用户名: 密码: 验证码:
聚烯烃的功能化及其纳米复合材料
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚烯烃类塑料(包括聚丙烯PP,乙丙橡胶EPR等)是用途很广的通用塑料,具有产量大,价格低,耐水,耐化学药品,以及成型工艺简单等优点。但是由于PP是非极性结晶型聚合物,因此难以进行表面处理,涂装,也难以与其他聚合物或填料共混,给开发PP合金材料和复合材料带来了极大的困难。
     本文首先对聚烯烃的接枝改性以实现聚烯烃的功能化进行了较为详细的研究。以聚丙烯(PP)、乙丙橡胶(EPR)为研究对象,以马来酸酐(MAH)为接枝单体,首次采用预辐射接枝、超声接枝以及微悬浮共辐射接枝方法合成PP、EPR接枝MAH。考察了各种因素,如辐射剂量、超声功率、单体浓度、反应温度、反应时间等对PP、EPR接枝率(G)和接枝效率(GE)的影响,给出了每种接枝体系的最佳接枝条件。结果表明,微悬浮共辐射接枝法得到的产物接枝率最高;用DSC和XRD分析其晶态性能,发现PP接枝MAH后,熔点降低、结晶度和结晶温度有所提高,但接枝前后主链晶型没有发生根本变化。上述几种接枝方法的接枝率可达到6%,与国内外同类接枝产品比较,采用辐射接枝的技术路线已达到先进技术水平。
     选用硅烷偶联剂以及自制的马来酸酐接枝聚烯烃作为PP/SiO_2复合体系的界面增容剂,采用超声法制备了PP纳米复合材料。研究了不同增容剂、纳米SiO_2含量对复合材料的拉伸强度、断裂伸长率等力学性能;并利用DSC, XRD,IR,SEM等分析手段,讨论了复合材料结构与性能的关系。结果表明,硅烷偶联剂-马来酸酐接枝聚烯烃复合增容剂比单一硅烷偶联剂具有更好的增韧增强效果。对于不同的PP纳米复合材料,纳米SiO_2粒子的填充量都存在一个最佳值,随着填充量增大,出现团聚现象,导致各项力学性能随着掺入量的增加而降低。通过DSC及XRD对复合材料结晶特性的研究表明,纳米SiO_2粒子改性的复合材料的晶形为α晶形,与纯PP相同,熔点并无明显变化;均匀分散在PP中的纳米SiO_2对PP的结晶起到成核剂的作用。通过SEM研究了PP以及PP纳米复合材料的断面形貌,发现纳米SiO_2粒子分散良好,起到了阻止裂纹的扩散,使基体树脂发生了屈服形变的作用,使得复合材料获得良好的增强增韧效果。
Polyolefin (including Polypropylene (PP) and Ethylene-propylene rubber (EPR)) is a general purpose plastic and its application fields are very wide. It has many merits, such as the higher yield, lower price, water resistance, chemicals resistance and the simple technological process. In view of no polar and a crystalline polymer the polyolefin is, it is difficult to create superficies, or to brush, or to blend with other polymer and filling matter, so it is difficult to develop the novel polyolefin alloys.
     First, graftings of polyolefin with maleic anhydride for its functionalization was studied. Maleic anhydride grafting onto polypropylene and ethylene-propylene rubber were prepared by novelty means of pre-irradiation, ultrasoication and co-irradiation. The effects of irradiation dose, ultrasonic intensity, monomer concentration, reaction temperature, and reaction time on the percentage of grafting (G) and grafting efficiency (GE) were investigated. The results show that G is highest by co-irradiation in microsuspention than other means. The crystal degree of PP-g-MAH is higher than PP by DSC and XRD, so did the crystal temperature. But the crystal configuration of main molecule chain is not changed. The percentage of grafting of the products obtained above is 6%. The obtained products by irradiation grafting reaches an advnaced level of the same products of both domestic and foreign countries.
