用户名: 密码: 验证码:
新型高速连铸结晶器的理论研究与实际应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高速连铸的关键技术是使高温钢液在通过结晶器内腔的很短时间内形成一层均匀且有一定厚度和强度的坯壳,以抵抗钢液静压力,防止发生漏钢事故。锥度曲线设计是结晶器设计的核心内容,高速连铸结晶器的本质特征是具有优化的连续锥度曲线。但因工作条件恶劣,影响因素众多,目前尚未见到定量的包含诸主要影响因素的结晶器锥度曲线的设计计算公式,锥度曲线设计主要是采用边试验,边设计,边改进的方法进行。因此,对高速连铸结晶器锥度曲线生成机理的研究,具有重要的理论和实际意义。
     本文把铸坯凝固传热的控制微分方程分为两类——固体导热微分方程和一组守恒方程,详细讨论了两类控制方程在求解结晶器内铸坯凝固传热过程中的特点和应用,建立了铸坯凝固传热热焓形式的温度控制微分方程和变间距有限差分方程。把铸坯与结晶器界面间的传热边界条件式分为两种——给定界面热流形式和给定界面传热系数形式,详细研究了两种传热边界条件式的特点以及相关的铸坯凝固传热计算的简化问题。本文还建立了结晶器内坯壳变形的蠕变力学模型和结晶器铜管变形的热弹性力学模型。
     本文系统深入地研究了方坯、圆坯和矩形坯结晶器内壁的理想纵断面曲线和内腔的理想锥度曲线的生成机理,建立了新型高速连铸方坯、圆坯和矩形坯结晶器内壁的理想纵断面曲线和内腔的理想锥度曲线的设计计算公式。这些公式明确且定量地反映了浇铸钢种、拉坯速度和冷却条件等因素对结晶器锥度设计的影响,而且形式简单,便于应用。本文还详细研究了高速连铸结晶器铜管内角部结构的设计,建立了角部锥度小于中部锥度结晶器的内角部结构的设计计算公式。
     以浇铸Q195钢种的154.5 mm×152.5 mm方坯结晶器为例,采用本文建立的模型和有限元法计算了结晶器内铸坯的温度场和变形量、结晶器铜管的温度场和变形量。通过将给定界面传热系数形式的传热边界条件式转换成给定界面热流形式的传热边界条件式,避免了温度场和应力场的耦合计算,简化了计算过程。用本文建立的新型高速连铸结晶器内壁的理想纵断面曲线和内腔的理想锥度曲线的设计计算公式,设计了结晶器铜管内壁的纵断面曲线和内腔的锥度曲线。
     研究设计的浇铸154.5 mm×152.5 mm方坯的新型结晶器铜管自2005年4月起至今一直在唐山钢铁公司第2炼钢厂3号连铸机使用。浇铸的钢种包括普碳钢、硬线钢和低合金钢。拉坯速度v =2.2~2.6m/min,在低温“赶钢”时,最大拉坯速度曾达到3.3m/min。铸坯表面质量良好,单根铜管的平均过钢量为3700吨。
The key technology of the high speed continuous casting is that the uniform solidified shell with enough thickness and intensity was formed to support the ferrous pressure and prevent breakthrough, during the elevated-temperature melting steel passing through the cavity of mold in a very short time. The vital part of the mold design is the mold taper curve design. The substantial characteristic of the high speed continuous casting mold is its optimized continuous taper curve. However, the design and calculation formula for the mold taper curve design, involving the various influencing factors, has not been established quantificationally, because of the unfavorable working conditions and the various influencing factors. The design of the mold taper curve has been limited to the experiment-design-improvement process. Therefore, the investigation on the forming mechanism of the taper curve for the high speed continuous casting mold is very important in theory and practicality.
     In the paper, the control difference equations of the solidification heat transfer process in continuous casting mold were differentiated into two types, one is the three-dimensional heat transfer difference equation, and the other is a set of conversation equations. The characteristics and their applications of these two types of control difference equations were discussed in detail. Both the temperature control difference equation of the solidification heat transfer process in continuous casting mold written with enthalpy form and the finite difference equations for alterable grid spaces were built. The thermal boundary conditions on the interface between the billet and the mold were differentiated into two types, one is the form of mold heat transfer flow on the interface, and the other is the form of mold heat transfer coefficients on the interface. The characteristics of the two types of thermal boundary conditions and the simplification calculation correlating the two types of thermal boundary conditions were studied in detail. The creep mechanical model of the solidified shell deformation in mold and the heat elastic mechanical model of the mold cupper tube deformation were built too.
