用户名: 密码: 验证码:
可控缓释沉淀-热分解法制备超细氧化镍粉末的粒度与形貌控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超细氧化镍粉末的粒度和形貌特征是决定其性能和附加值的关键指标,在粉末制备过程中应严格加以控制。由于湿法沉淀-热分解制粉过程的复杂性,要实现对粉末粒度和形貌的精确控制与预测尚有许多困难。为此,本研究在综合评述国内外有关研究方法、理论进展和发展趋势的基础上,分析和探讨了引起湿法沉淀制粉过程复杂性和不稳定性的原因,提出了采用可控缓释沉淀方法来改善这一难题的基本思路。本研究选择和设计了三种可控缓释沉淀体系,即Ni(Ⅱ)-CO(NH_2)_2-H_2O体系、Ni(Ⅱ)-NH_3-CO_3~(2-)-H_2O体系和Ni(Ⅱ)-NH_3-C_2O_4~(2-)-H_2O体系来制备具有各种形貌的超细氧化镍粉末的前驱体粒子,并对后续的干燥和热分解过程进行了详细研究,探讨了这些后处理工序对沉淀粉末粒度与形貌特征进行良好继承和保持的有效方法。
     在对Ni(Ⅱ)-CO(NH_2)2-H_2O均匀沉淀体系进行研究的过程中,将化学模式识别技术成功应用于制粉领域并实现了对粉末粒度和形貌的预测与离线控制,并为定量化比较各种工艺因素对粉体诸多特征的影响程度提供了一种普适有效的方法。运用该技术可将均匀沉淀实验的数据信息以直观、形象的图形形式可视化表达出来。依据该图形可方便地了解均匀沉淀过程中产物粒子按团聚性、粒度及其分布、单分散性等特征分类的工艺控制区域,并找出了对粉末粒度和形貌特征进行分类控制和预测的半经验性数学模型。据此模型,定量化地计算出了各种工艺参数对粒子的分散性、粒度及其分布特征的影响大小。数学模型分析的结果同实验现象符合,并有效地指导了沉淀工艺条件的优化设计。结合实验观测的结果,综合分析和比较了影响体系总界面能的各种可能的作用机制,在此基础上对La Mer模型进行了改进和补充,从而提出了符合Ni(Ⅱ)-CO(NH_2)_2-H_2O均匀沉淀过程的“成核-聚集生长-分子扩散生长”的竞争生长机理模型,并重点分析和阐述了主要工艺条件对粒子带电行为和聚集生长模式的影响规律。本部分的研究方法和结果可以指导制备出粒度位于亚微米到数个微米尺度范围内的均一、分散的球形氧化镍前驱体粒子。
     在Ni(Ⅱ)-NH_3-CO_3~(2-)-H_2O沉淀体系的研究中,首先根据同时平衡和质量平衡的原理,推导出该复杂体系热力学平衡的数学模型,绘制
    
    中南人学博十学位论文
    摘要
    出了该体系的一系列lg困i]T一pH平衡图,研究了NH3配位体及pH值
    对该平衡体系的影响。依据平衡图,有效地指导了直接沉淀和配合沉
    淀工艺路线的确定及实验方案的设计,制备出了疏松絮凝状、密实粒
    状、均匀分散圆片状的三种典型形貌特征的粒子。溶液中氨浓度和
    pH对这三种形貌的粒子形成至关重要。pH较低时(<7.0),水合镍
    离子及1、2级氨镍配合离子是溶液中镍的主要存在形式,快速聚集
    是沉淀粒子长大的主要方式,容易得到絮凝状粉体,此时可利用“自
    保”现象来控制粉体粒度的分布在一定范围;随着pH的升高(>7.0),
    高级数氨镍配合离子成为镍的主要存在形式,氨镍配合物逐渐离解成
    低级数的氨镍配合离子或形成Ni2+,与cO32一、OH一结合形成沉淀,
    即配合沉淀,此时缓慢结晶生长是粒子的主要长大方式,通过选择合
    适的分散剂和加料工艺可制得均匀片状或球形的粒子。
     在Ni(ll)一NH3一c2042一H20沉淀体系的研究中,首次计算并绘制出
    了考虑草酸根与镍离子配合作用在内的该复杂体系的19困i]T一pH平衡
    图,研究了NH3配位体及pH值对该平衡体系的影响。运用该热力学
    平衡图,指导和设计了直接沉淀和复合盐沉淀的工艺路线及实验方
    案,分别制取出了以长方体和针状为基本形貌的粒子,并发现这两种
    粒子的形成跟溶液中氨镍配合离子的存在形式密切相关。pH较低时
    (<8.0),水合镍离子及1、2级氨镍配合离子是镍的主要存在形式,
    主要的沉淀反应式为:Ni2++CZo广+ZHZo分Nic204·2H20毒,该组
    成的粒子呈结晶状的长方体或团聚成类球形;pH较高时(>8.0),这
    些低级数配合物的浓度下降,而3一6级氨镍配合离子的浓度则逐渐升
    高,成为镍的主要存在形式,氨镍配合物会与C2042一直接形成复合盐
    沉淀粒子,主要的沉淀反应式为:Ni(NH3厂十十C2042一十H20分
    N电NH3)nJ C 204·HZo毒,该组成的粒子呈细长针状。分析其内在原因
    在于金属草酸盐晶体分子是一个二维平面结构的片状分子。在垂直于
    该片状分子平面的方向,配合连接着两个水分子,这些分子可以进一
    步构成长链,这些长链又按照一定的规则形成针状的晶体粒子。
     针对传统的正丁醇共沸蒸馏脱水过程中存在的室温下湿粉末不
    浸润、难以分散悬浮和容易粘结的缺点,本研究提出了两条改进的思
    路:一条是选用乙醇对湿粉末先进行表面改性,使之能够与正丁醇浸
    润;第二条是选用乙醇直接与湿粉末混合后加热脱水。两种脱水方法
    的机理有所不同,乙醇沸煮脱水主要是通过乙醇分子渗透进入湿粉末
    中,把其中的水分置换出来,置换出来的水分仍留在乙醇的主体溶剂
    
    中南大学博十学位论文
    摘要
    中;而后者共沸蒸馏,则是通过正丁醇与水形成二元共沸体系,水分
    以共沸物的形式被挥发带离出整个悬浮液体系。实验结果表明,这两