     In this thesis a kind of silane coupling agents and maleic anhydride (MAH) grafted polyolefin (PO-g-MAH) obtained above were employed as interface compatibilizers for PP/nano-SiO2. PP nanocomposites were prepared by ultrasonic. The composites with different compatibilizers and nano-SiO2 content were characterized by means of mechanical testing, Differential Scanning Calorimetry (DSC), X-ray diffraction (XRD), Fourier transformation infra-red spectroscopy (FT-IR), Transmission Electron Microscope (TEM), Scanning Electron Microscope (SEM), etc. The relation between the structure and property of the composites was discussed in this thesis. The results show that the PP filled by using nano-SiO2 modified with different interface compatibilizers has better mechanical performances than pure PP. The mechanical properties of the PP/nano-SiO2 modified with silane coupling agent and PO-g-MAH are better than that of the PP/nano-SiO2 modified with solo coupling agent. It is also found that there is some optimum dosage of nano-SiO2 in the PP/nano-SiO2. XRD and DSC were used to investigate the surface treatment and the usage of the nano-SiO2 influencing their crystalline characteristic. Results showed that PP/nano-SiO2 has the same crystal type with the pure PP. So the melt point changes a little. Nano-SiO2 acts as the nucleation agent in PP. The SEM results show that nano-SiO2 is dispersed well in PP, which promoted the matrix undergo shear yielding rather than brittle fracture.
引文
[1] Correis S G, Marues M M, Ascenso J R, et al. Polymerization with TMA-protected polar vinyl comonomers.Ⅱ. Catalyzed by nickel complexes containingα-dimine-type ligands, Journal of Polymer Science Part A: Polymer Chemistry, 1999, 37(14): 2471~2480
    [2]李刚等.浅论聚烯烃接枝改性的影响因素.现代塑料加工应用,1999,11(3):5~9
    [3]张玉清等.聚丙烯的接枝共聚改性,化工新型材料,1997,25(11):8~13
    [4] Ghosh P, Chattopadhyay B, Sen A K. The functionalization of polypropylene by maleic anhydride, Polymer, 1998, 39:193~199
    [5] Chang W Y, Hu C H. Milecular characterization of maleic anhydride functionalized polypropylene, European Polymer Journal, 1996, 32: 385~391
    [6] Bing Lu. New synthesis of maleic anhydride modified polyolefins and their applications [Dissertation]. The Pennsylvania State University,1999.
    [7]陈商涛,吕英莹,胡友良.直接共聚法制备功能化聚烯烃研究进展,高分子通报,2004,(1):37~43
    [8]胡友良,李化毅.烯烃共聚合反应及聚烯烃改性:I烯烃与极性单体的共聚合,石化技术与应用,2004,22(3):157~160
    [9]余维畅.溶液法马来酸酐接枝线性低密度聚乙烯的研究,汕头科技,1994,(3):37~42
    [10]施德安,柯卓.聚丙烯熔融接枝马来酸酐反应机理的研究,应用化学,2001,18(11):865~868
    [11]赵建青,薛锋,黄涛等.聚乙烯固相接枝马来酸酐的研究,塑料工业,1998,26(1):72~74
    [12]余红伟,赵秋光.高分子材料表面接枝改性的方法及应用,胶体与聚合物,2003,21(3):34~38
    [13]朱德钦,于智.聚乙烯蜡溶液接枝马来酸酐工艺优化的研究[J].化工中间体,2007,(11):1~3.