     The forming mechanisms of the optimal longitudinal profile curves on the inside wall and the optimal taper curves for inside cavity of the square billet mold, the round billet mold and rectangular billet mold were studied thoroughly. The design and the calculation formula of the optimal longitudinal profile curves on the inside wall and the optimal taper curves for inside cavity of the square billet mold, the round billet mold and rectangular billet mold for high speed continuous casting were obtained. The formula with the performance of simpleness and convenience, show quantificationally the effects of composition of steel, casting speed and cooling condition etc. on the design of the mold taper curve. The optimal design of the inside corner configuration of the high speed continuous casting mold was studied in detail too. The design and the calculation formula of the inside corner configuration for the mold whose corner taper is smaller than middle taper were obtained.
     The square billet mold for casting Q195 steel with the dimension of 154.5 mm×152.5 mm was illustrated. Using of the model developed in this paper and the finite element method, the temperature fields and deformation fields of the billet and the mold cupper tube were calculated. By means of translating the thermal boundary condition on the interface between the billet and the mold from the form of heat transfer coefficient into the form of heat transfer flow, coupling calculation between the temperature field and stress field was avoided. Using of the design and calculation formula for the optimal longitudinal profile curve and the optimal taper curve of the high speed continuous casting mold, the longitudinal profile curve and the taper curve of the mold copper tube were designed.
     The new type square billet mold for casting 154.5 mm×152.5 mm square billet has being used since April 2005 on continuous caster 3 in Tangshan Iron and Steel Co. Ltd.. The steels poured involved plain carbon steel, hard string steel and steel holding little alloy. The casting speed was v =2.2~2.6m/min. The maximal casting speed was up to v =3.3m/minaccidentally when the molten steel temperature was very low. There was no obvious oscillation mark on the billet surface. The average steel production of a copper tube was 3700 ton.
引文
1 C. Chow, I. V. Samarasekera. High Speed Continuous Casting of Steel Billets, Part 1: General Overview. Ironmaking and Steelmaking, 2002, 29(1): 53-60
    2 C. CHOW, I. V. Samarasekera, B. N. Walker. High Speed Continuous Casting of Steel Billets, Part 2: Mould Heat Transfer and Mould Design. Ironmaking and Steelmaking, 2002, 29(1): 61-69
    3 A. E. Huespe, A. Cardona, V. Fachinotti. Thermomechanical Model of a Continuous Casting Process. Comput. Methods Appl. Mech. Engrg., 2000, (182): 439-455