    种改进方法均获得了比传统的共沸脱水工艺更理想的处理效果。
The size, size distribution and morphology are key to the properties and added-value of ultra-fine NiO particles, and should be controlled strictly in the process of preparation. Because of the complexity of the process, it was still difficult to control and predict the particle size and morphology precisely. Based on the review of the recent advance of research on this issue, the essence of the complexity and unstability of the preparation process was analyzed and the controlled-release precipitation was put forward to solve this problem. Three solution systems of Ni(II)-CO(NH2)2-H2O, Ni(II)-NH3-CO32--H2O, Ni(II)-NH3-C2O42--H2O were designed and applied to prepare ultra-fine NiO precursor particles with different morphologies. Study on drying and calcination of the precipitated particles was also done, and the appropriate techniques of preserving the size and morphology of the precipitated particles during drying and calcination were developed.
    In the solution system of Ni(II)-CO(NH2)2-H2O, mono-dispersed spherical NiO precursor particles were prepared by homogeneous precipitation. Based on the chemical pattern recognition technique, the semi-experienced mathematic model was deduced by analyzing the experimental data, which could be well used to predict the size & dispersity of the precipitated particles obtained under different conditions
    
    
    
    
    and calculate the effect degree of the process parameters on the characteristics of the produced particles quantitatively. By this technique, the useful information contained in the experimental data can be visualized in the figures, in which the different classes of samples were divided distinctly into separate areas. The obtained model was proved to be useful for the optimum design of precipitation process effectively. From the point of view of total interface energy of the precipitation system, an improved La Mer model was proposed, which describes the process mechanism as "nucleation-aggregation-growth by molecular diffusion". The electro-kinetic behavior of the particles and its effect on the aggregation process were also studied to verify the suitability of the above-proposed model. In this chapter, by the aid of chemical pattern recognition, uniform spherical precursor particles ranged from several sub-micrometers to micrometers in average size can be prepared by homogeneous precipitation process.
