用户名: 密码: 验证码:
活性粉末混凝土受压应力应变全曲线的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
活性粉末混凝土的单轴受压应力应变关系是RPC最基本的物理力学性能,是研究混凝土结构承载力和变形的主要依据,也是分析构件极限承载力和进行非线性全过程分析时必不可少的材料本构模型的基础,通过单轴受压试验可以为RPC结构设计提供基本的力学参数。针对国内目前对活性粉末混凝土的应力应变曲线研究不多的情况,同时配合活性粉末混凝土的推广应用,对其应力应变全曲线进行了研究。
     为了成功地测得RPC受压的应力应变全曲线,首先分析了已有试验方法的优劣,在试验研究和数据分析的基础上找出了一套适合自己用的试验方法,制作了刚性辅助架、变形测量架等试验装置,采用数据采集仪,在试验过程中不断总结压力试验机的操作方法,成功地测出了RPC受压的应力应变曲线。
     根据水胶比和钢纤维体积掺量的变化设计了多种配合比,并测得其应力应变全曲线。计算出全曲线的特征值,分析了特征值随水胶比和钢纤维体积掺量的变化规律,从而根据水胶比和钢纤维体积掺量的变化总结出不同配合比的RPC应力应变全曲线的关系。
     对全曲线的上升段和下降段进行了分段拟合,提出了一个形式较为简单、物理意义明显且具有一定实用性的数学表达式。对试验数据的拟合结果表明,该公式参数求解简便,拟合结果满足工程精度要求,具有一定的实用价值。
     测得了RPC在反复加载作用下的受压应力应变全曲线,并与单调加载曲线进行了对比,结果表明,反复加载曲线的包络线与单调加载曲线的形状基本一致,即加载方式对全曲线的形状影响不大。
The properties of Reactive Powder Concrete under uniaxial compression are the basis physical and mechanical properties, is the essential basis to study bearing capacity and deformation of concrete, is the foundation of material’s constitutive model to analysis ultimate load-carrying capacity of members and nonlinear analysis, it can provide the basis mechanical parameters for structural design. However, there is little research on stress-strain curves of Reactive Powder Concrete. For the extension of Reactive Powder Concrete, did some research on stress-strain curves of RPC.
     In order to obtain the stress-strain curves of Reactive Powder Concrete under uniaxial compression successfully, first analyzed the virtues and defects of the test method that already exist, and found a test method that suits this experiment on the basis of experimental study and data analysis, made the rigid auxiliary frame and the deformation test frame, using the advanced data gathering instrument,finally obtain the stress-strain curves successfully.
     This article design many mixture proportion according to the variation of water-cement ratio and content of steel fiber, and obtained the Stress-strain curves of them, computed the characteristics of the curves, analyzed the relationships between characteristics and water-cement ratio, summarized the relationship between stress-strain curves of different mixture proportions and water-cement ratio together with content of steel fiber.
     Fitting rising stages and softening stages of stress-strain curves separately, proposed a mathematical expression that has simple form, obvious physical meaning and utility. Through fitting the test data, the results shows that the mathematical expression can satisfy project precision’s request, has come practical value.
     Obtained stress-strain curves of RPC under cyclic loading, and compared with stress-strain curves under monotonic loading. The results shows that the shape of stress-strain curves under cyclic loading and the stress-strain curves under monotonic loading are similar.
引文
[1] D.M. ROY New strong cement materials:chemically bonded ceramics[J]. Science. 1987,235(2):651-658
    [2] A.E.NAAMAN,OTTER D,NAJM H.Elastic modulus of SIFCON in tension and compression[J].ACI Mater J.1 9 9 1.88(6):603-612.
    [3] 高丹盈,刘建秀.钢纤维混凝土基本理论[M].北京:科学技术文献出版社,1994:226-249
    [4] 程国庆.钢纤维混凝土理论及应用[M].北京:中国铁道出版社,1999:27-39
    [5] 吴伟忠,廉慧珍.高性能混凝土.北京:中国铁道出版社,1999, 23-26
    [6] Pierre Richard,Reactive powder concrete with high ductility and 200MPa~800MPa compressive strength,ACI SP 144,1994,507- 518
    [7] Pierre Richard,Marcel Cbeyrezy.Composition of Reactive Powder Concrete,Cement and Concrete Research,1995,Vo1.25(7):1501-1511
    [8] Marcel Cheyrezy,Vincent Maret,Laurent Frouin.Microstructural Analysis of RPC Cement and Concrete Research,1995,Vo1.25(7):1491-1500
    [9] A.Feylessoufi.Water Environment and Nanostructural Network in a Reactive Powder Concrete,Cement and Concrete Composites,1996,(18):23-29
