用户名: 密码: 验证码:
桁架式SRC梁-RC柱组合节点抗震性能及设计方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
桁架式钢骨混凝土框架梁作为一种新型钢骨混凝土结构构件,改变了传统的空腹格构式型钢混凝土结构形式:型钢为角钢放置在构件的四角,型钢面积、刚度小,易发生角钢失稳屈服。以T形型钢代替传统的角钢配置在梁的上、下部位,T形型钢用腹杆相连,构成桁架式钢骨混凝土框架梁构件。梁中的钢骨以T形型钢代替了传统的以角钢为主的空腹格构式角钢骨架,型钢位置可根据实际工程进行位置及尺寸调整。在节点核心区域及梁端部用交叉腹杆连接上、下型钢,相当于一被动抗震耗能装置,能起到较好的耗能减震作用。本文就桁架式钢骨混凝土(SRC)梁应用于组合结构中,与普通钢筋混凝土(RC)柱组成的组合节点的抗震性能及设计计算理论进行了系统研究,主要研究内容及成果概括如下:
     为研究该结构构件的力学及抗震性能,共对12个桁架式SRC梁-RC柱组合边节点在低周反复荷载作用下进行了试验研究。试件考虑了型钢、角钢和轴压比三个因素的变化。试验观察了构件破坏过程,测得了节点梁端荷载-位移曲线和骨架曲线以及各阶段的应变、荷载和位移值,并分析了节点的延性、能量耗散能力、抗剪性能。试验研究表明,该节点形式具有很好的延性和能量耗散能力,证明在节点区及梁端配有交叉腹杆的桁架式钢骨混凝土梁结构节点连接方式是可靠的,节点能够有效传递弯矩和剪力。
     在试验研究的基础上建立了恢复力模型,模型能够很好符合试验结果。同时建立了节点地震损伤模型,模型基于最大变形及累积耗能的非线性组合,分析了桁架式SRC梁-RC柱组合节点损伤的累积发展过程和规律,通过损伤模型计算的损伤结果及各试件损伤对比分析,讨论了含钢率、轴压比及交叉腹杆对节点损伤发展的影响。结果表明:加载后期,轴压比大、含钢率高或交叉腹杆强的节点具有更大的损伤值。上述建立的模型为节点非线性地震反应时程分析和损伤评估提供了科学理论基础。
     根据试验结果,型钢骨架与混凝土之间在完全破坏前不产生粘结滑移,同时考虑各种材料的非线性,对桁架式钢骨混凝土框架梁节点和框架试件进行了有限元分析;比较精确地模拟分析了在低周反复荷载作用下节点的受力性能及各材料的应力分布情况,可弥补试验研究中无法了解到的受力情况。通过对比计算结果与试验结果,验证了数值模拟的可行性。同时分别考虑节点中含钢率、交叉腹杆和柱轴压比三个因素的影响。结果表明:在其它情况相同时,交叉腹杆的设置及T形型钢的特性起到了延缓节点破坏的作用,型钢及交叉腹杆的有力约束改善了结构的延性,在一定程度上提高了节点承载力;轴压比能在一定程度上提高节点抗剪承载能力,但是降低了其延性。
     基于节点试验研究情况和有限元分析结果,确定了节点各组成部分的抗剪贡献,对节点核心区受力及传力机理进行了分析,并定量分析了各部分在不同受力阶段的节点抗剪能力的组成。考虑轴压比、箍筋及交叉腹杆对节点抗剪承载能力的影响,并确定了节点抗剪计算中混凝土强度影响系数,提出了架式SRC梁-RC柱组合边节点的抗裂、抗剪承载力计算公式。
     对两榀约1:2的单跨两层的桁架式钢骨混凝土梁的框架缩尺模型进行了试验研究,采用拟静力试验方法,实测框架结构的顶端位移-荷载、柱底总荷载-顶端位移曲线等。通过试验,对上述两榀框架在地震中的破坏特点、耗能性能、延性指标进行了分析。在低周反复荷载作用下,分析框架结构由于损伤累积引起结构整体刚度和强度的变化,结果表明该框架结构具有良好的弹性工作性能、延性及耗能性能,安全储备较高,可应用于地震烈度为8度以上地区。
     综合以上试验及有限元分析结果,提出了桁架式钢骨混凝土框架梁基于抗震性能的设计计算理论。并对节点的构造形式和构造措施给出了相关建议。同时对桁架式钢骨混凝土梁的设计、构造提出了一些建议,相关内容可以作为进一步研究的基础。
As a new form of steel reinforced concrete structure, the beam filled truss steel are brought forward which is named steel truss encased reinforced concrete beam (SRC beam with encased steel truss). The new structure is different to the traditional lattice type steel reinforced concrete structure:angle steel for the components placed in the corners that the steel area and the stiffness is small, prone to loss angle stable yield. T-shaped steel replaced in the upper and lower parts of the beam, which connected with a belly to form truss-type steel reinforced concrete frame beam.T-shaped steel can be placed to suitable position according to the position and size of the beam with construction.In the core area of the joint and the end of the beam, T-shaped steel connected with the cross angle steel.The new structure equivalent a passive seismic energy dissipation devices to play the role of energy dissipation.In this paper, the seismic performance and design calculation are studied systematicly of the steel reinforced concrete beam with encased steel truss, the main contents and results are summarized as follows:
     To study mechanical characteristics and seismic behaviors of steel truss SRC beam, low-cyclic reversed loading tests were carried out on12steel truss SRC beam-RC column frame joints.The specimen are designed considering variety of three factors, which are shape steel, angle steel and axial compression ratio.Failure process under low-cyclic reversed loading are observed, the load-displacement hysteresis loops, skeleton curves, strain and the load-displacement values are tested.Then the ductility, energy dissipation capacity, characteristics, shear property and proportion of function are analyzed.The experimental study indicates that the specimens have good ductility and good energy dissipation capacity.The experimental result indicates that the joints of beam configured with steel and crossed angel steel is effective, and the shear bearing capacity of core area of joints can be improved greatly.Based on the analysis of test data, the skeleton curves of restoring force model are built up and the model agrees with the test results well.The result can be useful reference to engineering.The result can be reference to seismic behaviors of the nonlinear seismic response and time history analysis.
     Damage model was developed based on nonlinear combination of maximum strain and accumulative dissipation energy.Then the evolution of cumulative damage and the damage growth law were investigated.Finally by comparing the calculated damage models with the observed real damage of the joints, influences of three factors, shape steel, cross web members and axial compression ratio, on damage development of joints with SRC beam with encased steel truss were studied.The results show that joints with higher shape steel proportion, stronger cross web members and higher axial compression ratio makes joint behave better in energy dissipation and loading capacity in the calculated damage.
     Based on the results of test, finite element analysis was presented considering material nonlinear and no bond-slip between steel truss and conerete. The finite element analysis can get more precise simulation analysis under low reversed cyclic load and the stress distribution of material. The results of FEM (finite element analysis) are reasonable and the comparison between FEM result and test result under different steel ratio, different cross web members and different axial compression ratio shows the accuracy of the proposed method.The result indicates that cross section and steel can delay joint damage and improve the bearing capacity; axial load can improve joints shear capacity to some extent but joints ductility is decreased; the constraint of steel to concrete can make improvement to brittleness character of concrete because of its poor ductility.
     Based on the experiment and the result of finite element analysis, each factor on the shear capacity is determined.The resistant mechanism and failure pattern of frame joints of SRC beam with encased steel truss are analyzed, and the contribution to shear bearing capacity of each part is analyzed at different loading stage quantitatively. Considering variety of three factors, which are shape steel, angle steel and axial compression ratio, the calculation formulas wrer put forward for crack resistance and shear bearing capacity of such joints.