    In chapter 3, based on the principles of simultaneous equilibrium and mass equilibrium, a series of thermodynamic equilibrium equations of the complex system of Ni(II)-NH3-CO32--H2O(T=298K) were deduced, and the equilibrium curves of lg[Ni]T~ pH were drawn, which indicated the equilibrium area and composites of the solutions at different ammonia compositions and pH. Under the guidance of these equilibrium diagrams, the appropriate precipitation process and experimental schemes were
    
    
    designed, and loose flocculation particles or dense particles and mono-dispersed flake particles were produced. It was found that ammonia concentration and pH were essentially important to formation of different kinds of particles. When pH was relatively low, i.e., <7.0, free Ni2+ and the 1 ,2-coordinated complexes of ammonia with nickel dominated in the solution, and in this case, when mixed with precipitant, the burst nucleation started and rapid coagulation was the dominant growth pattern for nano-sized particles, which led to the formation of loose flocculation particles, and thereby self-preservation phenomenon occurred, which was beneficial to keep the size distribution of the precipitated particles relatively stable. When pH was relatively high, i.e., >7.0, the 3~6-coordinated complexes of ammonia with nickel dominated in the solution and consequently these coordinated complexes should firstly decompose to slowly release the nickel ion as the ions source for precipitation. On this occasion, slow crystallization was the dominant growth pattern of the nuclei, which easily led to the formation of spherical or flake particles.
    In chapter 4, based on the similar calculation principles as
引文
[1] 李凤生.超细粉体技术.国防工业出版社,2000
    [2] 张立德,牟季美.纳米材料和纳米结构.科学出版社,2001
    [3] 严冬生,冯端.材料新星—纳米材料科学.湖南科学技术出版社,1998
    [4] 尹邦跃.纳米时代.中国轻工业出版社,2001
    [5] 舒万艮.有色金属精细化工产品生产与应用.长沙:中南工业大学出版社,1995:P211
    [6] 范福康,丘泰.功能陶瓷现状与发展动向.硅酸盐通报,1995(4):4
    [7] 董立峰,宋淑敏,董艳棠等.电弧等离子体法制备纳米Ce-NiO的气敏特性.功能材料,1997,28(3):307
    [8] 周根陶,周双生,刘双怀等.配位-沉淀法制备Ni(OH)_2和NiO超微粉.无机化学学报,1996,12(1):96
    [9] 朱诚意,刘中华,陈雯等.超微NiO粉体的制备及其应用现状.功能材料,1999,30(4):345
    [10] 王子忱,张丽华,李熙等.胶溶法制备NiO纳米晶热敏材料.高等学校化学报,1992,13(10):1287
    [11] 汪国忠,张立德,牟季美.纳米氧化镍微粉的制备及光吸收谱.物理化学学报,1997,13(5):445
    [12] 电子工业用氧化镍粉.中华人民共和国电子行业标准,SJ/T10677-1995
    [13] http://www.e-powder.com/nickel.htm
    [14] Victor A.E.INCO公司特种粉末产品介绍书,1998
    [15] 曹茂盛.超微颗粒制备科学与技术.哈尔滨工业大学出版社,1995,12
    [16] 黄兴东(译).国际镍业公司电池产品.有色冶炼,1998(2):25
    [17] 周根陶,刘双怀,郑永飞.沉淀转化法制备不同形状的氢氧化镍及氧化镍超微粉末的研究.无机化学学报,1997,13(1):43
