用户名: 密码: 验证码:
混杂纤维混凝土高温和碳化性能试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
混杂纤维混凝土是在混凝土中均匀地加入两种或两种以上不同纤维而形成的,它是纤维混凝土领域中颇有发展前景的一个新兴分支,是当今纤维混凝土界研究的热点和重点课题。随着纤维混凝土大量应用于实际工程,不可避免的将面临结构的火灾、耐久性等技术问题。因此,研究和掌握混杂纤维混凝土的基本性能及其技术特征,对混杂纤维混凝土更好应用于实际工程有着重要的现实意义。
     本文以“国家混凝土规范第6批科研课题[GBKY6001]”、“华侨大学高层次人才科研基金[05BS303]”和“校企合作重点公关项目[HQ09- 02]”为依托,采取试验研究与理论分析相结合的方法,通过对基准混凝土、单掺钢纤维混凝土、单掺聚丙烯纤维混凝土及其混掺混凝土,分别在经常温标准条件、高温条件和碳化条件后进行研究,主要研究内容和主要结果如下:
     1.研究了不同混杂类型纤维混凝土力学性能,得出混杂纤维对混凝土的增韧增强存在一个最佳掺量;对比基准混凝土,可知混杂纤维混凝土有良好的增强增韧效果;介绍了混杂纤维混凝土的混杂系数,通过混杂系数定量评价了混杂纤维的增强增韧效果。
     2.分析了不同混杂类型纤维混凝土高温后抗压强度的变化规律,详细描述了混杂纤维混凝土不同等级高温作用后的表观现象,同时分析了混杂纤维混凝土高温后的质量损失,并回归了残余抗压强度与过火温度及质量损失与过火温度的关系曲线;从微观机理上论述了混杂纤维混凝土良好的抗爆裂性能。
     3.利用超声回弹检测技术对高温后的不同混杂类型纤维混凝土进行检测,提出了的超声波速与残余抗压强度的回归方程、回弹值与残余抗压强度的回归方程以及超声波速回弹值综合与残余抗压强度的回归方程,可用于直接估算火灾建筑物的混凝土的残余抗压强度及损伤程度,有利于火灾后的重建工作。
     4.利用红外热像检测技术对高温后的不同混杂类型纤维混凝土进行检测,给出了热像平均温升与强度损失的回归方程,可以估算火灾建筑物的混凝土的残余抗压强度及损伤程度,更好地评估火灾结构损伤情况,做出更好的修复方案。
     5.建立了混杂纤维混凝土高温后性能评价体系,可以对火灾建筑的混杂纤维混凝土的过火温度、残余抗压强度及其损伤温度做出评估,为火灾混杂纤维混凝土结构的修复与加固提供依据。
     6.研究了不同混杂类型纤维混凝土碳化后力学性能,得出抗压强度、劈拉强度随碳化龄期的变化规律,同时分析了碳化深度跟碳化龄期的关系,对比基准混凝土,表明混杂纤维混凝土有良好的抗碳化能力,并从微观上阐明了混杂纤维混凝土的抗碳化机理。
     7.总结了混凝土的不同碳化深度模型,并比较各种模型的适用情况;同时给出了不同混杂类型纤维混凝土碳化深度模型,为预测混杂纤维混凝土的碳化深度提供了一定依据。
     本文在多工况条件下对多种混杂类型的纤维混凝土进行系列试验与研究,得到相应的结果和具有一定理论和工程应用价值的技术指标及重要规律,这将为对混杂纤维混凝土的进一步研究和推广应用奠定基础。
Hybrid fiber concrete is got by distributing two or more kinds of fibers into concrete. It has become a new branch with good future in the fiber concrete, and is a highlight hot spot issue of the present fiber concrete study. As the application of fiber concrete into engineering, the fire and durability become the inevitable problems. For these reasons, the research on the fundamental characters and mechanical property of fiber concrete has realistic significance for its application into engineering.
     Based on the background of‘The Six Group Researching Subject of National Concrete Code Project[GBKY600]’,‘Scientific Research Found of Person with Excellent Ability of Huaqiao University[05BS303]’and Sponsored by the school-enterprise cooperation research under Grant NO.[ HQ09-02], a method combining both the test research and theoretical analysis was applied. The basic concrete, steel fiber concrete, polypropylene fiber and hybrid fiber concrete were tested under normal temperature and abnormal high temperature and carbonization condition. The main research contents and test results are as follows:
     1、Studying the mechanical property of different hybrid fiber concrete, it was founded that there is an optimum mixing amount of hybrid fiber concrete for toughening and reinforcing concrete. And comparing to the base concrete, the hybrid fiber concrete showed good toughing and strengthening performance. A hybrid coefficient was defined to evaluate the toughing and strengthening performance.