    [14]李三喜,葛铁军. LLDPE溶液接枝马来酸酐的研究,合成树脂与塑料,1996,13(4):14~19
    [15]李晓,袁惠根,唐舜英等.不饱和单体熔融接枝LLDPE及其应用,合成树脂与塑料,1996,13(3):6~14
    [16]王雅珍,宋武.丙烯腈接枝聚丙烯的微相结构,高分子材料科学与工程,2007,23(5):5~8
    [17]章苏宁,娄丽颖,顾明初等.马来酸酐溶液法接枝无规聚丙烯的研究,功能高分子学报,1999,12(4):419~422
    [18] Qiu G M, Dai S J. Modification Research on Polypropylene with Acrylic-Silicon Oil Lanthanum, Journal of Rare Earths, 2007,25(1):46~48
    [19]马珩,赵辛年.溶液法制备高接枝率HDPE-g-MAH,塑料科技,2003,(5):8~10
    [20]张凯,张晓红,陈伟.聚烯烃功能化进展,合成树脂及塑料,2005,22(2):66~69
    [21]徐钰珍,方征平,朱彦等.高密度聚乙烯与丙烯酸的熔融接枝研究,中国塑料,2004,18(2):26~30
    [22]俞强,林明德.聚烯烃弹性体与马来酸酐的熔融接枝,塑料工业,2002,30(4):20~22
    [23]丁永红,承民联.LLDPE熔融接枝MAH功能化的研究,塑料科技,2001,(12):1~5
    [24]傅和青,黄洪.马来酸酐熔融接枝聚丙烯及降解机理研究,高校化学工程学报,2007,5(21):808~813
    [25]殷敬华,朱文.官能化乙丙橡胶的制备和表征,合成橡胶工业,1999,22(2):87~93
    [26] Liu N C, Yao G P, Huang H. Influence of grafting formulations and processing conditions on properties of silane grafted moisture crosslinked polypropylenes, Polymer,2000,41(12): 4537~4541
    [27] Lusichi J M, Boutevin B, Torres N. In situ compatibilization of HDPE/PET blends, Journal of Applied Polymer Science,2001,79(5): 874~878
    [28] Ying Li, Xu Ming Xie, Bao Hua Guo. Study on styrene-assisted melt free-radical grafting of maleic anhydride onto polypropylene, Polymer, 2004, (42): 3419~3425
    [29]郭晓晖,黄健,张明,张云灿.热引发官能化HDPE、PP、EPDM及其增韧PA6研究,中国塑料,2002,16(12):37~42
    [30]杨小波,詹晓力,陈丰秋.聚丙烯固相接枝聚合及接枝机理研究进展,石油化工,2003,(32):69~72
    [31] Rengarjan R, Vicic M, Lee S. Supercritical carbon dioxide-assisted solid-state free radical grafting of methyl methacrylate onto polypropylene, The Journal of Supercritical Fluids, 2007, 43(1): 64~73
    [32] Qiu W L,R Rengarajan. A novel technique for preparing of maleic anhydride grafted polyolefins, 2005, 41(9): 1979~1984
    [33] Sakazume S, Orikasa Y. Thermoplastic Resin Composites and Their Use, Eur Pat Appl, EP 0435247, 1991
    [34]李乔钧,李春成.聚丙烯悬浮法接枝苯乙烯的研究,合成树脂及塑料,1996,13(1):7~10
    [35]王卫卫,邱桂学.聚烯烃热塑性弹性体POE官能化及其应用,弹性体,2007,(5):60~62
    [36]黄健,张云灿.热接枝法MEPDM对尼龙66的增韧行为,塑料工业,2000,28(5):12~14
    [37]罗延龄.高聚物辐射接枝技术及其应用,合成橡胶工业,1998, 21(3):142~145
    [39]蔡传伦,辛志荣.预辐射聚丙烯反应挤出接枝丙烯酸的研究,高等学校化学学报,2006,27(10):1969~1973
    [40]姚占海,饶蕾,徐俊.聚丙烯纤维与丙烯酸辐射接枝共聚反应的研究,高分子材料科学与工程,1997, 13(3):16~19
    [41] Gawish S.M, Kantouch A, El Naggar A.M et al. Grafting copolymerization of N,N-dimethyacrylaminoethylmethacrylate (DMAEMA) onto preirradiated polypropylene films, Radiation Physics and Chemistry, 2007, 76(7): 1179~1188
    [42]傅轶,周冕,徐闻等.HDPE紫外辐照接枝MMA及接枝物对石英粉填充体系的影响,高分子材料科学与工程,2003,19(4):110~113
    [43]葛学武,张志成.高分子材料辐射接枝苯乙烯的研究进展,高分子材料科学与工程,1996,12(5):65~69
    [44] Yang W, Ranby Bulk. Surface photografting process and its applications I: Reactions and kinetics, Journal of Applied Polymer Science, 1996, (62): 533~543