    [18] 李亚栋,李成韦,郑化桂等.混合溶剂中纳米级NiO的制备及表征.高等学校化学学报,1997,18(12):1921
    [19] 李亚栋,郑化桂,李成韦等.中国专利,CN1112520A,1995
    [20] 方兆珩,马其,程兵等.从镍浸出液中制取氧化镍(碱式碳酸镍沉淀热分解法)研究报告.中国科学院化工冶金研究所,1995
    [21] V.Biju, M. Abdul Khadar. Analysis of AC electrical properties of nanocrystalline nickel oxide. Materials Science and Engineering A304-306 (2001) 814-817
    
    
    [22] 高荣杰,杜敏,陆小兰等.均相沉淀法制备Ni(OH)_2和NiO纳米晶.青岛海洋大学学报,1999(10):200
    [23] 郭学益,黄凯,张多默等.尿素均相沉淀法制备均分散氧化亚镍粉末(Ⅰ)-前驱体的制备研究.中南工业大学学报,1999,30(3):255
    [24] 郭学益,黄凯,张多默等.尿素均相沉淀法制备均分散氧化亚镍粉末(Ⅱ)-前驱体的热分解研究.中南工业大学学报,1999,30(4):378
    [25] Francesca P., Sandro R., Claudia B, et al. Synthesis and full characterization of nickel(Ⅱ) colloidal particles and their transformation into NiO. Colloids and Surfaces A: Physical and Engineering Aspects, 1999(155):395
    [26] Yun C.K, Seung B.P, and Yun W.K. Preparation of high surface area nanophase particles by low pressure spray pyrolysis. Nanostructured materials,1995,5(7/8)777
    [27] Akihiko O., Kenichi W., et al. Preparation of Ag-NiO composite powders by spray pyrolysis.资源素材, 2000, 116 (6) 527
    [28] Che S.L.,Takada K., et al. Preparation of dense spherical Ni particle and hollow NiO particle by spray pyrolysis. J. Mat. Sci., 1999(34) 1313
    [29] 胡黎明,古宏晨,李春忠.化学工程的前沿—超细粉末制备.化工进展,1996(2)1
    [30] 肖松文.湿法锑白的结构形貌控制机理及制备新工艺[长沙:中南工业大学博士论文]:1997,10
    [31] 古宏晨,胡黎明,陈军等.超细α-FeOOH制备过程研究Ⅰ.制备工艺.华东化工学院学报,1992,18(4)467
    [32] 古宏晨,陈军,郑柏存等.超细α-FeOOH制备过程研究Ⅱ.晶体生成与生长机理.华东化工学院学报,1992,18(4)472
    [33] 古宏晨,陈军,胡黎明等.超细α-FeOOH制备过程研究Ⅲ.制备过程的中试放大.华东化工学院学报,1992,18(4)475
    [34] 曾庆学.高密度高活性球形Ni(OH)_2的制备研究[长沙:中南工业大学硕士学位论文].1998,3
    [35] 古宏晨,李春忠,胡黎明.超细粉末及其制备技术进展.上海化工,1996,21(4)32
    [36] 丁绪淮,谈遒.工业结晶.高等教育出版社,1989
    [37] Randolph A.D., Larson M.A. Theory of particulate process, 2nd Edition. 1988 by Academic Press ,INC.
    
    
    [38] 周祖康,顾惕人,马季铭.胶体化学基础.北京大学出版社,1996
    [39] 沈钟,王果庭.胶体与表面化学.化学工业出版社,1997
    [40] Sugimoto T.Preparation of mono-dispersed colloidal particles. Adv. Colloidal&Interface Sci., 1987(28)65
    [41] 李继光,孙旭东,茹红强等.湿化学法合成单分散陶瓷超微粉体的基本原理.功能材料,1997,28(4)333
    [42] Rawlings J. B, Miller S. M, and Witkowski W.R. Model identification and control solution crystallization processes: a review. Ind. Eng.Chem.Res., 1993,32(7) 1275
    [43] 张克从,张乐惠.晶体生长科学与技术.科学出版社,1996
    [44] 仲维卓.人工水晶(第二版).科学出版社,1994
    [45] 仲维卓.晶体生长形态学.科学出版社,1999
    [46] 张济忠.分形.清华大学出版社,1995
    [47] Egon Matijevic.Mono-dispersed inorganic colloids:achievements and problems. Pure & Appl. Chem,1992,64(11)1703
    [48] Egon Matijevic.Colloid science of ceramic powders. Pure & Appl. Chem.1988,60(10)1479