     The seismic evaluation of two about1/2scaled model of one span and two-story frame of SRC beam with encased steel truss was tested with the quasi-static test method.In the quasi-static test, the displacement-hysteretic curves were achieved.Then, the characteristics of failure, the energy consuming behavior and ductility of the structure were analyzed.Under the low-cyclic loading, the whole stiffness and damping ratio variation of the frame due to damage cumulative, the framework structure with flexible working performance, good ductility and energy dissipation. As a result, it can be concluded that the SRC beam with encased steel truss can be used in the region where seismic intensity is above8degree.
     Based on the above experimental and finite element analysis results, performance based seismic design and a calculation theory are proposed.The relative content of the paper can be used to do more research on the seismic behavior of the SRC beam with encased steel truss.
引文
[1]赵鸿铁.钢与混凝十组合结构[M].北京:利·学出版社,2001.
    [2]钟善桐.钢-混凝土组合结构在我国的研究与应用[J].钢结构,2000,15(4):41-46.
    [3]Berczynski Stefan, Wroblewski Tomasz. Experimental verification of natural vibration models of steel-concrete composite beams[J]. Journal of vibration and control,2010,16(14):2057-2081.
    [4]Shunichi Nakamura.Construction consideration for composite steel-and-concrete floor systems[J]. Journal of Structural Engineering,2002,128(9):1099-1110.
    [5]白晓红,白国良.新型钢-混凝土组合结构的应用与展望[J].工业建筑,2006,36:521-527.
    [6]聂建国,刘明,叶列平.钢-混凝土组合结构[M].北京:中国建筑工业出版社,2005.
    [7]Bursi Oreste S, Sun Feifei, Postal Stefano. Nonlinear an anlysis of steel-concrete composite frames with full and partial shear connection subjected to seismic loads[J]. Journal of Constructional Steel Research,2005,61(1):67-92.
    [8]El-Tawil, S., Sanz-Picon, C.F., and Deierlein, G.G.Evaluation of ACI 318 and AISC(LRFD)strength provision for composite beam-columns[J]. Journal of Constructional Steel Research,1995(34).
    [9]Munoz, P.R., and Hsu, C.T.T.Biaxially loaded concrete-encased composite columns design equation[J].Journal of Structural Engineering, ASCE,1997,123(12).
    [10]Mirza, S.A, Hyttinen, V., and H yttinen, E.Physicalte stsand analyses of composite steel-concrete beam-columns[J].Journal of Structural Engineering, ASCE,1996,122(11).
    [11]Ricles, J.M., and Pabocjian, S.D.Seismic performance of steel-encased composite columns[J].Journal of Structural Engineering, ASCE,1994,120(9).
    [12]Padmarajaiah S K, Ram aswam y Ananth. Flexural strength predictions of steel fiber reinforced high-strength concrete in fully/partially prestressed beam specimens[J]. Cement and Concrete Composites,2004,26(4):275-290.
    [13]Weng, C.C., Yen, S.I., and Jiang, M.H.Experimental study on shears plitting failure of full-scale compositec oncrete encased steel beams[J].Journal of Structural Engineering, ASCE,2002,128(9).
    [14]梅村魁,等.劲性钢筋混凝土结构的抗震设计[M].北京:中国建筑科学研究院,1988.
    [15]AIJ.AIJ Standards for Structural Calculation of Steel Reinforced Concrete Structures,1987.
    [16]Satake N, Suda K, and Arakawa T. Damping evaluation using full-scale data of buildings in Japan[J]. Journal of Structural Engineering[J].ASCE,2003,129(4):470-477.
    [17]Shunichi Nakamura.Bending behavior of composite girders with cold formed steel U section[J] Journal of Structural Engineering,2002,128(9):1169-1176.
    [18]Enrico Spacone, Sherif EI-Tawil.Nonlinear analysis of steel-concrete composite structures state of the art[J].Journal of Structural Engineering,2004(2):159-168.
    [19]梁柱节点专题组.劲性钢筋混凝土梁柱节点受力性能及受剪承载力.混凝土结构研究报告选集(3).北京:中国建筑工业出版社,1994.