    [45] Ma H M, Davis R H, Bowman C N. Principal factors affecting sequential photoinduced graft polymerization, Polymer, 2001, 42(20): 8333~8338
    [46] Machado A V, Covas J A, Dubin M. Effect of polyolefin structure on maleic anhydride grafting, Polymer, 2001, (42): 3649~3655
    [47] Shi D, Yang J H, Yao Z H. Functionalization of isotactic polypropylene with maleic anhydride by reactive extrusion: mechanism of melt grafting, Polymer, 2001, (42): 5549~5557
    [48]邱有德,熊政治.增强PA6/PP合金的研究,现代塑料加工应用,1997,9(4):1~6
    [49]俞强,李锦春,承民联,刘春林.HDPE/尼龙6层状共混阻隔树脂结晶行为的研究,塑料工业,1995,7(2):33~38
    [50]俞强,李锦春,林明德.尼龙1010/HDPE-g-MAH共混体系界面形态及结晶行为的研究,高分子材料科学与工程,1998,14(1):48~51
    [51]张晓民等. PP-g-AA增容尼龙1010/聚丙烯三元共混体系性能研究中国塑料,1996,10(4):10~13
    [52] Durvall J, et al. Effect of compatibilization on the properties of polypropylene/polyamide-66 (75/25 wt/wt) blends, Journal of Applied Polymer Science, 2004, 52: 195~198
    [53] Durvall J, et al. Effect of compatibilization on the properties of polyamide 66/polypropylene (75/25 wt/wt) blends, Polymer, 2004, 35(18): 3948~3957
    [54]杨景兴,陆光月,段玉丰.汽车用丙烯酸接枝聚丙烯复合材料,塑料工业,1996,(1):72~74
    [55]鲍志素.塑料型材挤出成型模CAD系统,塑料加工应用,1995,(3):9~10
    [56]王益龙,黄葆同.反应性挤出聚乙烯接枝低偶联马来酸酐,现代塑料加工应用,1994,6(4):1~4
    [57]俞强,林明德. HDPE-g-MAH对填充体系增容作用的研究,现代塑料加工应用,2005,7(2):7~10
    [58]林松柏,苏介生.LDPE接枝MMA及与高岭土共混,塑料工业,1994,(4):7~9
    [59]项素云,王益龙. PE-g-MAH对PP/玻纤-硅灰石的增容作用,现代塑料加工应用,1996,8(4):16~19
    [60]王益龙等.马来酸二丁酯接枝PE的性能及应用,现代塑料加工应用,2004,9(5):11~14
    [61]魏无际.添加PA66-MPP提高PP/GF增强塑料力学性能的研究,中国塑料,1996,10 (5):43~48
    [62] Lin. C W. Modification of polypropylene by peroxide-catalysed grafting of maleic anhydride for adhesive bonding: surface and interface, Journal of Materials Science Letters, 1993, 12:612~616
    [63]程为庄,杜强国,王荣海.聚乙烯接枝改性及其与铝的粘结性,合成树脂及塑料,1995,12(4):14~17
    [64] Lee S H, Li C L, Chung T C. Evaluation of poly (propylene-co-1-hexen-6-ol) as an interfacial agent in polypropylene/glass laminates, Polymer, 1994, 35: 2980~2984
    [65]高其标,申屠宝卿,翁志学,纳米改性聚合物材料研究进展,化工生产与技术,2001,8 (6):22~27
    [66] Gryaznov V G., Trusov, Size L I. Effects in micromechanics of nanocrystals,Progress in Materials Science, 2003, 37: 289~293
    [67] Shang S W, Williams J W, Soderholm K J M. How the work of adhension affects the mechanical properties of silica-filled polymer composites, Journal of Materials Science, 2004, 29: 2406~2410
    [68] Hsiue G H, Kuo W J, Huang Y P. Microstructural and morphological characteristics of PS/SiO2 nanocomposites, Polymer, 2000, 4l: 2813~2817
    [69] Darilyn H. Roberts. Chemical coupling of polypropylene systems containingnonglass fillers,Journal of Vinyl&Additive Technology,1999, 5 (4): 231~236
    [70]李小兵,刘竞超.纳米粒子及其在复合材料改性中的应用,上海化工,1999,8:4~10
    [71]罗忠富,黄锐.无机纳米粒子填充聚合物的研究进展,功能高分子学报,1998,4:556~561
    [72]朱静安等.界面层结构对云母填充聚丙烯性能的影响,塑料科技,1994,(5):34~37
