用户名: 密码: 验证码:
3PE防腐层埋地钢质管道阴极剥离研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用电化学方法分别研究了3PE防腐层(外层聚乙烯(PE)、中间层(AD)和底层环氧粉末(FBE))及其补口、补强材料在水溶液和土壤介质中保护电位与阴极剥离的关系,得到了3PE防腐层及其补口、补强材料发生阴极剥离的临界保护电位;测定了不同保护电位下的保护电流、电化学阻抗谱,得到了3PE防腐层及其补口、补强材料在发生阴极剥离后,保护电流及防腐层电阻值的变化规律,分析了防腐层在不同电位下抗电解质的渗透性能。利用红外光谱仪、综合热分析仪等对阴极剥离区域的产物进行了分析鉴定。
     研究结果表明:(1)存在缺陷的3PE防腐层及其补口、补强材料,在水溶液和土壤介质中的阴极保护电位临界值为断电电位-1.1V,当阴极保护断电电位低于-1.1V后,防腐层与基体之间出现了较严重的阴极剥离现象。(2)阴极保护电位低于管道断电电位-1.1V时,保护电流出现了一定的波动,并且阴极保护电流的波动随着阴极保护电位的负移而变得更加剧烈。(3)3PE防腐层及其补口、补强材料在水溶液及土壤中的阴极保护电流密度,反应了其阴极剥离的情况。在水溶液中,当阴极保护电流密度达到10mA/m2时,3PE防腐层开始出现阴极剥离现象,电流密度增大至100mA/m2后,防腐层阴极剥离明显加剧;土壤实验结果表明,当阴极保护平均电流密度达到0.1mA/m2,防腐层开始出现阴极剥离现象,平均电流密度急剧增大至1mA/m2时,防腐层的阴极剥离明显加剧。(4)随着阴极保护电位的负移,电化学阻抗谱变小,表明防腐层的抗阴极剥离性能和抗电解质渗透能力变差。(5)防腐层发生阴极剥离后,环境的pH值升高,由中性或弱酸性变碱性。(6)在发生阴极剥离的区域内,发现有白色粉末状的产物生成,经测定为钙、镁离子的沉淀物和环氧高分子粉末的混合物。
Using electrochemical method, Three types of polythene anti-corrosion layer(3PE coating,heat shrinkable wraparound sleeve and heat shrink sleeve)were studiedin this paper by observing the changes of cathodic protection current with differentcathode polarization potentials in the cathode stripping process and cathodicdisbonding resistance performance in different conditions of the three kinds ofanti-corrosion layers. Using electrochemical impedance spectroscopy (EIS) method, bychoosing appropriate circuit to fit the impedance spectrum, we get the changingregularity of the resistance of the three kinds of polyethylene anti-corrosion layerunder different experimental conditions. The anti-electrolyte infiltration and cathodicdelamination performance of the three polyethylene anti-corrosion layer underdifferent cathodic polarization potential are studied. At the same time, using infraredspectrum,comprehensive thermal analyzer to analyze product of the cathode strippingarea of the sample.
     Results show that:(1) When the potential is more than-1.1V, the potential movesto negative excessively, the protection of3PE anti-corrosive coating will becomeinvalid ahead of time.(2)Polarization current of three polythene anti-corrosion layerappears to be different volatility when the potential is more than-1.1V polarization.(3)When cathodic protection current density was a sharp increase orders of magnitude,anticorrosive coating has a serious cathode detachment. Cathodic protection currentdensity up to10mA/m2,3PE anticorrosive coating began to appear cathode dissectionof the phenomenon, when the current density increases rapidly to100mA/m2,anti-corrosion layer stripping obvious cathode intensified. In the soil, the averagecurrent density of cathodic protection reached0.1mA/m2anticorrosive coating began to appear cathode dissection of the phenomenon, the average current density increasesrapidly to1mA/m2, anticorrosive coating cathode stripping increased obviously.(4)with the decreasing of cathodic potential and the increasing of time,the resistance ofthe specimen decreases obviously and even sharply reduces if the cathodic potential istoo negative. It is proved that the electrolyte is easier to infiltrate the ethyleneanti-corrosion layer if the cathodic is too negative, and make the anti-corrosion failureearlier as a result.(5)3PE anticorrosive coating the happening of the cathodestripping.(6) Products of the cathode stripping area is white. Using scanning electronmicroscopy, infrared spectrum, comprehensive thermal analyzer and X-rayfluorescence spectrometer to analyze that, we kown this products are inorganic salt andorganic compound mixing. Inorganic salt are calcium, magnesium ions in the cathodestripping alkaline environment of the formation of the sediment.organic compound are3PE anticorrosive coating layer or epoxy primer the glue in alkaline conditionsdisintegrate of the products.