     2、The variation of compressive strength of different hybrid fiber concrete after high temperature was analyzed. The performance of hybrid fiber concrete under different high temperature was described in detail. The mass loss of hybrid fiber concrete through high temperature was studied, and the relation curves of remain compressive strength and burned temperature、mass loss and burned temperature were regressed. From microscopic mechanism, the antiknock property of hybrid concrete was analyzed.
     3、Detecting the concrete with different hybrid fiber through high temperature by ultrasonic-rebound method, three regression equations, for ultrasonic velocity and the concrete compressive strength remains, the rebound value and the concrete compressive strength remains, the ultrasonic velocity with ultrasonic velocity complex and compressive strength remains were all proposed. The equations can be used to evaluate the concrete compressive strength remains of fired construction to determine the fire damage and make for the reconstruction.
     4、Detecting the concrete with different hybrid fiber through high temperature by infrared thermal images technique, the regression equation for thermal images average temperature rising, the concrete burned temperature and strength loss was proposed. The equation can be used to evaluate the concrete compressive strength remains of fired construction to determine the fire damage and make a better rehabilitation design.
     5、An evaluation system for property of hybrid fiber concrete through high temperature was established, which can evaluate the burned temperature, compressive strength remains and damaged temperature of the hybrid fiber concrete to provide basis for the rehabilitation of the hybrid fiber concrete construction damaged by fire.
     6、Studying the mechanical property of the concrete with different hybrid fiber after its carbonization, the variation of compressive strength and split strength with carbonization age was obtained. Meanwhile the relation of carbonization depth and carbonization age was also analyzed. Comparing with the basic concrete, the hybrid fiber concrete was proved to have a good resistance to carbonizing. The mechanism of resistance to carbonizing of hybrid fiber concrete was elaborated from microscopic.
     7、Analyzing the different models of carbonized depth in concrete and considering the applicable condition, a model of carbonized depth in hybrid fiber concrete was concluded, which provides basis for forecasting the carbonized depth in hybrid fiber concrete.
     A series of test were carried out on many kinds of hybrid fiber concrete under different conditions. The test results, technical index and relevant regularity with theoretical and engineering value obtained will certainly lay a solid foundation for the further development and promotion of the hybrid fiber concrete.
引文
[1]徐至钧.纤维混凝土技术及应用[M].北京:中国建筑工业出版社,2003.
    [2]黄承逵.纤维混凝土结构[M].机械工业出版社,2004.
    [3]许碧莞,施惠生.混杂纤维在混凝土中的应用[J].房材与应用,2005,6(33):50-54.
    [4]王成启,吴科如.混杂纤维水泥基复合材料及其应用.工业建筑,2002,(9):51-53.
    [5]牛狄涛.结构耐久性与寿命预测[M].北京:科学出版社,2003.
    [6] B.Babal,T.Numbergerova.Hybrid fiber-reinforced concrete under repeated loading.Nuclear Engineering Design 1995(156):195-200.
    [7]王红喜,陈友治,丁庆军.混杂纤维对高性能混凝土力学性能与抗渗性能的影响[J].混凝土,2003(11):33-35
    [8] Wu Yao,Li Jie,Wu Keru.Mechanical properties of hybrid fiber-reinforced concrete at low fiber volume fraction[J].Cement and Concrete Research 2003(33):27-30.
    [9]孙海燕.混杂纤维混凝土的试验研究[D].云南农业大学硕士学位论文,2007.
    [10]尹机会.钢-合成纤维混凝土强度与韧性的试验研究[D].大连理工大学硕士学位论文, 2006.
    [11]焦楚杰,詹镇峰.混杂纤维混凝土抗压试验研究[J].广州大学学报(自然科版), 2007, 6(4):70-73.
    [12]孙家瑛.混杂聚丙烯纤维混凝土性能研究[J].混凝土,2003,(11):16-20.
    [13] P Sukontaukku1.Tensile behavior of hybrid fiber—reinforced concrete[J]. Advances in Cement Research,2004(3):115—122.
    [14]朱江.聚丙烯纤维与高强高性能混凝土[J].混凝土,2000(5):49-51.
    [15]华渊,连俊英,周太全.长径比对混杂纤维增强混凝土力学性能的影响[J].建筑材料学报,2005,(1):71-75.