    [49] Stanka Kratohvil and Egon Matijevic. Preparation of copper compounds of different compositions and particle morphologies. J. Mater. Res., 1991,6(4)766
    [50] Egon Matijevic. The world of fine particles. Chemtech March, 1991
    [51] Egon Matijevic. Production of mono-dispersed colloidal particles. Ann. Rev. Mater. Sci.,1985(15)483
    [52] Egon Matijevic.Preparation and properties of uniform size colloids. Chem. Mater,1993(5)412
    [53] Egon Matijevic.Preparation and characterization of mono-dispersed metal hydrous oxide sols. Progr. Colloid&Polymer Sci., 1976(61)24
    [54] Egon Matijevic. The role of chemical complexing in the formation and stability of colloidal dispersions. J Colloid and Surface Sci., 1977,58(2)375
    [55] 陆九芳,李总成,包铁竹.分离过程化学.北京:清华大学出版社,1993,P316
    [56] 祖庸,刘超锋,李晓娥等.均匀沉淀法合成纳米氧化锌.现代化工,1997(9)33
    [57] 胡晓力,尹虹,胡晓洪.用均匀沉淀法制备纳米TiO_2粉体.中国陶瓷,1997,33(4)5
    [58] 张近.均匀沉淀法制备纳米氧化镁的研究.功能材料,1999,30(2)193
    [59] 张明月,廖列文.均匀沉淀法制备纳米氧化物研究进展.化工装备技术,1999.30(2)193
    
    
    [60] 卫志贤,刘荣杰,郑岚.均匀沉淀法制备纳米氧化物工艺分析.西北大学学报(自然科学版),1998,28(5)407
    [61] Myung Jin Kim and Egon Matijevic. Preparation and characterization of uniform sub-micrometer metal niobate particles.Ⅰ. Lead niobate. J. Mater. Res., 1991,6(4)840
    [62] 古宏晨,胡黎明,陈敏恒等.超细Fe(OH)_2悬浮液氧化反应中氧传递速率.华东化工学院学报,1992,18(4)479
    [63] 车阿小,李春忠,汪忠柱.掺杂对酸法铁黄制备过程的影响.华东理工大学学报,1997,23(4)403
    [64] 蔡世银,车阿小,李春忠等.均匀纺锤形α-FeOOH微晶制备过程.华东理工大学学报,1997,23(2)298
    [65] 熊玉梅,周晓东,胡黎明.滴加法制备超细α-FeOOH的工艺过程研究.华东理工大学学报,1996,22(5)541
    [66] Kajiyama K, Nakamura T. Hydrothermal synthesis of β-FeO(OH) rod-like particles with uniform size distribution. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2000,163 (2-3)301
    [67] Lu C.H, Yeh C.H.Influence of hydrothermal conditions on the morphology and particle size of zinc oxide powder. Ceram International,2000,26(4)351
    [68] Xu H.R, Gao L. New evidence of a dissolution-precipitation mechanism in hydrothermal synthesis of barium titanate powders. Mater Lett., 2002,57(2)490
    [69] Zabicky J, Zingerman D, Shneck R, et al. Properties of nanostructured magnesium metatitanate prepared by the sol-gel technique. Nanostructured Materilas, 1996,7(5):527
    [70] Lu C.H, Tsai C.C. A new sol-gel route using inorganic salts for synthesizing barium magnesium tantalite ceramics. Mater. Lett., 1997,31(3-6)271
    [71] Purohit R.D, Saha S. Synthesis of magnesium dititanate by citrate gel route and its characterization. Ceram. International, 1999,25(5)475
    [72] Ding X.Z, Liu X.H. Synthesis and microstructure control of nano-crystalline titania powders via a sol-gel process. Mater. Sci. Eng:A 1997,224(1-2)210
