用户名: 密码: 验证码:
作用于电压门控钠通道的蜘蛛毒素的结构与功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
虎纹捕鸟蛛(Selenocosmia huwena Wang [=Orni thoctonus huwena(Wang)])、海南捕鸟蛛(Selenocosmia hainana Liang[=Ornithoctonus hainana(Liang)])和雷氏大疣蛛(Macrothele raveni)是在我国南方发现的具有很强毒性的蜘蛛新种,其粗毒能使昆虫和小型脊椎动物致死。本项研究采用膜片钳技术在NG108-15细胞上首先检验了这三种蜘蛛的粗毒对电压门控钠通道和延迟整流钾通道的影响。结果表明,三种蜘蛛粗毒对外向延迟整流钾通道没有明显作用,但对TTX敏感型钠通道表现出较强的浓度依从性抑制效应,半有效抑制浓度(IC_(50))分别为:3.4、1.8和11.0mg/L。值得注意的是,三种粗毒抑制钠通道的方式均与其它已知蜘蛛钠通道毒素不同,都不能影响通道的激活与失活时间,表明在这些蜘蛛粗毒中极有可能含有未曾报导过的新型钠通道毒素。
     通过阳离子交换和反相高效液相色谱柱层析(HPLC),进一步从海南捕鸟蛛粗毒中分离获得了一种新的神经毒素,命名为海南捕鸟蛛毒素-Ⅴ(hainantoxin-Ⅴ,HNTX-Ⅴ)。同时还利用膜片钳或双电极杆电压钳技术鉴定了该毒素以及其它三种海南捕鸟蛛毒素(包括海南捕鸟蛛毒素-Ⅰ(HNTX-Ⅰ)、海南捕鸟蛛毒素-Ⅲ(HNTX-Ⅲ)和海南捕鸟蛛毒素-Ⅳ(HNTX-Ⅳ))对离子通道的影响特征。四种海南捕鸟蛛毒素均是多肽类钠通道毒素,由33或35个氨基酸残基组成,其中6个Cys以Ⅰ-Ⅳ、Ⅱ-Ⅴ、Ⅲ-Ⅵ的方式配对形成3对二硫键。HNTX-Ⅴ是HNTX-Ⅳ的一种天然突变体,两者之间只有一个残基(Ser20Ala)不同。三维结构测定和同源模建结果表明四者都属于抑制剂胱氨酸结(ICK)模体蛋白家族。四种HNTX均能抑制TTX敏感型钠通道的激活,但不影响TTX不敏感型钠通道。HNTX对TTX敏感型钠通道亚型的选择性不一样。HNTX Ⅲ-Ⅴ能完全抑制大鼠背根神经节(DRG)细胞TTX敏感型钠通道,IC_(50)分别是1.1、44.6和46.8 nM。但HNTX-Ⅰ对DRG细胞钠通道无影响,却能抑制不表达于DRG细胞上的rNa_v1.2/β1和昆虫钠通道para/tipE(外源表达于非洲爪蟾卵母细胞上),IC_(50)分别是68.0和4.3μM。HNTX Ⅲ-Ⅴ还能使DRG细胞TTX敏感型钠通道的稳态失活曲线向超极化方向漂移约10 mV。同粗毒水平实验结果一样,
    
    中英文摘要
    四利,}一六以都不能延缓钠通道的失活时间,也没有漂移电压一「包流(l一V)
     狡系曲线。特别是HNTX一工H和HNTX一IV(1 pM)还能完全阻断位点3毒
    素枷K{(.类。一蝎毒素,来自于东亚钳蝎But力:Is二rtensz’ Karsch粗毒)
    延缓的失活电流,表明海南捕鸟蛛毒素不是位点3毒素,其影响钠通道的
    机制应该有别于6一atraCotoxinS和协一agatoXinS等蜘蛛毒素。我们进
     步推测HNTX在钠通道上的结合位点是位点l。通过固相化学合成的方法,
    将日NTX一丁v进行了四个点位突变(Ser12Ala、Arg26Ala、LyS27Ala和
    八以29A}的。其‘一1,,突变体LyS27Ala和Arg29Ala抑制钠通道的能力只有
    天然毒素的1/100,而Arg26Ala和serlZAla与天然毒素相差不大,证明
    }”一“和八r厂’应该是海南捕鸟蛛毒素结合钠通道的关键残基。
     敬车l}缨毛蛛(凸ilobl妞‘加£j’z’n那为、)是最近在我国海南省发现的
     ,蜘蛛新种。通过阳离子交换和/或反相HPLC,我们从其粗毒中得到了两
    种一丰度较高的组分,并命名为敬钊缨毛蛛毒素一I(JZTX一I)和敬钊缨毛蛛
    一心索一日l(二仪Tx一工H)。MALD工一TOF质谱鉴定和Edman降解测序结果表明:
    、!/下X一I的分子量为3675.6 Da,含有33个氨基酸残基;而JZTX一工H的分