    [20]劲性混凝土结构性能及设计方法课题组.劲性钢筋混凝土结构性能及设计方法综合报告.北京:中国建筑工业出版社,1991.
    [21]白国良,姜维山,薛建阳等.配角钢骨架型钢混凝土梁承受施工荷载的强度和刚度[J].西安建筑科技大学学报,1996,28(4):378-382.
    [22]白国良,陈小英.空腹式型钢混凝_土(SRC)梁正截面承载力计算[J].钢-混凝土组合结构,2000,15(1):50-53.
    [23]薜建阳,王满,赵鸿铁.混凝土内含钢骨架梁抗弯刚度计算[J].西安建筑科技大学学报,1995,27(3):335-341.
    [24]薜建阳,赵鸿铁.混凝土内含钢骨架梁的延性及计算方法[J].建筑结构,2000(12).
    [25]王颖,唐柏鉴.江苏工业学院武进校区一号教学楼24m跨转换结构设计[J].结构工程师,2005,21(5):9-15.
    [26]段建中,郭宝军.空间角钢骨架加强节点变形及抗剪能力试验[J].合肥工业大学学报(自然科学版)2003,26(6):1203-1207.
    [27]Chen S F, Teng J G, Chan S L.Design of biaxially loaded short composite columns of arbitrary section[J].Journal of Structural Engineering, ASCE,2001,127(6):678-685.
    [28]Walter P.Moore.Composite design provisions 2005 AISC specification for steel buildings[J].Journal of Structures,2005:1-4.
    [29]Chin-Tung Cheng, Lap-loi Chung.Seismis performance of steel beams to concrete-filled steel tubular column connections[J].Journal of constructional steel research,2002(59):405-426.
    [30]Chung-Che Chou, Chia-Ming Uang.Cyclic performance of a type of steel beam to steel-encased reinforced concrete column moment connection[J].Journal of constructional steel research,2001(58): 637-663.
    [31]王连广,李立新,周风雨.钢骨混凝土梁非线性有限元分析[J].沈阳建筑工程学院学报,2001,17(1):1-3.
    [32]王连广,李立新,梁玉君等.钢骨混凝土受弯构件非线性全过程分析[J].沈阳建筑工程学院学报,2001,17(2):1-3.
    [33]吕西林.截面中部配置型钢地混凝土剪力墙抗震性能研究[J].地震工程与工程振动,2006,26(6):101-107.
    [34]钱冬江.钢骨混凝土节点抗震性能的试验研究[D].南京:东南大学土木工程学院,2003.
    [35]殷杰,梁书亭,蒋永生等.梁柱斜交的钢骨混凝土节点构造及抗震性能试验[J].工业建筑,2003,33(4):69-71.
    [36]徐亚丰,王连广,曹阅等.钢骨高强混凝土框架节点抗剪承载力的理论分析[J].东北大学学报(自然科学版(自然科学版),2003,24(4):386-388.
    [37]蔡益燕.对组合结构应用的几点思考[J].建筑钢结构进展,2002,4(3):32-35.
    [38]王连广,李立新.国外型钢混凝土(SRC)结构设计规范基础介绍[J].建筑结构,2001,31(2):23-24.
    [39]蒋永生,王群依,梁书亭等.新型钢-混凝土组合结构构件的研究与应用[J].东南大学学报(自然科 学版),2003,33(5):534-543.
    [40]高立人.钢梁-混凝土柱组合框架结构在国外的发展[J].建筑结构,2002,32(5):34-37.
    [41]陈丽华.新型外包钢-混凝土组合连续梁及梁柱节点的试验研究[D].同济大学,2005.
    [42]薛建阳,赵鸿铁.型钢混凝土框架振动台试验及弹塑性动力分析[J].土木工程学报,2000,33(2):30-34.
    [43]张海霞,周兴国,王连广等.钢骨高强混凝土框架节点拟动力试验研究[J].东北大学学报(自然科学版),2004,25(8):796-799.