    [73] Wang X.W., Zhang Z.Y., and Zhou S.X. Preparation of nano-crystalline SrTiO_3 powder in sol-gel process. Mater. Sci. Eng:B 2001,86(1)29
    [74] Li J.W., Tian J.M. and Dong L.M. Synthesis of SiC precursors by a two sol-gel process and their conversion to SiC powders. J Europ. Ceram. Soc., 2000,20(11)1853
    
    
    [75] Sugimoto T., Shimotsuma Y. and Itoh H. Synthesis of uniform cobalt ferrite particles from a highly condensed suspension of β-FeOOH and β-Co(OH)_2 particles. Powder Tech., 1998,96(2):85
    [76] Sugimoto T., Wang Y.S., Itoh H, et al. Systematic control of size, shape and internal structure of monodisperse α-Fe_2O_3 particles. Colloids and Surfaces A: Physicochem and Eng. Aspects, 1998,134(3)265
    [77] Sugimoto T., Chen S.H., Muramatsu A. Synthesis of uniform particles of CdS, ZnS, PbS and CuS from concentrated solutions of the metal chelates. Colloids and Surfaces A: Physicochem and Eng. Aspects, 1998,135(1-3)207
    [78] Adair J.H., Suvaci E. Template control growth. Current Opinion in Colloids and Interface Sci., 2000,5(1-2) 160
    [79] Antonietti M. Surfactants for novel templating applications. Current Opinion in Colloids and Interface Sci., 2001,6(3)244
    [80] 成国祥,沈锋,张仁柏等.反向胶束微反应器及其制备纳米微粒的研究进展.化学通报,1997(3)14
    [81] 沈兴海,高宏成.纳米微粒的微乳液制备法.化学通报,1995(11)6
    [82] 郭永,巩雄,杨宏微秀.纳米微粒的制备方法及其进展.化学通报,1996(3)
    [83] 张立德.我国纳米材料技术应用的现状和产业化的机遇.中国(杭州 2001.5)第二届纳米科学与技术应用会议论文集,P.14
    [84] 欧阳藩.工程化学.化工进展,1994(3)14
    [85] 欧阳藩,朱谦.材料化工在材料科学与产业化中的地位和作用.化工进展,1994(4)1
    [86] 蔡志武,戴干策.液液相宏观与微观混合的研究.化学工程师,1995(5)3
    [87] 李希,陈建峰,陈甘棠.微观混合研究的现状.化学反应工程与工艺.1994,10(2)103
    [88] 陈建峰,陈甘棠.反应结晶过程中产物粒子粒度分布的模拟Ⅰ.混合特性的影响.化学反应工程与工艺,1993,9(4):386
    [89] R.Phillips,S.Rohani,and J.Baldyga. Micromixing in a single-feed semi-batch precipitation process. AIChE J., 1999,45(1)82
    [90] Teresa S., Xavier C. Effect of the shear and volume fraction on the aggregation and breakup of particles. AIChE J., 1998,44(8) 1724
    [91] 龚卫星,戴干策,许汝谟.影响BaSO_4沉淀颗粒尺寸分布的工程因素.华东理工大学学报,1995,21(3)300
    [92] 王静康.工业结晶技术前沿.现代化工,1996(10)19
    
    
    [93] Amarjit J.M., Donald J.K. Micromixing effects in a two-impinging-jets precipitatior. AIChE J., 1996,42(7) 1801
    [94] 龚卫星,戴干策.平衡双注乳化反应器的开发(一):双注乳化反应器的混合特性研究.感光材料,1992(2)29
    [95] 龚卫星,戴干策.平衡双注乳化反应器的开发(二):影响BaSO_4沉淀颗粒尺寸分布的工程因素研究.感光材料,1995(3)18
    [96] 王玉红,陈建峰.超重力反应结晶法制备纳米碳酸钙颗粒研究.粉体技术,1998,4(4)5
    [97] 谷元.粉粒体表面改性技术及其应用.化工进展,1994(1)33
    [98] 郑水林,钱伯太,卢寿慈.非金属矿物填料表面改性研究进展.粉体技术,1998,4(2)24
    [92] 刘兵海,古宏晨,丛德滋.粒子复合技术在材料制备技术中的应用。硅酸盐通报,1999(3)60