    [16]马一平,谈慕华.聚丙烯纤维水泥基复合材料物理力学性能研究(I)-抗塑性干缩开裂性能[J].建筑材料学报,2000,(3):48-52.
    [17] Soroushian Parviz,Mirza Faiz,Alhozaimy Abdulrahman.Plas-tic shrinkage of polypropylene fiber reinforced concrete[J].ACIMaterial Journal,l995,92(5):553-560.
    [18]钱红萍,贡浩平,孙伟.纤维混杂增强水泥基复合材料特性的研究[J].混凝土与水泥制品,1997(6):43—47.
    [19]华渊,张少波,姜稚波.混杂纤维混凝土弯曲疲劳性能的试验研究[J].混凝土与水泥制品,1997,(4):40-43.
    [20]华渊,姜稚波,张少波.c—P混杂纤维混凝土疲劳变形规律研究.石家庄铁道学院学报,1998,l1(3):5-10.
    [21]华渊,曾艺,刘荣华.混杂纤维增强混凝土耐久性试验研究.低温建筑技术,1998(3):18-20.
    [22]邓宗才.耐碱玻璃纤维及其混杂纤维混凝土的弯曲疲劳特性[J].建筑科学与工程报, 2008,25(2):64-67.
    [23]邓宗才.高性能纤维素纤维及其混杂纤维混凝土的弯曲疲劳特性[J].公路,2008,(1): 165-169.
    [24]孙伟,严云.钢纤维高强水泥基的界面效应及其疲劳特性的研究[J].硅酸盐学报,1994,22(2):107-l16.
    [25]华渊,曾艺,刘荣华.混杂纤维增强混凝土耐久性试验研究[J].低温建筑技术,1998,(3):18-20.
    [26]杨成蛟,黄承逵等.[J].混杂纤维混凝土的力学性能及抗渗性能[J].建筑材料学报, 2008,11(1):8-12.
    [27]马晓华.混杂纤维高性能混凝土抗裂和抗冻融性能研究[D].大连理工大学硕士学位论文,2006.
    [28]鞠丽艳,张雄.混杂纤维对高性能混凝土高温性能的影响[J].同济大学学报(自然科学版),2006,34(1):89-93.
    [29]魏锋.混杂纤维混凝土的强度及耐高温性能研究[J].四川建材,2008,(1):5-7.
    [30]王正友,廖明成等.混杂纤维高性能混凝土高温性能试验.焦作工学院学报,2002,(5): 338-340.
    [31]程龙.混杂纤维混凝土高温后力学性能试验研究[D].武汉理工大学硕士学位论文,2007.
    [32]董香军.纤维高性能混凝土高温、明火力学与爆裂性能研究[D].大连理工大学博士学位论文,2006.
    [33]贺丽娟.混杂纤维混凝土的耐火性能研究及其在隧道工程中的应用[D].西南交通大学研究生学位论文,2007.
    [34]杨绍林等.新编混凝土配合比手册[M].北京:中国建筑工业出版社,2002.
    [35]国家标准规程.《普通混凝土配合比设计规程》(JGJ 55-2000),北京,2000.
    [36]国家标准.《普通混凝土力学性能试验方法标准》(GB50081-2002),北京,2002.
    [37]国家标准.《钢纤维混凝土试验方法》(CECS13:89),北京1991.
    [38]黄忠.混杂纤维混凝土力学性能研究[J].福建建筑,2008,(10):24-26.
    [39]高丹盈等.钢纤维混凝土基本理论[M].科学技术文献出版社,1994.
    [40]闻荻江.复合材料原理[M].武汉工业大学出版社,1998.
    [41]赵志绪主编.新型混凝土及其施工工艺.中国建筑工业出版社,1996.
    [42] Waubke.N V.and Schneider,U.Tensile stresses in concrete due to fast vapour flow.Int.Symp.“Pore Structure and Properties of Materials”:PartⅢ[M].V,213—222.
    [43] Zhukov,V V.Purpose of explosive spelling of concrete in Fire.Concrete and Reinforced Concrete,N.3.
    [44] Diederichs,U and Jumppanen,U M.(1993) Unter suchungsbericht Nr.5001/0013-Di, Bru-der MPA Braunschweig:Herstellung von Sttzenabschnitten aus 10 verschiedenen M ischungen hochfestem Betons und ihre Prfung unter Brandbeanspruchung nach der Einheit stemperaturzeitkurve gemαβDIN 4102(ISO 834).Untersuchung auf Antrag der Fa. BAGRAT, Trier, TU Braunschweig.
