用户名: 密码: 验证码:
基于性能的RC剪力墙抗震设计关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于性能的抗震设计方法不仅可以提出承载力要求,还可根据业主需求同时设定预期的变形限值,从而减小结构在地震作用下所造成的损失,使其在整个生命周期内达到性价比最优,是各国制定抗震规范的方向。剪力墙通常是高层建筑的第一道抗震防线,因此在确保生命安全和减小经济损失的前提下将剪力墙设计成具有良好抗震性能的构件显得十分重要。采用基于承载力的抗震设计方法所设计的剪力墙在保证承载力方面有一定的可靠性,但无法预知结构在大震作用甚至中震作用下的真实反应。因此本文对影响剪力墙抗震性能的各因素进行了系统的分析,并基于收集到的试验数据提出以剪跨比、轴压比和弯剪比三个参数划分剪力墙的破坏形态,提出相应的划分标准;采用ABAQUS有限元软件模拟了20片国内外学者所做的RC剪力墙试件,验证了有限元模型和参数的可靠性和可行性,并在此基础上设计了133片矩形截面RC剪力墙进行有限元分析,通过整理分析结果提出小、中、大震下RC剪力墙构件的塑性变形限值。本文的主要内容如下:
     1.总结了目前国内外学者所做的剪力墙抗震性能试验研究,基于试验结果系统地分析了剪跨比、轴压比、配筋等因素对剪力墙承载力、变形能力和破坏形态等的影响。
     2.对剪力墙的破坏形态划分方法进行探讨,将收集到的60片剪力墙试验数据进行整理分析,提出以剪跨比、轴压比和弯剪比三个参数来划分RC剪力墙的破坏形态,综合考虑外力作用和剪力墙实际承载力对剪力墙破坏形态的影响,提出相应的划分标准。
     3.对收集到的20片国内外学者所做的单片悬臂剪力墙试件采用ABAQUS通用有限元软件进行模拟,其中混凝土本构采用混凝土损伤塑性模型,钢筋本构视试验数据采用理想弹塑性模型或二折线模型,将模拟得出的荷载-位移曲线和破坏形态与试验结果进行对比,发现计算结果与试验结果吻合程度较高,表明在选取适当的材料本构及有限元参数的情况下,利用ABAQUS软件对单片悬臂剪力墙进行模拟所得出的结果是可信的。
     4.在验证了有限元方法准确性和可靠性的基础上,通过变化剪跨比、轴压比、边缘纵向钢筋配筋率和弯剪比四个参数,设计了133片矩形截面RC悬臂剪力墙模型,混凝土本构采用混凝土损伤塑性模型,钢筋本构采用理想弹塑性模型利用ABAQUS进行计算,分析了上述四个参数对RC剪力墙塑性变形能力及破坏形态的影响,提出了不同剪跨比情况下RC剪力墙构件的塑性变形限值,为剪力墙基于性能的抗震设计提供相关参考。
Performance-based seismic design method can not only propose the capacity requirement, but also set a desired deformation limit according to the needs of the owner to design the structure, so that can reduce the losses that caused by the earthquake and reach the best performance-price ratio in the whole life of the structure. It is the direction of the developing of the seismic code for various countries. RC shear walls are usually the first seismic fortification line of high-rise buildings, so it is very important to design the RC shear walls to have good seismic performance in the premise of ensuring safety and reducing economic loss. RC shear walls that are designed by capacity-based design method have a certain reliability in ensuring the capacity, but can not predict the real response of the structures under the effect of rare earthquake even design earthquake. In this paper, systemic analysis about the impacts of facts on the seismic performance of RC shear wall is carried out. A classification criterion of RC shear wall failure mode is proposed based on collected experimental data, in the criterion there is contained three parameters that are shear span ratio, axial load ratio and flexure shear ratio. The reliability and feasibility of the FE model and parameters are verified by simulating 20 RC shear wall specimens tested by internal and abroad scholars using ABAQUS finite element software, based on this a set of rectangular RC shear walls are designed to do FE analysis and plastic performance limits of RC shear wall under frequent earthquake, design earthquake and rare earthquake are proposed by arranging the analyzed results. The main contents in this paper are as follows:
     1. Summarize the RC shear wall seismic performance experimental researches done by internal and abroad scholars, and systemically analysis about the impacts of facts such as shear span ratio, axial load ratio, reinforcing conditions on the capacity, deformability and failure mode of RC shear wall.