    [93] 盖国胜.超细粉碎分级技术—理论研究.工艺设计·生产应用.中国轻工业出版社,2000
    [94] 卢寿慈.粉体加工技术(第7章 分级 陈家炎撰).中国轻工业出版社,1999
    [95] 陈宗淇,王光信,滕弘霓.均分散体系及其应用.化学通报,1990(1)23~26
    [96] August Janekovic and Egon Matijevic. Preparation of monodispersed colloidal cadmium compounds.J Colloid Interface Sci, 1985,103 (2)436~447
    [97] 王延吉,周萍华.低pH值下尿素水解速度规律及其应用.江西化
    [98] JCPDS File No.35-501
    [99] 印永嘉.物理化学简明手册.高等教育出版社(北京),1988,P.463-502
    [100] B.Pejova, T.Kocareva, M.Najdoski,et al. A solution growth route to nanocrystalline nickel oxide thin films. Appl. Surf. Sci., 2000(165):271-278
    [101] 李国军,黄校先,郭景坤等.醇-水法制备纳米晶NiO粉体.功能材料,2002,33(4):398~400
    [102] 康复,彭平,许立等.化学模式识别在宝钢中的应用.上海金属,1994,16(1):59~62
    [103] 刘洪霖,包宏.化工冶金过程人工智能优化.冶金工业出版社,1999,P.18~50,112~130
    [104] 陈念贻.模式识别优化技术及其应用.中国石化出版社,1997
    [105] Mullin J W.Crystallization.3rd.Butterworth Heinemann Press, 1997
    [106] 李世丰,张永光.表面化学.中南工业大学出版社,1991
    [107] 林树昌.溶液平衡.北京师范大学出版社,1993,P.18
    
    
    [108] 陈建峰,吕蓁,陈甘棠.微观混合问题的研究(Ⅴ)混合对沉淀反应过程的影响.化学反应工程与工艺,1992,8(1):111~115
    [109] 彭忠东,杨建红,邹忠等.共沉淀法制备掺杂氧化锌压敏陶瓷粉料热力学分析.无机材料学报,1999,14(5):733~738
    [110] 欧阳民,唐谟堂.Zn(Ⅱ)-NH_3-CO_3~(2-)-H_2O系热力学平衡研究.第5届全国铅锌会议论文集,南宁:1995,9
    [111] 杨显万,邱定蕃.湿法冶金.冶金工业出版社,1998,4
    [112] 姚允斌,解涛,高英敏.物理化学手册,上海科学技术出版社,1985
    [113] 傅崇说.有色冶金应用基础研究.科学出版社,1993,12
    [114] 奚梅成.数值分析方法.中国科学技术大学出版社,1996,7
    [115] 顾燕芳,胡黎明.沉淀过程中超细颗粒的凝并与生长模型.华东化工学院学报,1992,18(4):551
    [116] Tadao Sugimoto.The theory of the nucleation of Monodisperse particles in open systems and its application to AgBr systems. J. Colloid Interface Sci., 1992,150(1):208~225
    [117] L.L.Hoekstra, R.Vreeker, W.G.M.Agterof. Aggregation of colloidal nickel hydroxycarbonate studied by light scattering. J. Colloid Interface Sci.,1992,151(1): 17~25
    [118] R.Vreeker, A.J.Kuin, D.C.Den Bore, et al. Stability of colloidal particles with a nonhomogeneous surface potential: application to colloidal nickel hydroxy carbonate. J. Colloid Interface Sci., 1992,154(1): 138~145
    [119] 孙杨,田彦文,翟秀静等.高容量高密度氢氧化亚镍的制备.化工冶金,1997,18(4):303~307
    [120] 刘建华,李新海,郭炳昆等.球形氢氧化镍的制备.湘潭矿业学院学报,1997,12(1):57~62
    [121] 姜长印,张泉荣,杜晓华等.高活性球形氢氧化镍的密度控制.电源技术,2000,24(4):207~208
    [122] 姜长印,张泉荣,杜晓华等.高活性球形氢氧化镍的密度控制.电源技术,2000,24(4):207~208
    [123] A.Kitanhara,A.Watanabe(编著).邓彤,赵学范(译).界面电现象.北京大学出版社,1992
    [124] 郑忠.胶体科学导论.高等教育出版社(北京),1989
    [125] 王文祥.单分散超细钴氧化物的制备.[硕士学位论文].长沙:中南大学2001.6
    
    
    [126] 张传福,吴琳琳,黎昌俊等.纤维状镍钴合金粉末的制备.中国有色金属学报,2002,12(1):182~186
    [127] JCPDS File No.25-582
    [128] 陈玄杰.分析化学.高等教育出版社,1995
    [129] G.J.Li,X.X.Huang,Y.Shi, et al. Preparation and characteristics of nanocrystalline NiO by organic solvent method. Mat. Lett.,2001(51):325~330