    广员为:份1 9.4 Da,含有36个残基。两毒素中均包含6个CyS。结合TCIi尸
    部分还原修饰、氨基酸序列测定和多酶酶解分析法等技术,鉴定出这6个
    C、、能够形成3对二硫键,连接方式均为卜工V、工工一V、工工卜V工。我们还采
    川〔、l)X八末端快速扩增(RACE)法获得了它们的CDNA序列,并由此推测出
    、J/’f\一l和健限可工I的前体分别含有62和63个氨基酸残基。经分析发现
    !Z拭11!前体中含有一不常见的蛋白酶酶切位点(一X一Ser一),而不是
     丫八:、g一,_且其间隔蛋白区序列只含有5个残基,是目前蜘蛛毒素前体‘扫
    员脚的·个。!漠片钳实验结果表明JZTX一I和JZTX一IH都是电压门控钠通
    迈,扮素,子{!对钠通道亲和力与亚型的选择性不一致。JzTX江是日前首次报
    道的一源于蜘蛛粗毒的类Q一毒素,能抑制棉铃虫幼虫神经元细胞钠通道、
    少、鼠D既细胞‘I’TX敏感型钠通道和心肌细胞钠通道的快速失活,工C:‘,分别
    为8.86林M、0.99刚和31.6 nM,对三种细胞__匕钠电流的峰值大小都无明
    !IJ娜洲lJ,也不改变通道I一V曲线和稳态失活特征,但能加速D尺G细胞卜通
    道的火活恢复速率。而有意思的是,JZTX一IH在粗毒中可能存在异构现象,
    因为在分离过程,},,该毒素具有两个不同的吸收峰,_且彼此功能明显不户
    丰丫尽,’i’{:两种‘!Z‘fX一工H都能选择性地作用于心肌细胞竹X不敏感’(口钠通
    
    中英文摘要
    道,但一者为抑制电流的快速失活相,与JZTX一工类似;而另一者为抑制
    电流激活,10刚几乎可以完全抑制位点3毒素引起的电流失活部分。IC印
    分别为12.8哪和0.38哪。我们进一步推测:JZTX一工和JZTX一工H(抑制
    通道失活)应该是位点3毒素,而JZTX一IH(抑制通?
There are three species of Chinese spiders Selenocosmia huwena Wang [=Ornithoctonus huwena (Wang)], Selenocosmia hainana Liang [=Ornithoctonus hainana (Liang)] and Macrothele raveni distributed in the south of China. Their venoms can kill insects and even some small vertebrates. Under whole-cell patch-clamp recording, we observed the effects of these venoms on tetrodotoxin-sensitive (TTX-S) voltage-gated sodium channels (VGSCs) and delay-rectified potassium channels in undifferentiated NG108-15 cells. It was found that they all had no evident effect on outward delay-rectified potassium currents, while they inhibited TTX-S sodium currents in a dose-dependent mode. Their IC50 values were approximately 3.4 (S. huwena), 1.8 (S, hainana) and 11.0 mg/L (M raveni), respectively. Interestingly, different from other known spider toxins, these spider venoms affected neither channel activation kinetics nor inactivation kinetics, suggesting that there might be some novel sodium channel toxins unreported before.