     2. Study the classifications of RC shear wall failure mode. Analysis the collected experimental data of 60 RC shear walls and propose a new RC shear wall failure mode classification criterion which is contained three parameters that are shear span ratio, axial load ratio and flexure shear ratio, the criterion considers the effect of external force and the actual capacity of RC shear wall.
     3. Simulate 20 single slice cantilevered RC shear wall specimens tested by internal and abroad scholars using ABAQUS finite element software. In the simulation, concrete damage plasticity mode is used for concrete as the constitutive model, and perfect elastic-plastic model or double-slash model is used for reinforcing bar according to corresponding experiments. Comparison of load-deformation curve and failure modes of the specimens between the calculated result and experimental result is done, finding that the calculated result agree well with the experimental result. It is indicated that the calculated result of single slice cantilevered RC shear wall simulated by using ABAQUS is credible when suitable material constitutive models and FE parameters are selected.
     4. On the basis of the accuracy and feasibility of FE method, the author designs 133 rectangular cantilevered RC shear walls as the shear span ratio, axial load ratio, boundary vertical reinforcement ratio and flexure shear ratio changed, and calculates the 133 RC shear walls by using concrete damage plasticity model for concrete and perfect elastic-plastic model for reinforcing bars. Analysis about the impacts of the four parameters on the plastic deformability and failure mode of RC shear wall are conducted. The plastic deformation limits of RC shear wall components with different shear span ratios are proposed based on the analyzed result, it can provide corresponding reference for performance-based seismic design of RC shear wall.
引文
[1] GB50011-2001,建筑抗震设计规范[S].北京:中国建筑工业出版社, 2001
    [2]龚思礼,王广军.建筑抗震设计[M].北京:中国建筑工业出版社, 1994
    [3]徐培福,傅学怡,王翠坤等.复杂高层建筑结构设计[M].北京:中国建筑工业出版社, 2005
    [4]高立人,方鄂华,钱稼茹.高层建筑结构概念设计[M].北京:中国计划出版社, 2005
    [5]李宏男.结构多维抗震理论[M].北京:科学出版社, 2006
    [6] SEAOC Vision 2000 Committee. Performance-Based Seismic Engineering of Buildings[S]. Report Prepared by Structural Engineers Association of California, Sacramento, California, USA, 1995
    [7]左春仁,左振宇.基于地震损伤性能的抗震设计方法[J].大连大学学报, 2000, 21(6):1-7