    [44]徐亚丰,王连广,等.钢骨高强混凝土框架节点恢复力模型的研究[J].兰州理工大学学报,2004,30(5):462-464.
    [45]傅传国,娄宇.预应力钢筋混凝土结构试验研究及工程应用[M].北京:科学出版社,2007.
    [46]钟新谷,舒小娟.钢-混凝土组合梁正截面承载力的初步研究[J].土木工程学报,2002,35(6):73-78.
    [47]范旭红,石启印.结构地震反应分析的状态空间法[J].江苏大学学报,2003,24(4):74-77.
    [48]范旭红,石启印,马波.钢-混凝土组合梁的研究与展望[J].江苏大学学报,2004,25(1):89-92.
    [49]Yang C, Cai J, and Wu Y. Behaviors of box-shape steel reinforced concrete composite beam[J]. Structural Engineering and Mechanics,2006(22):419-432.
    [50]刘坚.钢与混凝土组合结构设计原理[M].北京:科学出版社,2005.
    [51]赵鸿铁,杨勇,薛建阳等.型钢混凝土粘结滑移力学性能研究及基本问题[J].力学进展,2003,33(1):74-86.
    [52]周学军,王敦强.钢与混凝土组合结构设计与施工[J].山东科学技术出版社,2005.
    [53]强静延.空腹桁架式钢骨混凝土柱抗震性能与轴力分配试验研究[D].西南交通大学,2002.
    [54]Soo-yeon Seo, Hyun-Do Yun, Seung-hun Kim.Structural resistance of SRC column-steel beam joint developed for innovative construction of buildings[J]. Journal of Iron And Steel Research International.2011,18(1):924-928.
    [55]上海长福结构设计事务所.钢管混凝土结构在高层住宅中的应用与探讨[J].建筑门窗与金属建材,2003,8(1):5-8.
    [56]钟建海.复杂截面型钢-混凝土组合柱的设计与分析[D].浙江大学,2003.
    [57]Sherif El-Tawil.Strength and ductility of concrete encased composite columns[J].The Journal of structural Engineering, ASCE.1999,25(9).
    [58]陈贺功.桁架式钢骨混凝土梁斜截面承载力试验[D].广西大学,2009.
    [59]刘巍.桁架式钢骨混凝土正截面承载力试验[D].广西大学,2009.
    [60]中国建筑科学研究院.JGJ101-96建筑抗震试验方法规程[S].北京:中国建筑工业出版社出版.1997.
    [61]唐九如.钢筋混凝土框架节点抗震[M].东南大学出版社.1988.
    [62]框架节点专题研究组.低周反复荷载作用下钢筋混凝土框架梁柱节点核心区抗剪强度的试验研究[J].建筑结构学报,1983,4(6):1-17.
    [63]郭子雄,杨勇.恢复力模型研究现状及存在问题[J].世界地震工程,2004,20(4):47-51.
    [64]Pandey G. R., Mutsuyoshi H., Maki T. Seismic performance of bond controlled RC columns[J]. Engineering Structures,2008,30(9):2538-2547.
    [65]曾磊.型钢高强高性能混凝土框架节点抗震性能及设计计算理论研究[D].西安:西安建筑科技大学,2008.
    [66]陈宏,李兆凡等.钢框架梁柱节点恢复力模型的研究明[J].工业建筑,2002,3(2):64-66.
    [67]Guo ZX, Yang Y. Experimental study on the deformation characteristics of RC beam-column subassemblages[J]. Structural Engineering And Mechanics,2005,21(4):393-406.
    [68]Ghobarah A, Abon-Elfath H H, Biddah A. Response-based damage assessment of structures[J]. Earthquake Engineering & Structural Dynamics,1999,28(1):79-104.
    [69]Zheng ShanSuo, Wang Bin, Li Lei.Study on seismic damage of SRHSC frame columns[J]. Science China-Technological Sciences,2011,54(11):2886-2895.