    4 K. Kyung-hyun, H. O. Kyu, N. L. Dong. Mechanical Behavior of Carbon Steels during Continuous Casting. Scripta Material, 1996, 34(2): 301-307
    5 Z. Jon?ta, A. Hernas, K. Mazanec. Contribution to Mechanical Metallurgy Behavior of Steel during Continuous Casting. Journal of Material Processing Technology, 1998, (78): 90-94
    6 N. H. Heung, L. Jung-Eui, et al. A Finite Element Model for 2-Dimensional Slice of Cast Strand. ISIJ International, 1999, 39(5): 445-454
    7 R. Heard, N. Keall.Technological Developments for High Speed Casting of Sensitive Steel Grades. Canadian Metallurgical Quarterly, 1999, 38(5): 331-335
    8 N. Fukada, Y. Marukawa, K. Abe, T. An. Development of Mold (HS-MOLD) for High Speed Casting. Canadian Metallurgical Quarterly, 1999, 38(5): 337-346
    9 A.V. Kuklev, V.V. Tinyakov, V.L. Danilov, S.V. Zarubin. Optimizing the Hydraulic Characteristics and Thermal Performance of a Slabbing Mold for High Speed Continuous Casting of Steel. Metallurgist, 2001, 45(1–2): 23-28
    10张洪波.方坯连铸连续锥度结晶器的设计与选择.炼钢, 1999, 15(1): 42-46
    11周建安.结晶器锥度及其较好配合拉速的计算探讨.炼钢, 1999, 15(2): 42-46
    12殷瑞钰主编.钢的质量现代进展(上篇).北京:冶金工业出版社, 1995: 29
    13曹远锋,张永鑫,刘新.小方坯连铸机高速结晶器的设计与研究.重型机械, 2001, (2): 48-52
    14于奎.抛物线铜管锥度设计.连铸, 2002, (5): 22-23
    15靳伟,张绍启,菜宝春,等.小方还结晶器铜管锥度的设计与研究.首钢科技, 1999, (5): 12-15
    16邹铸新,周兵.圆坯结晶器锥度问题的探讨,冶钢科技, 1994, (2): 41-45
    17徐火军.钻石结晶器的特点及应用分析.连铸, 2001, (5): 16-17
    18周丽媛,侯建国.φ180结晶器铜管锥度设计.包钢科技, 2003, 29(增刊): 87-88
    19高军,吕青山,张怀军,等.国内最大断面方坯管式结晶器的开发与应用.连铸, 2005, (1): 22-23
    20兰岳光,彭继华,赵鑫,等.结晶器角部锥度对方坯温度及应力场的影响.材料与冶金学报, 2004, 3(4): 266-268
    21 W. Hans-Günter, H. Gerhard, K. Dietmar.应用FEM数值模拟优化连铸结晶器.钢铁, 2003,38(8): 55-58
    22陶金明,琚国青,张如斌,等.气隙补偿式高拉速方坯结晶器研究.冶金设备, 1997, (5): 1-6
    23 U. Horbach, J. Kochentiedt, W. Jung.抛物线锥度结晶器的方坯快速连铸.冶金丛刊, 1998, (4 ):16-21
    24张建伟,孙明海,杨会钧.结晶器一体化设计.重型机械, 2002, (4): 41-47
    25李学刚,王三忠,岳庆海.方坯高效连铸机结晶器的优化设计及振动机构的选择.钢铁研究, 2002, (2): 14-16
    26菜开科.连铸技术的进展(续完).炼钢, 2001, 17 (3 ): 6-13
    27高文芳.方坯高拉速连铸结晶器的研究与开发.钢铁研究, 2000, (6): 49-52
    28菜开科.连续铸钢.北京:科学出版社, 1990: 231
    29陈雷.连续铸钢.北京:冶金工业出版社, 1993, 58
    30 M. Wolf, W. Kurz. The Effect of Carbon Content on Solidification of Steel in the Continuous Casting Mold. Metallurgical Transactions , 1981, (12B): 85-93
    31 D. Mazumdar. A Consideration about the Concept of Effective Thermal Conductivity in Continuous Casting. ISIJ International, 1989, 29(6) : 524-528
    32 S. K. Choudhary, D. Mazumdar, A. Ghosh. Mathematical Modeling of Heat Transfer Phenomena in Continuous Casting of steel. ISIJ International, 1993, 33(7): 764-774
    33 T.W. Clyne, M. Wolf, W. Kurz. The Effect of Melt Composition on Solidification Cracking of Steel, with Particular Reference to Continuous Casting. Metallurgical Transactions, 1982, (13B): 259-266.
