P., Lemaitre J., et al. Precipitation of self-organized copper oxalate polycrystalline particles in the presence of hydroxypropyl-methylcellulose (HPMC): control of morphology. J. Colloid Interface Sci., 2000, 226(1): 189~198.
    [239] Mielniczek-Brzoska E., Gielzak-Kocwin K., Sangwal K.. Effect of Cu(Ⅱ)ions on the growth of ammonium oxalate monohydrate crystal from aqueous solutions:growth kinetics, segregation coeffeicient and characterization of incorporation sites. J. Crystal Growth, 2000, 212:532~542
    [240] 苏勉曾.固体化学导论.北京:北京大学出版社,1986:48~56
    [241] Boris V. L' vov. Kinetics and mechanism of thermal decomposition of nickel, manganese,silver, mercury and lead oxalates. Thermochimica Acta, 2000, 364: 99~109
    [242] Jacobs P.W.M., Tariq-Kureishy A.R.. The thermal decomposition of nickel oxalate dehydrate. Trans. Faraday Soc., 1962, 58 : 551~560
    [243] Dollimore D., Griffiths D. L., Nicholson D.. The thermal decomposition of oxalates. Part Ⅱ. Thermogravimetic analysis of various oxalates in air and in nitrogen. J.Chem.Soc. 1963, (5):2617~2623.
    [244] Dollimore D.. The production of metal and alloys by the decomposition of oxysalts. Thermochimica Acta, 1991, 177: 59~75
    [245] Mohamed A. Mohamed, Andrew K. Galwey et al. Comparative study of the thermal reactivities of some transition metal oxalates in selected atmospheres. Thermochimica Acta, 2005, 429:57~72
    [246] 黄利伟.草酸钴分解机理的研究.有色金属(冶炼部分),2005(3):40~43
    [247] E.Wisgerhof and J.W.Geus. The precipitation and characterization of cobalt(Ⅱ)oxalate tetrahydrate. Mat. Res. Bull., 1983, 18:993~1000
    [248] E. Wisgerhof and J. W. Geus. Morphology and X-ray diffraction pattern of dehydrates ofcobalt(Ⅱ) oxalate. Mat. Res. Bull., 1984, 19:1591~1598
    [249] Patrick K. Gallagher. Applications of thermal analysis to the study of inorganic materials. Thermochimica acta, 1993, 21 : 1~7
    [250] Jordanovska V, Trojio R.. Synthesis R.. Synthesis, characterization and mode of thermal decomposition of oxalate complexes of cadmium (Ⅱ) and zinc (Ⅱ) with hydrazine, and cobalt (Ⅱ), nickel (Ⅱ) and copper(Ⅱ) with hydrazinium cation. ThermochimicaActa, 1995, 258: 205~217.
    [251] Ewa Ingier-Stocka, Marek Maciejewski. Thermal decomposition of[Co(NH_3)_6]_2(C_2O_4)_3·4H_2O. Ⅰ. dentification of the solid products. Thermochimica Acta, 2000, 354: 45~47
    [252] Nathalie Audebrand, Marie-Laure Vaillant, Jean-Paul Auffredic, et al. Synthesis, open-framework structure and thermal behabiour of ammonium tin oxalate, Sn_2(NH_4)_2(C_2O_4)_3·3H_2O. Solid State Scineces, 2001, 3:483~494
    [253] Tesfahun Kebede, Karri V. Ramana, M. S. Prasada Rao. Thermal decomposition of ammonium bis-oxalatodiaquaindate(Ⅲ). Thermochimica Acta, 2001, 371 : 163~168
    [254] Prasad R.. Mechanism and kinetics of thermal decomposition of ammoniacal complex of copper oxalate. Thermochimica Acta, 2003, 406: 99~104
    [255] 虞觉奇,易文质,陈邦迪编译.二元合金状态图集.上海:上海科学技术出版社,1987,1~55
    [256] 日本化学会编.无机固态反应[M].北京:科学出版社,1985,192