    [73]杜仕国.硅烷偶联剂的开发及应用,杭州化工,1996,26(2):19~22
    [74]刘安华.乙烯基单体在炭黑表面上的接枝聚合,娄底师专学报,1997, (4):25~28
    [75]汪济奎等.硅铝炭黑(SAC)填充聚丙烯的应用研究,中国塑料,1995,(7):31~35
    [76]施凯,田立英.CaCO3填充体系中钛酸酯系列偶联剂用量关系式的导出,中国塑料,1990, 4(1):35~37
    [77]盖国胜等.超细改性重质碳酸钙制备及在PVC塑料制品中的应用,粉体技术,1997,3(2):24~26
    [78]吴培熙,张留城.聚合物共混改性,北京:中国轻工业出版社,1996.265
    [79]李振中,温变英,谭英杰.PP/SiO2纳米无机粒子复合材料中偶联剂用量的确定,华北工学院学报,2001,2:95~99
    [80]周树民,武利民.纳米SiO2在高固体分聚酯聚氨酯涂料中的应用,涂料化工,2002,(11):19~21
    [81]郭卫红,李盾.纳米材料及在聚合物改性中的应用,工程塑料,2005,26(4):11~13
    [82]徐伟平,黄锐,蔡碧华.大分子偶联剂对HDPE/纳米CaCO3复合材料性能的影响,中国塑料,1999,13(9):25~29
    [83] Carotenuto G, Xuejun X, Nicolais L. Transparent organicinorganic nanostructured materials: Preparation methods, Polymer News, 2000, 25: 6~10
    [84]王华林,程继炎,王长友.溶胶-凝胶法制备纳米LiCoO2,应用化学,1999,16(4):66~69
    [85]杨合情,林殷茵,汪敏强.嵌有纳米颗粒凝胶玻璃的制备及发光特性,无机材料学报,2000,15(2):249~253
    [86]朱春玲,江万权,胡源.溶胶凝胶法制备Poly/MS/SiO2(M=Pb,Cd)复合纳米材料,化学物理学报,2001,6(3):335~339
    [87]陈艳,王新宇,高宗明.聚酰亚胺/二氧化硅纳米尺度复合材料的研究,高分子学报,1997,1(1):73~78
    [88]赵竹第,高宗明,欧玉春.苯乙烯-马来酸酐共聚物/聚硅氧烷纳米尺度复合材料的研究,高分子学报,2003,(2):228~233
    [89] Mitsuru Tanahashi, Masaki Hirose. Organic/inorganic nanocomposites prepared by mechanical smashing of agglomerated silica ultrafine particles in molten thermoplastic resin, Polymers for Advanced Technologies, 2006, 17(11): 981~990
    [90] Mark W Ellsworth, Bruce M Novak. Preparation and dielectric properties of polyimide/silica nanocomposite films prepared from sol-gel and blending process, Polymers for Advanced Technologies, 2006, 18(7): 522~528
    [91]尹荔松,张进修.无机刚性粒子/聚合物复合材料的界面,材料导报,2002,3:44~47
    [92] Kurauchi T, Ohta T. Energy absorption in blends of polycarbonate with ABS and SAN, Journal of Materials Science, 1984, 19: 1699~1703
    [93] Masao S, Yasutoshi T. Tensile yield stredd of polypropylene composites filled with ultrafine particles, Journal of Materials Science,1993 (18): 1758~1762
    [94] Anna C Balazs.Interactions of nanoscopic particles with phase-separating polymeric mixtures, Current opinion in Colloid&Interlace Science, 2000, 4: 443~448
    [95] Kim G M, Michler G H. Micromechanical deformation process in toughened and particle-filled semicrystalline polymer, Polymer, 1998, 39 (23): 5689~5693
    [96]张云灿,陈瑞珠等.CaCO3刚性粒子增韧HDPE及其增韧机理,塑料,1997, 26(6):7~11
    [97]郭卫红等.纳米SiO2在MMA单体中在位分散聚合的研究,材料导报,2000,14(10):71~74
    [98]黄锐,徐伟平,郑学晶等.纳米级无机粒子对聚乙烯的增强与增韧,塑料工业,1997,3:106~108
    [99]叶林忠等.CaCO3增韧R-PVC材料的性能研究,合成树脂及塑料,1995,12(4):43~45
    [100]熊传溪,闻荻江.超微细Al2O3增韧增强聚苯乙烯的研究,高分子材料科学与工程,1994,10(4):69~72
    [101] Shang S W, Willams J W, Soderholm K J M. Using the bond energy density to predict the reinforcing ability of a Composite, Journal of Materials Science, 1992, 27: 4949~4953
    [102] Shang S W, Willams J W, Soderholm K J M. Work of adhesion influence on the rheological Properties of Sillica filled Polymer Composites, Journal of Materials Science, 1995, 30: 4323~4325