    34 A. K. Tieu, I.S. Kim. Simulation of the Continuous Casting Process by Mathematical Model. Int. J. Mech. Sci., 1997, 39(2):185-192
    35 W. Young Mok, Y. Tae-jung, O. Kyu Hwan, et al. Analysis of Mold Wear during Continuous Casting of Slab. ISIJ International, 1998, 38(1): 53-62
    36 H. Heung Nam, L. Jung-Eui, Y. Tae-jung, et al. A Finite Element Model for 2-Dimensional Slice of Cast Strand. ISIJ International, 1999, 39 (5): 445-454
    37 L. Jung-Eui, H. Heung Nam, O. Kyu Hwan. A Fully Coupled Analysis of Fluid Flow, Heat Transfer and Stress in Continuous Round Billet Casting. ISIJ International, 1999, 39(5): 435-444
    38 A. Fic, A.J. Nowak, R. Bialecki. Heat Transfer Analysis of the Continuous Casting Process by the Front Tracking BEM. Engineering Analysis with Boundary Elements, 2000, (24): 215-223
    39 C.A. Santos, J.M.V. Quaresma, A. Garcia. Determination of Transient Interfacial Heat Transfer Coefficients in Chill Mold Castings. Journal of Alloys and Compounds, 2001, (319): 174-186
    40 M. Janik, H. Dyja. Modelling of Three-dimensional Temperature Field Inside the Mould during Continuous Casting of Steel. Journal of Materials Processing Technology, 2004, (157–158) :177-182
    41 I.V. Samarasekera, J.K. Brimacombe. Thermal and Mechanical Behaviour of Continuous Casting Billet Moulds. Ironmaking and Steelmaking, 1982, 9 (1): 267-281
    42 Y. Nishida, W. Droste, S. Engler. The Air Gap Formation Process at the Casting-mould Interface and the Heat Transfer Mechanism through the Gap. Metall. Trans. B, 1986, (17B): 833-844
    43 V. Fachinotti, A. Cardona, A.E. Huespe. A Fast Convergent and Accurate Temperature Model for Phase-change Heat Conduction. Int. J. Num. Meth. Engrg., 1999, (44): 1863-1884
    44 R. Bialecki, A. Fic, A.J. Nowak, L.C.Wrobel. Numerical Analysis of Continuous Casting Problem by BEM. Proceedings of the Phase Change Conference, Kielce, Poland. Committee of Thermodynamicsand Combustion of PAS, 1996: 77-88
    45 S. Kumar, J.A. Meech, I.V. Samarasekera, J.K. Brimacombe. Knowledge Engineering an Expert Systems to Troubleshoot Quality Problems in the Continuous Casting of Steel Billets. Iron and Steelmaker, 1993, 20 (9): 29-36
    46 S. Loubenkilpi, E. Iaitinen, R. Ninermine. Real-time Simulation of Heat Transfer in Continuous Casting. Metall. Trans., 1993, (B24): 685-699
    47 C.R. Swaminathan, V.R. Voller. A General Enthaipy Method for Modeling Solidification Process. Metall. Trans., 1992, (23): 65l-667
    48 B.G. Thomas. Issues in Thermal-mechanical Modeling of Casting Processes. ISIJ International, 1995, 35 (6): 737-743
    49 J. Lait, J. Kbrimacombe, F. Weinberg. Mathematical Modeling of Heat Flow in the Continuous Casting of Steel. Ironmaking and Steelmaking, 1974, (2): 90-98
    50 T.J.H. Billany, K.C. Normanton, K.C. Mills, P. Grieveson. Surface Cracking in Continuous Cast Products. Ironmaking and Steelmaking, 1991,18 (6): 403-410
    51 K. C. Chiang, H. L. Tsai. Shrinkage-Induce Fluid and Domain Change in Two-Dimensional Alloy Solidification. International Journal of Heat and Mass Transfer, 1992,35(7): 1736-1765
    52严波,吕欣,张晓敏.连铸结晶器内钢液凝固热传导有限元方法.重庆大学学报, 2004, 27 (4 ):114-117