引文
[1]刘明辉.长输管线阴极保护参数自动采集与定位系统[D].中国石油大学,2009.
    [2]柯伟.中国腐蚀调查报告[M].北京:化学工业出版社,2003:16-17.
    [3]龚树鸣.长输天然气管道外防腐涂层选择[J].天然气与石油,2001,19(1):24-30.
    [4]武烈.我国阴极保护技术的发展及其高新技术化的探索[J].腐蚀与防护,2004,27(3):93-101.
    [5]马昌静.地埋金属管线和储罐的腐蚀及保护[J]石油库与加油站,2003,12(2):39-42.
    [6]胡士信.阴极保护工程手册[M].北京:化学工业出版社,1999:4-252.
    [7]陈群尧,王善学.埋地钢质管道新型三层PE防腐层的结构设计[J].油气储运,2001,20(1):17-22.
    [8]刘新.防腐蚀涂料与涂装应用[M].北京:化学工业出版社,2008(4):493.
    [9]范金晖.钢管外表面防腐涂层研究综述[J].湖北教育学院学报,2005,22(2):75-77.
    [10]周振良.埋地钢质管道聚乙烯防腐体系的研究[J].防腐保温技术,1998,17(2):109-113.
    [11]田长林.刘欣.张吉坤.热收缩套控制环氧粉末涂层防腐管道补口工艺[J].油气田地面工程,2001,20(5).
    [12]蔡鹤琴,符素兰,唐彬辐.辐照交联热收缩套管的制作及其应用[J].现代塑料加工应用,1995,(5):40-42.
    [13]白阳.辐射交联聚乙烯热收缩带及其工程应用[J],建材技术与应用,2003,(04):36-39.
    [14] J H Morgan. Cathodic protection in corrosion control [J].Electro analytical Chemistry,1981,118(10):251-258.
    [15]胡士信.管道阴极保护技术现状与展望[J].腐蚀与防护,2004,25(3):93-101.
    [16]秦莺.基于阴极保护的埋地管道防护层健康诊断技术研究[D].北京化工大学,2009.
    [17]杨印臣.埋地钢质管道最大保护电位的探讨[J].材料保护,2007,40(12):67-69.
    [18] J S McHattie. Factors Affecting Cathodic Disbondment of Epoxy Coatings for SteelReinforcing Bars [J].Cement&Concrete Composites,1996,(18):93-103.
    [19]张其滨,刘金霞,等.管道3PE涂层的阴极剥离性能研究[J].腐蚀与防护,2006,27(7):331-333.
    [20]潘家华.我国天然气管道工业的发展前景[J].油气储运,2006,25(8):1-5.
    [21]冯耀荣.当前国际油气管道工业的发展动向[J].油气储运,2001,24(7):1-4.
    [22] Fessler R, Markworth A J, Parkins R N. Cathodic Protection Levels under DisbondedCoatings[J].Corrosion,1983,39(1):20-25.
    [23] X Chen, X G Li. Effect of cathodic protection on corrosion of pipeline steel under disbandedcoating [J].Corrsion Science,2009,(51):2242-2245.
    [24] Toncre A C. On Achieving Polarization beneath Unbounded Pipe Coatings[J].MaterialsPerformance,1984,23(8):22-27.