    [45]杜耀峰.粉刷层对钢筋混凝土土结构火灾后性能影响研究[D].华侨大学硕士学位论文,2008.
    [46] Zhang B,Bicanic N,Pearce C J et al. Relationship between brittleness and moisture loss of concrete exposed to high temperatures. Cement and Concrete, 2002,32(3):363-371.
    [47]逄靖华,陆洲导等.混凝土高温试验及高温后抗压残余强度研究[J].四川建筑科学研究,2007,33(3):17-20.
    [48]中华人民共和国行业标准,《回弹法检测混凝土抗压强度技术规程》(JGJ/T23-92),北京:1994.
    [49]中国工程建设标准化委员会标准,《超声回弹综合法检测混凝土技术规程》(CECS 02:2005),北京:2005.
    [50]吉鉴华. Excel的检测混凝土回弹(超声回弹)数据库[J].混凝土,2005,(3):82-84.
    [51]常志红. Excel回归分析计算的简化与应用[J].混凝土,2003,(2):61-63.
    [52]吕天启,赵国藩等.应用回弹超声方法评定火灾高温静置混凝土抗压强度的试验研究[J].混凝土,2002,(8):21-24.
    [53]杜红秀,张雄等.混凝土火灾损伤的红外热像检测与评估[J].同济大学学报,2002,30 (9):1078-1082.
    [54]张辉.混凝土结构火灾损伤红外热像检测试验研究[J].消防技术与产品信息,2004, (6):33-35.
    [55]金伟良,赵羽习.混凝土结构耐久性[M].北京:科学出版社,2002.
    [56]李雯霞,周琦.混凝土碳化对钢筋的腐蚀及影响因素[J].甘肃科技,2008,24(9):132- 133.
    [57]张海燕,李光宇等.混凝土碳化试验研究[J].中国农村水利水电,2006,(8):78-81.
    [58]周晓梅,许滢等.影响混凝土碳化的主要因素分析[J].国防交通工程与技术,2008,(3): 39-41.
    [59]白轲,杨元霞等.浅析混凝土碳化机理及其影响因素[J].粉煤灰综合利用,2008,(2):54 -56.
    [60]崔鹏飞,李兴贵.混凝土碳化分析及其耐久性预测研究[J].水利与建筑工程学报,2003, 1(4):49-52.
    [61]朱海堂,高丹盈等.碳化环境下钢纤维混凝土基本性能试验研究[J].郑州大学学报(工学版),2005,26(1):5-8.
    [62]谢晓鹏,高丹盈等.碳化作用下钢纤维混凝土力学性能的试验研究[J].混凝土,2006, (3):43-45.
    [63]谢晓鹏,高丹盈等.碳化作用下钢纤维混凝土抗压性能试验研究[J].四川建筑科学研究,2007,33(2):83-85.
    [64]潘慧敏.钢纤维混凝土碳化和钢筋锈蚀性能研究[D].西南交通大学研究生学位论文, 2006.
    [65]陈立亭.混凝土碳化模型及其参数研究[D].西安建筑科技大学学位论文,2007.
    [66]张海燕.混凝土碳化深度的试验研究及其数学模型建立[D].西北农林科技大学同等学历申请硕士学位人员论文,2006.
    [67]李浩,施养杭.混凝土碳化深度预测模型的比对与分析[J].华侨大学学报(自然科学版),2007,28(2):192-195.
    [68]阿列克谢耶夫著,黄可信,吴兴祖等译.钢筋混凝土结构中钢筋腐蚀与保护阿].北京:中国建筑工业出版社,1983.
    [69] V.G.PaPedakis. Effect of supplementary cementing materials on concrete resistance against carbonation and chloride ingress [J]. Cement and Concrete Research,2000,30:291-299.
    [70]许丽萍,黄士元.预测混凝土中碳化深度的数学模型[J].上海建材学院学报,1991,4(4):347-356.
    [71]龚洛书等.混凝土多系数碳化方程及其应用[J].混凝土及加筋混凝土,1985,6:10-16.
    [72]朱安民.混凝土碳化与钢筋混凝土耐久性[J].混凝土,1992,(6):18-22.
    [73]邸小坛,周燕.混凝土碳化规律研究.中国建筑科学研究院,1995.
    [74] Lesage de Centenary C. .Deterioration and Repair. Bahrain Proc.1995,(6):467-483.
    [75]张誉等.混凝土结构耐久性概论[M].上海:上海科学技术出版社,2003.
    [76]郭艳华,潘慧敏等.钢纤维混凝土碳化性能的研究[J].混凝土,2007,(2):45-47.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700