    [257] Spriggs G. E. and Prakash L.. Characterization problems with tungsten carbide and cobalt powders Powder Metallurgy, 1986, 29(2): 109~117
    [258] 邹序枚.钴粉制取过程的显微图像变化及其对WC-Co混合料均匀性的影响.稀有金属与硬质合金,1994,(6):10~16
    [259] 袁平.草酸钴沉淀工艺对钴粉粒度影响的研究.硬质合金,2001,18(1):12~15
    [260] 尹元根.多相催化剂的研究方法.北京:化学工业出版社,1988,134~169
    [261] 谷元.粉体表面改性技术及其应用.化工进展,1994,(1):33~40
    [262] 汪淋,曹鹏,熊翔.金属粉末稳定化处理研究.粉末冶金工业,1997,7(3):11~13
    [263] 吉田修二.铜系金属 银被膜 形成 方法.日本JP平3—2379,1991-01-08
    [264] 竹岛锐树,佐藤正树,家口佳久等.微细粒状黑奴粉末 制造方法.日本 JP01129710,1989-06-01
    [265] 间宫富士雄.金属的化学处理(刘文哲译)..北京:化学工业出版社,1987:25~47
    [266] 表面处理编写组.表面处理(下).北京:国防工业出版社,1973,91~107
    [267] 刘培生,李铁藩,傅超等.多孔金属材料的应用.功能材料,2001,32(1):12~15
    [268] 严继民,张启元,高敬宗.吸附与凝聚(固体的表面与孔)[M].第二版,北京:科学出版社,1986,113~114
    [269] 吉林大学化学系编.催化作用基础[M].北京:科学出版社,1980:17~18
    [270] Chow G. M., Ding J., Zhang J., et al. Magnetic and hardness properties of nano- structured Ni-Co films deposited by a nonaqueous electroless method. Appl. Phys. Lett., 1999, 74(13):1889~1991
    [271] Grim S. O., Matienzo L. J., and Swartz W. E.. Electron Spectroscopy for Chemical Analysis of Nickel Compounds. J. Am. Chem. Soc., 1972, 4:116~120.
    [272] 杨仕清,张怀武,刘颖力等.纳米级垂直磁记录材料BaFe_(12)O_(19)和Ba(CoTi)xFe_(12-2x)O_(19)的制各和磁性能研究.仪器仪表学报,1996,17(1):147~149
    [273] Viau G.., Fievet-Vincent F., Fievet F. et al. Size dependence of microwave permeability of spherical ferromagnetic particles. J. Appl. Phys., 1997, 81(6): 2749~2754
    [274] 李海霞,李大光,李铁虎等.纳米复合氧化物催化剂研究进展.无机盐工业.2004,36(7):1~4
    [275] 汪信,陆路德.纳米金属氧化物的制备及应用研究的若干进展.无机化学学报,2000,16(2):213~217
    [276] 周东祥,吕文中,龚树萍.复合氧化物电子功能陶瓷的现状与展望.功能材料,1994,25(3):193~196
    [277] Singer J. Fielder W. L. Corrosion testing of candidates for the alkaline fuel cell cathode. J. Power Sources, 1990, 29:(3-4): 443~450
    [278] De Faria L. A., Prestat M., Koening J. F. et al. Surface properties of Ni+Co mixed oxides: a study by X -rays ,XPS, BET, and PZC. Electrochimica Acta, 1998, 44: 181~189.
    [279] Bocca C., Barbucci A., Deluchi M. et al. Nickel-cobalt oxide-coated electrode: influence of the preparation technique on oxygen evolution reaction (OER)in an alkaline solution. International Journal of hydrogen energy,1999, 24:21~26
    [280] Lefez B., Nkeng P., Lopitaux J. et al. Characterization of cobalt spinels by reflectance spectroscopy. Materials Research Bullrtin, 1996, 31 (10): 1263~1267
    [281] 米纳切夫X.M.,安托辛Г.B.,西比诺E.C..光电子能谱及其在催化中的应用.北京:烃加工出版社,1987,39~117
    [282] Pyke D., Mallick K. K., Reynolds R. et al. Surface and bulk phases in substituted cobalt oxide spinels. J. Mater. Chem., 1998, 8(4): 1095~1098
    [283] Briggs D., Seah M. P.. Practical Surface Analysis. Wiley New York, 1990.
    [284] 黄惠忠.论表面分析及其在材料研究中的应用.科学技术文献出版社,2001
    [285] Fierro J. I. G., Fierro J. C.G, Tejuca L.G. et al. Non-stoichiometric surface behaviour of LaMO_3 oxides as evidenced by XPS. Appl. Surface Science, 1987, 27(4):453~457
    [286] 胡大为,吴争鸣,李凡等.从煤的表面特性研究煤燃烧过程.煤炭转化,1998,21(3):7~13
    [287] De Boer J. H.. The structure and properties of porous materials. London: Butterorths, 1958:105~210

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700