    [25] Oliveira C G, Ferreira M G S. Ranking high-quality Paint Systems Using EIS.Part Ⅱ:Defective Coatings[J].Corrosion Science,2003,45(1):139-147.
    [26] J L Luo, C J Lin. Cathodic disbanding of a thick polyurethane coating from steel in sodiumchloride solution[J].Progress in Organic Coatings,1997(31):289-295.
    [27] J J Perdomo, I Song. Chemical and electrochemical conditions on steel under disbandedcoatings the effect of applied potential solution resistivity crevice thickness and holidaysize[J].Corrosion Science,2000,42(8):1389.
    [28]王志远,许海波.土壤环境中阴极保护电位对涂层的影响[J].腐蚀与防护,2005,20(1):43-46.
    [29]张丰,赵君等.管道3PE防腐层技术标准对比分析[J].油气储运,2009,28(7):48-51.
    [30]蔡克,常大伟.油气输送管3PE防腐层抗阴极剥离性能影响因素研究[J].焊管,2010,3(4):26-33.
    [31]王德增.管道防腐涂层防腐性能优化研究[D].中国石油大学,2009.
    [32] D Roy, G P Simon, M Forsyth. Towards a Better Understanding of the Cathodic DisbondmentPerformance of Polyethylene Coatings on Steel[J].Advances in PolymerTechnology,2002,21(1):44-58.
    [33] M K Harun, J Marsh, S B Lyon. The effect of surface modification on the cathodicdisbondment rate of epoxy and alkyd coatings[J].Progress in Organic Coatings,2005,(54):317-321.
    [34] Zhang Qibin, Liu Jinxia, Jianfeng, et al. A study on cathodic disbanding of3PE pipelinecoating[C].14th Asian-Pacific Corrosion Control Conference,2006,Shanghai,China.
    [35] Jack T R, Van Boven G, Wilmott M J, et al. Evaluation of coating performance after exposureto biologically active soils[J].Materials Performance,1996,35(3),39-45.
    [36] NACE SP0169-2007, Standard Practice——Control of External Corrosion on Underground orSubmerged Metallic Piping Systems[S].
    [37] ISO15589-1-2003, Petroleum and natural gas industries——Cathodic protection of pipelinetransportati[S].
    [38] GB/T23257-2009,埋地钢质管道聚乙烯防腐层[S].
    [39] SY/T5919-2009,埋地钢质管道阴极保护技术管理规程[S].
    [40] SY/T0036-2000,埋地钢质管道强制电流阴极保护设计规范[S].
    [41] GB/T21448-2008,埋地钢质管道阴极保护技术规范[S].
    [42]冯洪臣.如何限制阴极保护电位,www.Corrstop.com.
    [43]涂明跃,葛艾天.浅谈3层PE管道阴极保护电位对防腐层阴极剥离的影响[J].管道,2008,16:41-43.
    [44]吴希革.X80钢管防腐环氧粉末涂层技术的研究[J].中国涂料,2009,24(8):24-28.
    [45]魏强邦,周永峰.玻璃鳞片对环氧涂料抗阴极剥离性能的影响[J].腐蚀与防护,2008,29(8):490-491.
    [46]张其滨,张莉,李爱贵,等.基材变形对3PE防腐层性能的影响[J].石油工程建设,2009,35(6):33-35.
    [47] Jung Gu Kim, Yong Wook Kim. Cathodic protection criteria of thermally insulated pipelineburied in soil[J].Corrosion Science2001(43):2011-2021.
    [48] Worsley D A,Williams D,Ling J S G. Mechanistic changes in cut-edge corrosion induced byvariation of organic coating porosity[J].Corros.Sci.,200l,43:2335-2348.
    [49]赵增元.有机涂层阴极剥离作用研究进展[J].中国腐蚀与防腐学报,2008,28(2):116-120.