    [103] Shang S W, Willams J W, Soderholm K J M. How to work of adhesion affects the Mechanical properties of Sillica filled Polymer Composites, Journal of Materials Science, 1994, 29: 2406~2409
    [104] Kurokawa Y, et al. Preparation and properties of polypropylene reinforced by smectite, Journal of Materials Science,1996, (31): 4307~4310
    [105] Kurokawa Y, et al. Structure and properties of a montmorillonite/polypropylene nanocomposite, Journal of Materials Science Letter, 1997, (16):1670~1672
    [106] Lan T, et al. Hybrid organic inorganic materials: a land of multi disciplinarity. Journal of Materials Chemistry, 1996, 6 (4):511~517
    [107] Wang M S, et al. Materials science rough guide to the nanoworld, Nature, 1996, 383: 300~301
    [108] Messersimith P B, et al. Preparation structure and properties of uniaxially oriented polyethylene silver nanocomposites, Journal of Materials Science, 1999, (34): 3859~3864
    [109]王珂等.刚性粒子增韧聚合物体系的研究发展,材料科学与工程,2001, 9:15~18
    [110]吕素平,漆宗能等.聚合物共混体系脆韧转变的损伤竞争理论:ii.基体性能对脆韧转变的影响,高分子材料科学与工程,1996, 9:61~64
    [111]吕素平,漆宗能等.聚合物共混体系脆韧转变的损伤竞争理论:iii.分散相形态和界面粘接对脆韧转变的影响,高分子材料科学与工程,1996, 11:9~11
    [112]傅强,沈九四,王贵恒.碳酸钙刚性粒子增韧HDPE的影响因素,高分子材料科学与工程,1992,(1):107~112
    [113] Fu Q, Wang.G. Effect of morphology on brittle-ductile transition of HPDE/CaCO3 blends, Journal of Applied Polymer Science, 2003, 49: 1985~1988
    [114] Tan Z Y, Xu X F, Sun S L, Zhou C. Influence of rubber content in ABS in wide range on the mechanical properties and morphology of PC/ABS blends with different composition, Polymer Engineering & Science, 2006, 46(10): 1476~1484
    [115] Sinha Ray S, Bousmina M, Maazouz A. Morphology and properties of organoclay modified polycarbonate/poly(methyl methacrylate) blend, Polymer Engineering & Science, 2006, 46(8): 1121~1129
    [116] Fu Q,Wang G.,Liu C. Polyethylene toughened by CaCO3 particles: The interface behaviour and fracture mechanism in high density polyethylene/CaCO3 blends, Polymer, 1995, 36: 2397~2401
    [117]林志丹,黄珍珍,麦堪成.聚丙烯基纳米复合材料的制备方法与力学性能,合成树脂及塑料,2003,20(3): 76~80
    [118]朱静安,鞠勋疆,冯之榴.界面层结构对填充聚丙烯力学性能及流变行为的影响,材料科学进展,1992, 12:538~540
    [119]欧玉春.刚性粒子填充聚合物的增强增韧与界面相结构,高分子材料科学与工程,1998, 3:12~15
    [120]王坷,曾戎,曾汉民.‘98中国材料研讨会论文集’, pp1019
    [121]吴唯,钱琦等.纳米SiO2改性PP的结晶结构与特性研究,中国塑料,2002,1:23~26
    [122]石璞,吴宏武等.PP/纳米SiO2复合材料凝聚态结构的研究,塑料工业,2002,5:34~38
    [123]刘景江,唐功本,周华容.稀土氧化物对聚丙烯晶形和动态力学性能的影响,应用化学,1993, 10(3): 20~23
    [124]任显诚,白兰英,王贵恒.纳米级CaCO3粒子增韧增强聚丙烯的研究,中国塑料,2000,l:22~25
    [125]廖凯荣,陈学信等.铝酸酯对碳酸钙的改性作用及应用研究,高分子材料科学与工程,1993, 5:24~26
    [126] Van der A, Mulder J J, Thijs H A. Fracture of polypropylene 1. The effect of molecular weight and temperature at low and high test speed, Polymer, 1998, 39(22): 5467~5475