    A novel neurotoxic peptide, named hainantoxin-V (HNTX-V), was isolated further from the venom of the Chinese bird spider S. hainana by ion-exchange chromatography and reverse-phase high performance liquid chromatography (rp HPLC). Moreover, we characterized the actions of the novel toxin and other three hainantoxins, including hainantoxin-I (HNTX-I), hainantoxin-III (HNTX-III) and hainantoxin -IV (HNTX-IV), on ion channels expressing in either adult rat dorsal root ganglion (DRG) neurons or Xenopus laevis oocytes using both whole-cell patch-clamp and two-electrode voltage-clamp techniques. Four HNTXs are sodium channel toxins composed of 33-35 residues including six cysteines, which can be linked with three disulfide bonds (I-IV, II-V and III-VI). HNTX-V is a naturally occurring mutant of HNTX-IV for there is only one residue (Ser20Ala) different between them. NMR and homologue modeling analysis indicated that all of them are inhibitor cystine knot (ICK) peptides. Four HNTXs lost to affect tetrodotoxin-resis
    tant
    
    
    
    (TTX-R) VGSCs in DRG neurons, but they except HNTX-I strongly inhibited the activation of TTX-S VGSCs with the IC50 values of 1.1, 44.6 and 46.8 nM, respectively. HNTX-I was sensitive to rNavl.2/pl and para/tipE, which were not expressed in DRG neurons. HNTX-I blocked the two kinds of VGSCs with IC50 values of 68.0 and 4.3 uM, respectively. Additionally, HNTX III-V caused a 10 mV hyperpolarizing shift in the voltage midpoint of steady-state inactivation. Similar to the crude venom, four HNTXs neither slowed channel inactivation nor shifted the voltage-current relationship of VGSCs. Importantly, HNTX-III and HNTX-IV at 1 uM inhibited the slowing inactivation currents induced by BMK-I (a typical scorpion a-like toxin from the scorpion Buthus martensi Karsch) completely. The results indicate that four HNTXs are novel spider toxins modifying the mammal neural VGSCs through a mechanism quite different from other spider toxins targeting neural receptor site 3, such as 5-atracotoxins and u,-agatoxins. Thus, we assumed that the HNTXs should not be site 3 toxins but belong to the family of site 1 toxins. In order to determine the key residues of HNTXs responsible for binding VGSCs, four mutants of native HNTX-IV (Serl2Ala, Arg26AIa, Lys27Ala and Arg29Ala) were synthesized by solid-phase method. When checked on DRG neurons, the inhibiting abilities for Serl2Ala and Arg26Ala were similar to that for native HNTX-IV, but the IC50 values of Lys27Ala and Arg29Ala are 100 times as big as that of native HNTX-IV. Thus, Lys27 and Arg29 should be important for HNTX to bind VGSCs.
    Chilobrachys jingzhao was identified recently as a new species of spider in the Hainan province of China. By means of ion-exchange and rp HPLC, we have isolated two main components, denoted jingzhaotoxin-I (JZTX-I) and jingzhaotoxin-III (JZTX-III), from its venom. The molecular weights of two toxins were determined to be 3675.6 and 3919.2 Da by MALDI-TOF mass spectrometry, respectively. JZTX-I is composed of 33 residues while JZTX-III has 36 residues.
引文
[1] Vais H, Williamson MS, Goodson SJ, Devonshire AL, Warmke JW, Usherwood PN, Cohen CJ. Activation of Drosophila Sodium Channels Promotes Modification by Deltamethrin Reductions in Affinity Caused by Knock-Down Resistance Mutations. J. Gen. Physiol. 2000, 115: 305-318.