    [70]吴波,李惠,李玉华.结构损伤分析的力学方法[J].地震与工程振动,1997,13(1):14-44.
    [71]Sreekala R., Lakshmanan N., Muthumani K., etc. Development of a simplified damage model for beams aiding performance based seismic design[J].Advances In Structural Engineering,2011,14(2): 307-317.
    [72]Park Y J, A A H.Mechanistic seismic damage model for reinforced concrete[J].J.Strcc.Engrg., ASCE.1985,111(4):722-739.
    [73]Newmark, Rosenblueth. Fundamentals of earthquake engineering[Z].1974.
    [74]Darwin D, Nmai C K.Energy dissipation in RC beams under cyclic load[J].J.Struc.Engrg., ASCE.1986,112(8):1826-1846.
    [75]Krawinkler H, Zohei M.Cumulative damage in steel structures subjected to earthquake ground motion[J].Computers and structures.1983,16(4):531-541.
    [76]Gosain N K, Brown R H, Jirsa J O.Shear requirements for load reversals on RC members[J].J.Struc.Engrg., ASCE.1977,103(ST7):1461-1476.
    [77]Hwang T H, Scribner C F. RC member cyclic response during various loading[J].J.Struc.Engrg., ASCE.1984,110(3):477-489.
    [78]Banon H, Veneziano D. Seismic safety of reinforced concrete members and structures [J]. Earthquake engineering and structural dynamics.1982,10:179-193.
    [79]刘劲松,刘红军.ABAQUS钢筋混凝土有限元分析[J].装备制造技术,2009.6
    [80]石亦平,周玉蓉ABAQUS有限元分析实例详解[M].北京:机械工业出版社,2007.
    [81]庄茁,张帆,岑松ABAQUS非线性有限元分析与实例[M].北京:科学出版社,2005.
    [82]吕西林,金国芳,吴晓涵.钢筋混凝土结构非线性理论与应用[M].上海:同济大学出版,1997.
    [83]ABAQUS Analysis User's Manua.ABAQUS Inc,2006.
    [84]王金昌,陈页开Abaqus在土木工程中的应用[M].杭州:浙江大学出版社,2006.
    [85]方修君,金峰.基于ABAQUS平台的扩展有限元法[J].工程力学.2007,24(7):6-10.
    [86]张伟,伍鹤皋,苏凯ABAQUS在大体积钢筋混凝非线性有限元分析中的应用评述[J]·水力发电 学报,2005,(5):70-74.
    [87]刘义.型钢混凝土异形柱框架节点抗震性能及设计方法研究[D].西安建筑科技大学,2009.
    [88]张国丽,苏军.基于ABAQUS的钢筋混凝土非线性分析[J].科学技术与工程,2008.10.
    [89]陈宗平,薛建阳,赵鸿铁等.型钢混凝土异形柱抗震性能试验研究[J],建筑结构学报,2007,28(3):53-61.
    [90]日本建筑学会.钢骨钢筋混凝土结构设计规范及解说[M].冯乃谦,叶列平,译.北京:能源出版社,1997.
    [91]Lee Tai-kuang, Austin D E Pan. Analysis of composite beam-columns under lateral cyclic loading[J]. Journal of Structural Engineering, ASCE,2001(2).
    [92]Swaddiwudhipong S, Jiang D, Cheng W.Steel-reinforced concrete joints under reversal cyclic load[J].Magazine of concrete Research,2003,55(6):525-535.
    [93]Vasdravellis G, Valente M, Castiglioni CA.Behavior of exterior partial-strength composite beam-to-column connections:experimental study and numerical simulations[J].Journal of Constructional Steel Research,2009,65(1):23-35.
    [94]陈丽华,李爱群,赵玲.型钢混凝土梁柱节点的研究现状[J].工业建筑,2005,35(1):56-58.
    [95]向平.型钢混凝土异形柱钢筋混凝土梁节点低周反复荷载试验研究[D].广西大学硕士学位论文,2006.