    [127] Argon A. S. Toughness mechanism in semi-crystalline polymer blends: I. High-density polyethylene toughened with rubbers, Polymer, 1999, 40(9): 2331~2346
    [128] Mehta I K, Sood D S, Misra B N. Graft copolymerization of acrylonitrile and its binary mixture with 4-vinyl pyridine onto isotactic polypropylene powder by preirradiation method, Journal of Applied Polymer Science,1995, 56(10): 1197~1204
    [129] Mukheree A K,Gupta B D. Radiation-induced graft copolymerization of methacrylic acid onto polypropylene fibers VI. Dyeing behavior, Journal of Applied Polymer Science, 1985, 30(11): 4455~4460
    [130] Burchill P, Pinketon D M,Stacewing R H. Mechanochemical polymerization of methyl methacrylate initiated by the grinding of inorganic compounds, Journal of Applied Polymer Science, 1995, 55(2): 297~304
    [131] Dunn T S, Epperson B J, Sug g H W, Stannett V T. Radical structure and its role in the oxidative degradation of preirradiated polypropylene. Radiation Physics and Chemistry, 1997, 14, 625~628 [l32] Jingye L, Sundardi F. Preparation of ion exchange membranes by preirradiation induced grafting of styrene/divinylbenzene into crosslinked PTFE films and successive sulfonation, Journal of Applied Polymer Science, 2006, 101(15): 3587~3599 [l33] Chen J,Nho Y C,Park J S. Radiation-Induced Graft Copolymerization of Ethyl Acrylate onto Hydroxypropyl Methylcellulose, Macromolecular Materials and Engineering, 2006, 291(8): 950~961
    [134] Zu J H, Wu M H. Radiation-induced grafting of acrylic acid and sodium styrene sulfonate onto high-density polyethylene membranes. I. Effect of grafting conditions. Journal of Applied Polymer Science, 2006, 99(6): 3401~3405
    [135] Wu M H, Chen J. Preparation of thermosensitive material by radiation cross-linking, Radiation Physics and Chemistry, 1996, 48 (4): 525~527
    [136] Jie C, Young C, Allan S. Grafting copolymerizationo facrylamide onto preirradiated PP films, Radiation Physics and Chemistry, 1999, 55: 87~92
    [137]邓海,杨济活.高聚物辐射接枝的发展及应用,辐射研究与辐射工艺学报,1998, 16(2):65~69
    [138]陈丽琴.聚丙烯薄膜/纤维的预辐射接枝改性及其应用研究,[硕士学位论文],2001.1
    [139]尹骏,张军.马来酸酐与聚烯烃接枝产物的表征,功能高分子学报,2002, 15(1):99~106
    [140]哈鸿飞,吴季兰,高分子辐射化学-原理与应用,北京大学出版社,2002
    [141] Suslick K S. Sonochemistry, Science, 1990, 247(4949): 1439~1445
    [142] Maartje F, Martijn W A. A Novel Process for Ultrasound-Induced Radical Polymerization in CO2-Expanded Fluids, Macromolecular Materials and Engineering, 2005, 290(4): 302~310
    [143] Kemmere M, Kuijpers M, Jacobs L. Ultrasound-induced polymerization of methyl methacrylate in liquid carbon dioxide: a clean and safe route to produce polymers with controlled molecular weight, Macromolecular Symposia, 2004, 206(1): 321~332
    [144]徐卫兵.接枝共聚物PP-g-MAH的热分析及粘接性能的研究,中国胶粘剂,3(4):5~7