    53王哲,沈厚发,柳百成.连铸结晶器中坯壳生长有限元分析.清华大学学报(自然科学版), 2004, 44(11): 1148-1151
    54岳光,彭继华,赵鑫,等.结晶器角部锥度对方坯温度及应力场的影响.材料与冶金学报, 2004 , l3 (4): 265-267
    55李东辉,刘相华,邱以清,等.方坯连铸机结晶器凝固传热的数学模型.东北大学学报(自然科学版), 2004, 25(8): 774-777
    56 Y. Hongliang, Z. Lianggang, Z. Xingzhong, et al. Mathematical Simulation on Coupled Flow, Heat, and Solute Transport in Slab Continuous Casting Process. Metall. Trans. B, 1998, (29): 1345-1356
    57 L. Jung-Eui, Y.Jong-Kyu, H. N. Heung. 3-dimensional Mathematical Model for the Analysis Beam Blank Casting Using Body Fitted Coordinate of Continuous System. ISIJ International, 1998, 38 (2): 132-141
    58 K. Lan, J.M. Khodadadi. Liquid Steel Flow, Heat Transfer and Solidification in Mold ofContinuous Casters during Grade Transition. International Journal of Heat and Mass Transfer, 2001, (44): 3431-3442
    59 M.H. Mirbagheri, H. Esmaeileian, S. Serajzadeh, N. Varahram, P. Davami. Simulation of Melt Flow in Coated Mould Cavity in the Casting Process. Journal of Materials Processing Technology, 2003, (142): 493-507
    60 M.R. Amin, A. Mahajan. Modeling of Turbulent Heat Transfer during the Solidification Process of Continuous Castings. Journal of Materials Processing Technology, 2006, (174) 155-166
    61 R.M. Aboutalebi, M. Hasan, R.I.L. Guthrie. Coupled Turbulent Flow, Heat and Solute Transport in Continuous Casting Processes. Metall. Mater. Trans. B, 1995, (26B): 731-744
    62 S.H. Seyedein, M. Hasan, A Three-dimensional Simulation of Coupled Turbulent Flow and Macroscopic Solidification Heat Transfer for Continuous Slab Casters. International Journal of Heat Mass Transfer, 1997, 40 (18): 4405-4423
    63 S.K. Choudhary, D. Majumdar. Mathematical Modeling of Fluid Flow, Heat Transfer and Solidification Phenomena in Continuous Casting of Steel. Steel Res., 1995, 66 (5): 199-205
    64 X. Huang, B.G. Thomas, F.M. Najjar. Modeling Superheat Removal during Continuous Casting of Steel Slab. Metall. Trans. B, 1990, (23B): 339-356
    65邓安元,赫冀成.小方坯初始凝固三维数值模拟.钢铁研究, 2000, (1):15-18
    66伍成波,李志国,王谦.连铸结晶器内钢液凝固行为的计算机仿真.炼钢, 2004, 20(3): 44-47
    67贺友多,张胤,刘中兴,等.舞阳钢铁公司板坯连铸机结晶器的流场和温度场研究.包头钢铁学院学报, 1997, 16 (3): 73-79
    68仇圣桃,刘和平,干勇.基于连续模型的板坯连铸凝固过程的数值模拟.钢铁研究学报, 2003, 15 (6): 16-20
    69杨秉俭,苏俊义,朱宪华.连铸结晶器中凝固壳厚度的计算及验证.西安交通大学学报, 1997, 31(10 ): 75-77
    70高吉祥,张卫文,费劲,等.连续铸造凝固过程数值模拟的研究进展.铸造技术, 2003, 24(5): 362-364
    71 Z. Shi, Z.X. Guo. Numerical Heat Transfer Modeling for Wire Casting. Materials Science and Engineering, 2004, (A 365) :311-317
    72张家泉,崔立新,陈志平.板坯连铸结晶器温度场/应力场耦合模型.北京科技大学学报, 2004, 26(4): 374-376
    73崔立新,张家泉,陈素琼,等.连铸板坯在结晶器内凝固行为的研究.炼钢, 2003, 19 (3): 22-25
    74 M.N. Srinivasan, M.R. Seshadri, A. Ramchandran. Thermal Aspects of Metallic Molds. AFS Trans., 1970, (78): 395-400
    75 D.R.. Durham, J.T. Berry. Role of the Mold Metal Interface during Solidification of a Pure Metal against a Chill. AFS Trans., 1976, (84): 101-129
    76 K. Ho, R.D. Pehlke. Metal–mold Interfacial Heat Transfer. Metall.Trans. B, 1985, 16B (9):585-594
    77 I.V. Samarasekera, J.K. Brimacombe, K. Wilder. The Pursuit of Steel Billet Quality, Iron and Steelmaker, 1994, 21 (3): 53-63