    [96]钟善桐,白国良.高层建筑组合结构框架梁柱节点分析与高计[M].北京:人民交通出版社,2006.
    [97]ASCE Guidelines.Guidelines for design of joints between steel beams and reinforeed concrete columns[J].Journal of Struetural Engineering,1994,120(8):2330-2357.
    [98]廖天军.双层钢桁架及RC连梁剪力墙结构伪静力试验研究[D].广西大学,2010.
    [99]王先铁,郝际平,周观根等.两层两跨方钢管混凝土框架抗震性能试验研究[J],建筑结构学报,2010,30(3):70-76.
    [100]Karayannis Chris G., Favvata Maria J., Kakaletsis D. J. Seismic behaviour of infilled and pilotis RC frame structures with beam-column joint degradation effect[J].Engineering Structures,2011,33(10): 2821-2831.
    [101]Roko Zarnic, Samo G ostic, Adam J.Crewe3, Colin A.Taylor.Shaking table tests of 1:4 reduced-scale models of masonry in filled rein forced concrete frame buildings[J].Earthquake Engineering and Structural Dynamics,2001,30(6):819-834.
    [102]薛伟辰,程斌,李杰.双层双跨高性能混凝土框架抗震性能研究[J].土水工程学报,2004,37(3):58-65.
    [103]蔡健,周靖,方小丹.钢筋混凝土框架抗震位移延性系数研究[J].工程抗震与加固改造,2005,27(3):2-6.
    [104]朱伯龙,张琨联.建筑结构抗震设计原理[M].上海:同济大学出版社,1994.
    [105]李忠献,张雪松,丁阳.翼缘削弱的型钢混凝土框架抗震性能研究[J].建筑结构学报,2007,28(4):18-24.
    [106]Guner Serhan, Vecchio Frank J. Analysis of shear-critical reinforced concrete plane frame elements under cyclic loading[J]. Journal of Structural Engineering. ASCE,2011,137(8):834-843.
    [107]Sanchez-Ricart L. Implications of structural overstrength on the calibration of seismic codes[J]. Bulletin of Earthquake Engineering,2011,9(5):1579-1592.
    [108]叶列平,方鄂华.钢骨混凝土构件的受力性能研究综述[J].土木工程学报.2000,33(5):1-12.
    [109]H.-L.Hsu, J.-C.Hsieh, J.-L.Juang.Seismic performance of steel-encased composite members with strengthening cross-inclined bars[J].Journal of Construction Steel Research,2004,60(11):1663-1679.
    [110]刘大海,杨翠如.型钢钢管混凝土高楼计算和构造[M].北京中国建筑工业出版社,2003.
    [111]李忠献,张雪松,丁阳.装配整体式型钢混凝土框架节点抗震性能研究[J].建筑结构学报,2005,26(4):32-38.
    [112]梁威,王昊.我国型钢混凝土梁柱节点构造综述[J].结构工程师,2007,23(4):98-104.
    [113]中华人民共和国国家标准.GB50010-2010混凝土结构设计规范[S].北京:中国建筑工业出版社,2010.
    [114]胡庆汉.型钢混凝土梁—钢筋混凝土柱混合结构抗震分析与设计[D].西南交通大学,2002.
    [115]中国建筑科学研究院.JGJ138-2001型钢混凝土组合结构技术规程[S].北京:中国建筑工业出版社,2001.
    [116]中华人民共和国国家标准.GB 50011-2001建筑抗震设计规范(2010年版)[S].北京:中国建筑工业出版社,2001.
    [117]中华人民共和国黑色冶金行业标准.YB9082-2006钢骨混凝土结构技术规程[S].北京:冶金工业出版社,2007.
    [118]中华人民共和国国家标准.GB 50017-2003钢结构设计规范[S].北京:中国建筑工业出版社,2003.
    [119]傅剑平,张川,白绍良.钢筋混凝土抗震框架节点各机构传递剪力的定量分析[J].建筑结构学报,2005,(2):91-96.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700