    [8]周定松,吕西林,蒋欢军.钢筋混凝土框架结构基于性能的抗震设计方法[J].四川建筑科学研究, 2005, 31(6):122-127
    [9]吕西林,周定松,蒋欢军.钢筋混凝土框架柱的变形能力及基于性能的抗震设计方法[J].地震工程与工程振动, 2005, 25(6):53-61
    [10]黄志华,吕西林,周颖.钢筋混凝土剪力墙的变形能力及基于性能的抗震设计[J].地震工程与工程振动, 2009, 29(5):86-93
    [11]钱稼茹,徐福江.钢筋混凝土剪力墙基于位移的变形能力设计方法[J].清华大学学报(自然科学版), 2007, 47(3):305-308
    [12] Jing Ji, Qi-Yan Xiao, Chao Huang, et al. Research on Performance Levels of RC Shear Wall by Performance-Based Seismic Design Method[A]. Jie Li, Bo Wu, Zhishen Wu, et al. Proceedings of the International Symposium on Innovation & Sustainability of Structures in Civil Engineering[C]. Guangzhou, China: South China University of Technology Press, 2009: 1408-1413
    [13] SEAOC Vision 2000 Committee. A framework for performance-based engineering [S]. SEAOC Vision 2000, 1995
    [14] ATC 40. Seismic evaluation and retrofit of concrete buildings[S]. California Seismic Safety Commission, USA, 1996
    [15] Federal Emergency Management Agency. NEHRP guidelines for seismic rehabilitation of buildings [S]. FEMA 273, 1997
    [16] Sigmund A. Freeman, et al. Evaluations of Existing Buildings for Seismic Risk-A Case Study of Puget Sound Naval Shipyard[A]. Proceedings of the U. S. National Conference on Earthquake Engineers[C]. Bermerton, Washington, EERI, Berkeley, 1975: 113-122
    [17] P. Fajfar, P. Gaspersic. The N2 Method for the Seismic Damage Analysis of RC Buildings[J]. Earthquake Engineering and Structure Dynamics, 1996, 25(1):31-46
    [18] P. Fajfar. Capacity Spectrum Method Based on Demand Spectra[J]. Earthquake Engineering and Structure Dynamics, 1999, 28(5): 979-993
    [19] Chopra A K, Goel R K. A Modal Pushover Analysis Procedure for Estimating Seismic Demands for Buildings[J]. Earthquake Engineering and Structure Dynamics, 2002, 31(3)
    [20]季静,李首方,韩小雷等.无边缘约束构件剪力墙的对比试验研究[J].建筑科学, 2007, 23(11):41-45
    [21]蒋欢军,吕西林.沿竖向耗能剪力墙的低周反复荷载试验研究[J].工程力学, 2007, 24(增刊):649-654
    [22]章红梅,吕西林,鲁亮等.边缘约束构件对钢筋混凝土剪力墙抗震性能的影响[J].地震工程与工程振动, 2007, 27(1):92-98
    [23]章红梅,吕西林,杨雪平等.边缘构件配箍对钢筋混凝土剪力墙抗震性能的影响[J].结构工程师, 2008, 24(5):100-104, 118
    [24]张松,吕西林,章红梅.钢筋混凝土剪力墙配箍参数设计方法试验研究[J].结构工程师, 2009, 25(1):83-89
    [25]曹万林,王敏,王绍合等.矩形钢管混凝土边框组合剪力墙及筒体结构抗震研究[J].工程力学, 2008, 25(增刊I):58-70
    [26]曹万林,吴定燕,杨兴民等.双向单排配筋混凝土低矮剪力墙抗震性能试验研究[J].世界地震工程, 2008, 24(4):19-24
    [27]曹万林,吴定燕,杨兴民等.双向单排配筋中高剪力墙抗震性能试验研究[J].地震工程与工程振动, 2009, 29(1):103-108
    [28]曹万林,孙天兵,杨兴民等.双向单排配筋混凝土高剪力墙抗震性能试验研究[J].世界地震工程, 2008, 24(3):14-19