    78 F. Chiesa. Measurement of the Thermal Conductance at the Mold/Metal Interface of Permanent Molds. AFS Trans., 1990, (98): 193-200
    79 D.G.R. Sharma, M. Krishnan. Simulation of Heat Transfer at Casting Metal–mould Interface, AFS Trans., 1991, (99): 429-438
    80 J.C. Hwang, H.T. Chuang, S.H. Jong, W.S. Hwang. Measurement of Heat Transfer Coefficient at Metal-mold Interface during Casting. AFS Trans., 1994 ,(102): 877-883
    81 M. Krishnan, D.G.R. Sharma. Determination of Heat Transfer Coefficient between Casting and Chill in Unidirectional Heat Flow, AFS Trans., 1994, (102): 769-774
    82 S. Kumar, I.V. Samarasekera, J.K. Brimacombe. Mold Thermal Response and Formation of Defects in the Continuous Casting of Steel Billets—Laps and Bleeds. Iron and Steel Maker, 1997, 24 (6): 53-69
    83 F. Lau, W.B. Lee, S.M. Xiong, B.C. Liu. A Study of the Interfacial Heat Transfer between an Iron Casting and a Metallic Mould. Journal of Materials Processing Technology, 1998, (79): 25-29
    84 D. O'Mahoney, D.J. Browne. Use of Experiment and an Inverse Method to Study Interface Heat Transfer during Solidification in the Investment Casting Process. Experimental Thermal and Fluid Science, 2000, (22): 111-122
    85张炯明,王立峰,王新华,等.板坯连铸结晶器传热系数.金属学报, 2003, 39(12): 1281-1284
    86盛义平,孙蓟泉.传热学.哈尔滨:东北林业大学出版社, 1995: 146-147
    87干勇,仇圣桃,萧泽强.连续铸钢过程数学物理模拟.北京:冶金业出版社, 2001: 96-114
    88孔祥谦.有限单元法在传热学中的应用.第三版.北京:科学出版社, 1998: 202-203
    89 J. T. Boyle, J. Spence. Stress Analysis for Creep. London: Butterworths, 1983: 12-43
    90 H. Kraus. Creep Analysis. New York: Jone Willey & Sons, 1980: 18-21
    91黄炎.工程弹性力学.北京:清华大学出版社, 1982: 78-99
    92冯科,徐楚韶,陈登福,等.板坯连铸结晶器铜板温度场的数值仿真.特殊钢, 2005, 26. (1): 12-15
    93张德臣,余益生,刘键毅.弧形小方坯结晶器热应力和变形的研究.重型机械, 1998, (2): 21-23
    94谢延敏,于沪平,阮雪榆,等.连铸结晶器温度场和应力场的有限元分析.塑性工程学报, 2005, 12(6): 103-108
    95谢延敏,于沪平,阮雪榆,等.小方坯高速连铸结晶器温度场和应力场的有限元模拟.铸造, 2004, 53(9): 727-731
    96刘新,赵连刚,张富强.高拉速条件下板坯连铸结晶器铜板温度场研究.重型机械, 2006, (6): 13-15
    97 S. Louhenkilpi. Study of Heat Transfer in a Continuous Billet Casting Machine. Scandinavian Journal of Metallurgie, 1994, (23): 9-17
    98 E. Takeucbi, J. K. Brimacombe. The Formation of Oscillation Marks in the Continuous Casting of Steel Slabs. Metall. Trans. B, 1984, (15B): 493-509
    99 S.K. Choudhary, D. Majumdar. Mathematical Modeling of Transport Phenomenon in Continuous Casting of Steel. ISIJ International, 1994, 34 (7): 584-592
    100赵建伟,王宝峰,丁国.奥氏体与马氏体不锈钢板坯在结晶器内收缩规律与结晶器锥度的研究.包头钢铁学院学报, 2005, 24(2): 127-129
    101王宝峰,丁国,赵建伟,等.奥氏体不锈钢板坯连铸结晶器锥度的优化.特殊钢, 2005, 26(2): 38-40
    102王硕明,朱立光,刘增勋.方坯高速连铸结晶器锥度优化研究.炼钢, 2006, 22, (3): 57-60
    103李弘英.铸钢件的凝固和致密度的控制.北京:机械工业出版社, 1985: 11-14
    104李庆春.铸件形成理论基础.北京:机械工业出版社, 1982: 226
    105 K. Harste, K. Schvverdtfeger. Shrinkage of Round Iron-Carbon Ingots during Solidification and Subsequent Cooling. ISIJ International, 2003, 43(7): 1011-1020
    106 H.H.dl, K.Frauenhuber.奥钢联不锈钢连铸技术(VAINOX)的最新发展.钢铁,2001, 36(4): 28-30
    107弗朗兹·温默,海因里希·索恩.连续铸锭结晶器.中国: CN ll50769A[P],国际申请: PCT/AT96/00072 1996.4.15,国际公布: WO96/33034,德: 1996.10.24
    108 M. Wolf.接近熔点时钢的特性.现代连铸理论与实践,中国金属学会连续铸钢学会, 1986: 69-79

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700