    [130] X.L.Li,J.F.Liu, Y.D.Li.Low-temperature conversion synthesis of M(OH)_2(M=Ni, Co, Fe) nanoflakes and nanorods. Mat. Chem. Phy., 2003(80)222~227
    [131] N.Jongen, P.Bowen, J.Lemaitre, et al. Precipitation of self-organized copper oxalate polycrystalline particles in the presence of hydroxypropylmethylcellulose(HPMC): control of morphology. J. Colloid Interface Sci.,2000,226(1): 189~198
    [132] JCPDS File No. 14-801
    [133] 张喜梅,丘泰球,李月花.声场对溶液结晶过程动力学影响的研究.化学通报,1997(1):44~46
    [134] 罗电宏,马荣骏.对超细粉末团聚问题的探讨.湿法冶金,2002,21(2):57~61
    [135] Maskra A. Agglomeration during the drying of the dine silica powders. Part Ⅱ: the role of particle solubility[J]. J Am Ceram Soc., 1997,80(7): 1715~1722
    [136] Jones S L. Dehydration of hydrous zirconia [J]. J Am Ceram Soc., 1997,80(7): 1715~1722
    [137] 宁桂玲,吕秉玲.纳米颗粒的干燥及其研究进展.化工进展,1996,5:22~25
    [138] 栾伟玲,高濂,郭景坤.纳米粉体干燥方法的研究.无机材料学报,1997,12(6):835~839
    [139] 彭天佑,杜平武,胡斌等.共沸蒸馏法制备超细氧化铝粉体及其表征.无机材料学报,2000,15(6)1097~1101
    [140] 张宗涛,胡黎明.无团聚Al_2O_3-ZrO_2复合纳米粉末的制备及机理.华东理工大学学报,1996,22(4)439~443
    [141] 刘继富,吴厚政,谈家琪等.冷冻干燥法制MgO-ZrO_2超细粉末.硅酸盐学报,1996,24(1):105~108
    [142] 李懋强.湿化学法合成陶瓷粉料的原理和方法.硅酸盐学报,1994,22(1)85~91
    [143] 曹爱红.微波干燥制备Al_2O_3纳米粉体的研究.天津工业大学学报,2002,21(4):25~27
    [144] 陈祖耀,聂俊英.冷冻干燥法制备氧化物超细粉末及其在陶瓷材料中的应用.仪表材料,1989,5:31~38
    
    
    [145] 刘雪霆,许煜汾,范文元.共沸蒸馏法制备ZrO_2纳米晶微粉的研究.合肥工业大学学报,1998,21(5):43~47
    [146] 肖新国,谢蕴国.冶金反应工程学基础.冶金工业出版社,1997,P61~P70
    [147] 杨更社.凿岩粉尘粒度分布的分形结构.阜新矿业学院学报(自然科学版),1994,13(1):118~120
    [148] 曾凡桂.矿物质在粉煤中的分布规律.燃烧科学与技术,2001,7(2):170~173
    [149] 王谦源,姜玉顺,胡京爽等.岩石破碎体的粒度分布与分形.中国矿业,1997,6(3):50~55
    [150] Pfeifer P, Avnir D.Chemistry in non-integral dimensional between two and three. J. Chem. Phys, 1983,79(7):3369~3558
    [151] Katz A J, Thompson A H. Fractal sandstone pores: implications for conductivity and formation. Phys Rev Lett, 1985,54(3)1325~1328
    [152] Haziett R D. Fractal applications: wettability and contact angle. J Colloid Interface Sci, 1990,137(2):527~533
    [153] 贾芬敏,沈平平,李克文.砂岩孔隙结构的分形特征及应用研究.断块油气田,1995,1(2):16~21
    [154] 王域辉,毛治超,陈传仁等.砂岩中准谢尔宾斯基海绵体的发现.江汉石油学院学报,1992,14(3):108
    [155] Mandelbrot B B.The Fractal Geometry of Nature.San Francisco: Freemen Press.1982
    [156] 田堪良,张会礼.论天然沉积砂卵石粒度分布的分形结构.西北资源与水利工程,1996,7(4):26~31
    [157] 傅鹤林,李亮,李磊.膨胀土结构分形特征研究.长沙铁道学院学报,2000,18(1):1~5
    [158] 郁可,郑中山.粉体粒度分布的分形研究.材料科学与工程,1995,13(3):30~34
    [159] 卫宏,张玉三,李太任等.岩石显微空隙粒度分布的分形特征与岩石强度的关系.岩石力学与工程学报,2000,19(3):318~320

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700