    [29]李宏男,李兵.钢筋混凝土剪力墙抗震恢复力模型及试验研究[J].建筑结构学报, 2004, 25(5):35-42
    [30]李宏男等.大连国际贸易硬大厦型钢(钢筋暗柱)斜支撑钢筋混凝土剪力墙抗震性能试验报告[R].大连:大连理工大学土木水利学院抗震研究所, 2004
    [31] Alessandro Dazio, Katrin Beyer, Hugo Bachmann. Quasi-static cyclic tests and plastic hinge analysis of RC structural walls[J]. Engineering Structures, 2009, 31(7):1556-1571
    [32] John H. Thomsen IV, John W. Wallace. Displacement-Based Design of Slender Reiforced Concrete Structural Walls—Experimental Verification[J]. Journal of Structural Engineering, 2004, 130(4):618-630
    [33] P. Riva, A. Meda, E. Giuriani. Cyclic behaviour of a full scale RC structural wall[J]. Engineering Structures, 2003, 25(6):835-845
    [34] JGJ 3-2002,高层建筑混凝土结构技术规程[S].北京:中国建筑工业出版社, 2002
    [35]王立长,李凡,朱维平等.设置暗支撑钢筋混凝土剪力墙抗震性能试验研究[J].建筑结构学报, 2007, 28(S1):51-58
    [36]庄一舟.低周反复荷载下钢筋煤矸石混凝土剪力墙的力学性能[J].浙江大学学报(工学版), 2005, 34(3):325-330
    [37]韩小雷等.广州花园酒店西塔“白金五星级酒店”改造结构抗震试验研究报告[R].广州:华南理工大学建筑学院, 2007
    [38] R.K.L. Su, S.M. Wong. Seismic behaviour of slender reinforced concrete shear walls under high axial load ratio[J]. Engineering Structures, 2007, 29(8):1957-1965
    [39] Hui Liu. Effect of concrete strength on the response of ductile shear walls[D]. Montreal, Canada: McGill University, 2004
    [40]龚治国,吕西林,姬守中.不同边缘构件约束剪力墙抗震性能试验研究[J].结构工程师, 2006, 22(1):56-61
    [41]过镇海,时旭东.钢筋混凝土原理和分析[M].北京:清华大学出版社, 2003
    [42] A.K.H. Kwan, X.G. He. Finite element analysis of effect of concrete confinement on behavior of shear walls[J]. Computers and Structures, 2001, 79(19):1799-1810
    [43] Xiang Yuan Chen. Effect of confinement on the response of ductile shear walls[D]. Montreal, Canada: McGill University, 2005
    [44]沈聚敏,翁义军,冯世平.周期反复荷载下钢筋混凝土压弯构件的性能[J].土木工程学报, 1982, 15(2):53-64
    [45]中国建筑科学研究院,北京市建筑设计院等.钢筋混凝土剪力墙试验研究. 1975
    [46]刘伯权,钱国芳,童岳生.高层剪力墙的强度及变形性能的研究[J].西安冶金建筑学院学报, 1989, 21(1):10-18
    [47]周云,刘自力,刘丰.一字形短肢剪力墙抗震性能的模型试验研究[J].建筑结构学报, 2008, 29(4):81-88
    [48]刘翠兰,祁学仁.陶粒砼剪力墙的试验研究[J].建筑结构学报, 1991, 12(6):62-71
    [49]李淑春,刁波,苏幼坡等.轻钢筋骨混凝土剪力墙结构抗震性能的试验[J].工业建筑, 2007, 37(2):89-92
    [50]邱计划.钢纤维增强部分混凝土剪力墙受力性能试验研究[D].郑州:郑州大学, 2007
    [51]张同亿,张兴虎,吴敏哲等.带框复合墙抗震性能试验研究[J].西安建筑科技大学学报, 2000, 32(3):209-212
    [52]李少云.带竖缝剪力墙及其结构控制性能的研究[D].广州:华南理工大学, 1989
    [53]董宏英.带暗支撑双肢剪力墙抗震性能试验及设计理论研究[D].北京:北京工业大学, 2002
    [54]唐兴荣,蒋永生,丁大钧.一种新型低剪力墙的试验研究[J].东南大学学报, 1994, 24(3):53-58
    [55]曹万林,杨兴民,黄选明等.带钢筋及钢骨暗支撑剪力墙抗震性能的试验研究[J].世界地震工程, 2005, 21(1):1-6
    [56]张建伟,曹万林,王志惠等.高轴压比下内藏桁架的混凝土组合中高剪力墙抗震性能研究[J].工程力学, 2005(增刊II):158-163,203