    [50] Leng A, Streckel H, Stratmann M. The delamination of polymeric coatings from steel Part3:Effect of the oxygen partial pressure on the delamination reaction and current distribution atthe metal polymer interface[J].Corros. Sci.,1999,(41):599.
    [51] Jerry L Reddinger, Kenneth M Hillman. Turning the Properties of Polyurea Elastomer Systemsvia Raw Material Selection and Processing Parameter Modulation[J].Footwear and CASESession,2001:1-6.
    [52] Smith A G,Dickie R A.Adhesion Failure Mechanisms of Primers [J]. Ind. Eng. Chem. Prod.Res. Dev.,1978,17(1):42-44.
    [53] Bierwagen G P Reflections on corrosion control by organic coatings[J].Progress in OrganicCoatings,1996(28):43-48.
    [54] Leidheiser Jr H. Cathodic delamination of polybutadiene from steel-A review[J]. J. AdhesionSci.,1987(1):79-98.
    [55] Amirudin A, Thierry D. Application of electrochemical impedance spectroscopy to study thedegradation of polymer——coated metals[J].Prog. Org. Coat.,1995,26:1-28.
    [56] Mirabedini S. M. Thompsonb G E, Moradian S, et a1. Corrosion performance of powdercoated aluminium using EIS [J]. Prog. Org. Coat.,2003,46:l12-120.
    [57] Deflorian F, Fedrizzi L. Adhesion characterization of protection organic coatings byelectrochemical impedance spectroscopy[J].J. Adhesion Sci. Techno1.,1999,13(5):629.
    [58] Haruyama, Hirayara R., Harnyama S. Electrochemical impedance for degraded coated steelhaving pores[J].Corrosion,1991,47(12):952.
    [59] Mansfeld F. Determination of coating deterioration with EIS Part1: Basic relationships[J].Corrosion,1991,47:958.
    [60] Mansfeld F, Tsai C H. Determination of coating deterioration with EIS Part2: Development ofa method for field testing of protective coatings [J].Corrosion,1993,49:726.
    [61]高志明,宋诗哲,徐云海.涂层失效过程电化学阻抗谱的神经网络分析[J].中国腐蚀与防护学报,2005,25(2):106-109.
    [62] J M Hu, J Q Zhang, C N Cao, et al. Kinetics investigation of H2/CO electrooxidation in PEFCsby the combined use of equivalent circuit fitting and mathematical modeling ofthe thmdaicimpedance, Electrochim, Acta,2004.49:5227.
    [63] P L Bonora, E Deflorian, L Fedrizzi. Electrochemical impedance spectroscopy as a tool forinvestigating underpaint corrosion[J].Electrochim. Acta,1996,41:1073-1082.
    [64]曹楚南,张鉴清.电化学阻抗谱导论[M].北京:科学出版社,2002:151-164.
    [65] W Strum, Dielectric relaxation in barrier coatings:A square root of time process[J].Progp. Org.Coat,2000,39:49.
    [66]孙秋霞,张鉴清,林昌健.用CR传输线模型研究涂层/金属体系阻抗谱[J].物理化学学报,2004,20(2):70-75.
    [67]曹楚南.腐蚀电化学原理[M].北京:化学工业出版社,2004:102-120,158-194.
    [68]龚敏,余祖孝,陈琳.金属腐蚀理论及腐蚀控制[M].北京:化学工业出版社,2009,(1):43.
    [69]闫茂成,王俭秋,等.埋地管线覆盖层下阴极保护的有效性[J].中国腐蚀与防护学报,2007,27(5):257-262.
    [70]阮景红,侯世颖.城市燃气管网安全性检测与评价[J].管道技术与设备,2005,15(3):17-19.
    [71] A W Peabody著,吴建华译.管线腐蚀控制[M].北京:化学工业出版社,2004:47-54.
    [72]Mehta P K.Concrete durability-fifty years progress[C].Proc of2ed Inter Confion ConcreteDurability,1991:1-31.
    [73]祁景玉.现代分析测试技术[M].上海:同济大学出版社,2006:12-363.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700