    [10] B.Scheubel,W.Nachtwey,Development of Cement Technology and Its Influence on the Refractory Kiln Lining,Refra Kolloquium,Berlin,Germany,1997:25-43
    [11] O.Bayard,Fracture mechanics of reactive powder concrete:material modelling and experimental investigations,Engineering Fracture Mechanics,2003,(70):839-851
    [12] V.Matte,C.Richet,M.Moranville.Characterization of reactive Powder concrete as a candidate for the storage of nuclear wastes. Symposium on High Performance and Reactive Powder Concretes,Sherbrooke,Canada.1998,Vo1.3:75-88
    [13] 覃维祖,曹峰.一种超高性能混凝土—活性粉末混凝土[J].工业建筑,1999,29(4):16-18
    [14] 覃维祖.活性粉末混凝土的研究[J].石油工程建设,2002,28(3):1-3
    [15] 朱英磊.活性粉末混凝土的性能研究及应用[J].混凝土,2000,(7):31-35
    [16] 安明哲,王庆生.活性粉末混凝土的配制原理及应用前景[J].建筑技术,2001,32(1):15-16
    [17] 朱航征.活性粉末混凝土(RPC)的开发与应用[J].建筑技术开发,2002,29(1):61-64
    [18] 刘娟红,宋少民,梅世刚.RPC高性能水泥基复合材料的配制与性能研究[J].武汉理工大学学报,2001,23(11):14-19
    [19] 何峰,黄政宇.养护制度对活性粉末混凝土(RPC)强度的影响研究[J].混凝土,2000,(2):31-34
    [20] 何峰,黄政宇.200MPa-300MPa活性粉末混凝土(RPC)的研制技术研究[J].混凝土与水泥制品,2000,(4):12-14
    [21] Regis Adeline,Mouloud Behlou.High Ductile Beams Without Passive Reinforcement.The 4th International Symposium on Uyilization of High Strength/High Performance Concrete,Paris,1996(5):1383-1388
    [22] Oliver Bonneau,Claue Poulin Jerome Dugat,et al.Reactive Powder Concrete. From Theory To Practice,1996(4):47-49
    [23] 刘廷海.超高性能纤维增强混凝土.建厂科技交流,2003,30(2):47-50
    [24] A.Naman and J.R.Homrich.Tensile Stress-Strain Properties of SIFCON. ACI Material Journal,1991,88(4):135-145
    [25] J.P.Romualdi, J.A.Mandel.Tensile Strength of Concrete Affected by Uniformly Ditributed and Closely Spaced Stort Length of Wire Reiforcement. ACI Journal, Proceedings, 1964,(6):567-670
    [26] 过镇海.混凝土的强度和变形:试验基础和本构关系[M].第一版.北京:清华大学出版社,1997:17-33
    [27] H.Rusch.Research toward a General Flexural Theory.Journal of ACI,1960, 32(1):31-36
    [28] 何峰.活性粉末混凝土的配制技术研究:[湖南大学硕士学位论文].湖南:湖南大学土木工程学院,2003,15-16
    [29] 单波.活性粉末混凝土基本力学性能的试验与研究:[湖南大学硕士学位论文].湖南:湖南大学土木工程学院,2002,13-14
    [30] 曾志兴,胡云昌.钢纤维轻骨料混凝土力学性能的试验研究.建筑结构学报2003,24(5):78-81
    [31] 谢赛芳,黄顺华.钢纤维混凝土的施工实践.浙江水利科技,2004,(4):70-71
    [32] 张远鹏.高强钢纤维混凝土抗弯韧性及抗弯疲劳性能研究:[大连理工大学硕士学位论文].辽宁:大连理工大学土木工程学院,1998,20-21
    [33] 过镇海.混凝土的强度和变形:试验基础和本构关系[M].第一版.北京:清华大学出版社,1997:17-33
    [34] 陈肇元,阚永魁等.钢筋混凝土结构构件在冲击荷载下的性能.清华大学抗震抗爆工程研究室.科学研究报告集.第4集.北京:清华大学出版社,1986:3-12
    [35] D.Watstein. Effect of Straining Rate on the Compressive strength and Elastic Proterties of Concrete. Journal of ACI,Apr,1953,40(2):102-108
    [36] Hughes BP Gregory R.Concrete subjected to high rates of loading in compression. Magazine of Concrete Research,March 1972,12(3):237-245
    [37] 杨吴生,黄政宇.刚纤维对RPC抗压强度增强作用的研究[J].湘潭大学自然科学学报,2002,24(1):109-112
    [38] 龙广成,谢友均,王培铭等.活性粉末混凝土的性能与微细观结构[J].硅酸盐学报,2005,33(4):456-461
    [39] 吴炎海,何雁斌,杨幼华.活性粉末混凝土的力学性能[J].福州大学学报(自然科学版),2003,13(5):598-602
    [40] 吴炎海,林震宇,孙士平.活性粉末混凝土基本力学性能试验研究[J].山东建筑工程学报,2004,19(3):7-11
    [41] 吕德生,杨骅.高强混凝土弹性模量与抗压强度的相关性试验研究[J].混凝土与水泥制品.2001,(6):20-21
    [42] 中国土木工程学会高强混凝土委员会.高强混凝土结构设计与施工指南[M].第二版.北京,建筑工业出版社,2001:21-25
    [43] 张建仁,王海臣,杨伟军.混凝土早期抗压强度和弹性模量的试验研究[J].中外公路.23(3):89-92
    [44] Sidney Mindess, J.Francis Young, David Darwin. Concrete[M].吴科如,张雄,姚武等.第二版.北京:化学工业出版社,2005:532-538
    [45] 赵国藩,彭少民,黄承逵等.钢纤维混凝土结构[M].北京:中国建筑工业出版社,1999,36-41
    [46] 孙伟.钢纤维混凝土对高强混凝土的增强、增韧与阻裂效应的研究[J].东南大学学报,1991,21(1):50-57
    [47] 曾建仙,吴炎海,林清.掺钢纤维活性粉末混凝土的受压力学性能研究[J].福州大学学报.2005,33:132-137
    [48] 中华人民共和国行业标准. JTJ 270-98《水运工程混凝土试验规程》.北京:水利电力出版社,1983,167-173
    [49] 过镇海,张秀琴.反复荷载下混凝土的应力-应变全曲线的试验研究.清华大学抗震抗爆工程研究室.科学研究报告集 第三集 钢筋混凝土结构的抗震性能.北京:清华大学出版社,1981:38-53
    [50] 过镇海,时旭东.钢筋混凝土原理和分析[M].第一版.北京:清华大学出版社,2003:41-44

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700