    [145] Tetsuji I, Kazuhisa Y, Tsutomu K. Phytol-modified heme in mesoporous silica: Conjugates as models of hemoproteins, Biotechnology and Bioengineering, 2006, 93(3): 476~484
    [146] Ibisate M, Zou Z, Xia Y. Arresting, Fixing, and Separating Dimers Composed of Uniform Silica Colloidal Spheres, Advanced Functional Materials, 2006, 16(12): 1627~1632
    [147] Yang Y Z, Gu H C. Superfine structure, physical properties, and dyeability of alkaline hydrolyzed soly(ethylene terephthalate)/silica nanocomposite fibers prepared by in situ polymerization, Journal of Applied Polymer Science, 2006, 102(4): 3691~3697
    [148]罗忠富,黄锐.表面处理对HDPE/Nano-CaCO3复合材料性能的影响,中国塑料,1999,13(11):47~51
    [149]章永化,龚克诚.嵌人聚合法制备聚苯乙烯-蒙脱土混杂材料,塑料工业,1998,3:111~113
    [150]余家国,赵修建,赵青南.光催化多孔TiO2薄膜的表面形貌对亲水性的影响,硅酸盐学报,2000,6:245~250
    [151] Armes S P, Maeda S, Gill M. Inorganic/organic hybrid materials: conducting polymer-silica nanocomposite particles, Polymeric Materials Science and Engineering, 1993, 70: 352~353
    [152]郭云亮,李立平.偶联剂的种类和特点及应用,橡胶工业,2003,50(11):692~696
    [153]李振中,温变英,谭英杰.PP/SiO2纳米粒子复合材料中偶联剂用量的确定,华北工学院学报,2001,22(2):95~97
    [154] Masao, Sumita, Yasutoshi, et al. The effect of nanoclays on the nucleation, crystallization, and melting mechanisms of isotactic polypropylene, Polymer Engineering and Science, 2007, 47(11): 1889~1897
    [155] Nowick A S, Berry B S. Anelastic relaxation in crystalline solids, Academic Press. Inc., New York, 1972, p105
    [156]俞强,林明德. HDPE-g-MAH对填充体系增容作用的研究,现代塑料加工应用,1995,7(2):7~10
    [157]项素云,王益龙. PP-g-MAH及偶联剂处理木粉填充PP的研究,中国塑料,2001,15(2):71~73
    [158]周琦等.PP/POE/nano-CaCO3三元复合体系性能的研究,塑料助剂,2007,(2):28~32
    [159]姜勇,徐声钧,王燕舞.玻璃纤维增强聚丙烯的研制及应用,塑料科技,2000,(1):7~9
    [160]倪卓,孙忠梅,官永辉.马来酸酐接枝聚丙烯对聚丙烯/蒙脱土纳米复合材料的影响,高分子材料科学与工程,2006,22(6):79~86
    [161]宋波.尼龙-6/蒙脱土纳米复合材料用POE-g-MAH改性及性能研究,现代化工,2004,24(1):43~45
    [162]徐荣.聚丙烯/玻璃纤维的界面改性研究(Ⅳ)玻璃纤维增强聚丙烯复合材料的界面结构特征,广州化工,2001,29(2):25~28
    [163]朱绍男.聚丙烯塑料的应用与改性,第一版,北京:轻工业出版社,1982,1~34
    [164]金日光,华幼卿.高分子物理,第二版,背景:化学工业出版社,2000,31~42
    [165]周平华,许乾慰.热分析在高分子材料中的应用,上海塑料,2004,(1):36~40
    [166] Samsudin M S F, Mohd Ishak Z A. Effect of filler treatments on rheological behavior of calcium carbonate and talc-filled polypropylene hybrid composites, Journal of Applied Polymer Science, 2006, 102(6): 5421~5426
    [167]杨军,刘万军,陈广新,刘景江.超细CaCO3的粒子尺寸对PP结晶行为的影响,高分子学报,2001,3(3):383~386
    [168]陈明霞,黄绍钧.马来酸酐(MAH)接枝PP微观结构的研究,塑料工业,1990,4:45~49
    [169] Shinozaki D M, Groves G W. Stress relaxation in oriented polypropylene, Materials Science and Engineering, 1977, 28(1): 119~126
    [170] Katherina T, Tikhomirov A, Bozdogan A. Rigidity of heat-treated oriented isotactic polypropylene, Journal of Applied Polymer Science, 2006, 102(6): 6074~6080

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700