    [57]陶军平,曹万林,张静娜等.内藏钢桁架混凝土组合低剪力墙抗震性能试验研究[J].世界地震工程, 2006, 22(2):131-137
    [58]曹万林,刘强,张建伟等.再生混凝土低矮剪力墙抗震性能试验研究[J].世界地震工程, 2009, 25(1):1-5
    [59]陶鹤进,于庆荣,史新亚.钢筋粉煤灰陶粒砼剪力墙受力性能的试验研究[J].建筑结构学报, 1994, 15(4):20-30,77
    [60]刘春燕.钢筋混凝土带暗支撑剪力墙抗震性能试验研究[D].北京:北京工业大学, 2000
    [61]左晓宝,戴自强,李砚波.改善高强混凝土剪力墙抗震性能的试验研究[J].工业建筑, 2001, 31(6):37-39
    [62] Sooh Ho Cho, Bryce Tupper, William D. Cook, et. al. Stuctural steel boundary elements for ductile concrete walls[J]. Journal of Structural Engineering, 2004, 130(5):762-768
    [63]钱稼茹,魏勇,赵作周等.高轴压比钢骨混凝土剪力墙抗震性能试验研究[J].建筑结构学报, 2008, 29(2):43-50
    [64]曹万林,徐泰光,刘强等.再生混凝土高剪力墙抗震性能试验研究[J].世界地震工程, 2009, 25(2):18-23
    [65]陈勤,李耕勤,钱稼茹等. HRB400级钢筋焊接网剪力墙试验研究[J].混凝土, 2002年第7期(总第153期):18-22
    [66] Inc ABAQUS. ABAQUS user manual, version 6.8[M]. 2008
    [67]江见鲸,陆新征,叶列平.混凝土结构有限元分析[M].北京:清华大学出版社, 2005
    [68]康清梁等.钢筋混凝土有限元分析[M].北京:中国水利水电出版社, 1996
    [69]沈聚敏,王传志,江见鲸.钢筋混凝土有限元与板壳极限分析[M].北京:清华大学出版社, 1993
    [70]刘劲松,刘红军. ABAQUS钢筋混凝土有限元分析[J].装备制造技术, 2009年第6期:69-70,107
    [71]方秦,还毅,张亚栋等. ABAQUS混凝土损伤塑性模型的静力性能分析[J].解放军理工大学学报(自然科学版), 2007, 8(3):254-260
    [72] J. Lubliner, J. Oliver, S. Oller, et al. A Plastic-Damage Model for Concrete[J]. International Journal of Solids and Structures. 1989, 25(3): 299-326
    [73] J. Lee, G. L. Fenves. Plastic-Damage Model for Cyclic Loading of Concrete Structures[J]. Journal of Engineering Mechanics. 1998, 124(8): 892-900
    [74] GB50010-2002,混凝土结构设计规范[S].北京:中国建筑工业出版社, 2002
    [75]王金昌,陈开页. ABAQUS在土木工程中的应用[M].杭州:浙江大学出版社, 2006
    [76]过镇海.混凝土的强度和本构关系原理与应用[M].北京:中国建筑工业出版社, 2004
    [77] CECS 43:92,钢筋混凝土装配整体式框架节点与连接设计规程[S].北京:中国建筑工业出版社, 1992
    [78]张秀琴,过镇海,王传志.反复荷载下箍筋约束混凝土的应力-应变全曲线方[J].工业建筑, 1985, (12): 16-20
    [79]钱稼茹,程丽荣,周栋梁.普通箍筋约束混凝土柱的中心受压性能[J].清华大学学报(自然科学版), 2002, 42(10): 1369-1373
    [80]吕文,钱稼茹,方鄂华.钢筋混凝土剪力墙延性的试验和计算[J].清华大学学报(自然科学版), 1999, 39(4): 88-91
    [81] Park R, Paulay T. Reinforced Concrete Structures[M]. New York: John Wiley & Sons, 1975
    [82] GB 1499.1-2008,《钢筋混凝土用钢第1部分:热轧光圆钢筋》[S].北京:中国标准出版社, 2008
    [83] GB 1499.2-2007,《钢筋混凝土用钢第2部分:热轧带肋钢筋》[S].北京:中国标准出版社, 2008
    [84] Kowalsky M J. RC structural walls design according to UBC and displacement-based methods[J]. Journal of Structural Engineering, 2001, 127(5):506-515
    [85] Federal Emergency Management Agency. Prestandard and Commentary for the Seismic Rehabilitation of Buildings[S]. FEMA356, 2000

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700