    [2] Cestèle S, Scheuer T, Mantegazza M, Rochat H, Catterall WA. Neutralization of gating charges in domain Ⅱ of the sodium channel subunit enhances voltage- sensor trapping by a-scorpion toxin. J. Gen. Physiol. 2001, 118: 291-301.
    [3] Ogata N, Ohishi Y. Molecular diversity of structure and function of the voltage- gated Na~+ Channels. Jpn. J. Pharmacol. 2002, 88: 365-377.
    [4] Vickery RG, Amagasu SM, Chang R, Mai N, Kaufman E, Martin J, Hembrador J, O'Keefe MD, Gee C, Marquess D, Smith JA. Comparison of the pharmacological properties of rat Na_v1.8 with rat Na_v1.2a and human Na_v1.5 voltage-gated sodium channel subtypes using a membrane potential sensitive dye and FLIPRr. Receptors Channels. 2004, 10(1): 11-23.
    [5] Goudet C, Chi CW, Tytgat J. An overview of toxins and genes from the venom of the Asian scorpion Buthus martensi Karsch. Toxicon. 2002, 40(9): 1239-1258.
    [6] Terlau H, Olivera BM. Conus venoms: a rich source of novel ion channel-targeted peptides. Physiol Rev. 2004, 84(1): 41-68.
    [7] Blumenthal KM, Seibert AL. Voltage-gated sodium channel toxins: poisons, probes, and future promise. Cell Biochem Biophys. 2003, 38(2): 215-238.
    [8] Norton RS. Structure and structure-function relationships of sea anemone proteins that interact with the sodium channel. Toxicon. 1991, 29(9): 1051-1084.
    [9] Escoubas P, Diochot S, Corzo G. Structure and pharmacology of spider venom neurotoxins. Biochimie. 2000, 82(9-10): 893-907.
    [10] Pancrzao JJ, Kamatchi GL, Roscoe AK, Lynch C. Inhibition of neuronal Na~+ channels by antidepressant drugs. J. Pharmacol. Exp. Ther. 1998, 284: 208-214.
    [11] Liu G, Yarov-Yarovoy V, Nobbs M, Clare JJ, Scheuer T, Catterall WA. Differential interactions of lamotrigine and related drugs with transmembrane segment IVS6 of voltage-gated sodium channels. Neuropharmacology 2003, 44(3): 413-422.
    [12] Erichsen HK, Hao JX, Xu XJ, Blackbum-Munro G. A comparison of the antinociceptive effects of voltage-activated Na+ channel blockers in two rat models of neuropathic pain. Eur J Pharmacol. 2003, 458(3): 275-282.
    [13] 伍龙军,徐天乐.酸敏感离子通道的功能及其相关调.生物化学与生物物理进展,2003,30(3):339-343.
    
    
    [14] Hartshome RP, Messner DJ, Coppersmith JC, Catterall WA. The saxitoxin receptor of the sodium channel from rat brain. Evidence for two nonidentical β subunits. J Biol Chem. 1982, 257(23): 13888-13891.
    [15] Hartshome RP, Catterall WA. The sodium channel from rat brain. Purification and subunit composition. J Biol Chem. 1984, 259(3): 1667-1675.
    [16] Spampanato J, Escayg A, Meisler MH, Goldin AL. Generalized epilepsy with febrile seizures plus type 2 mutation W1204R alters voltage-dependent gating of Na_v1.1 sodium channels. Neuroscience. 2003, 116(1): 37-48.
    [17] Chraibi A, Schnizler M, Clauss W, Horisberger JD. Effects of 8-opt-cAMP on the epithelial sodium channel expressed in Xenopus oocytes. J Membr Biol. 2001, 183(1): 15-23.
    [18] Catterall WA. Sodium channel beta subunits: anything but auxiliary. Neuroscientist. 2001, 7(1): 42-54.
    [19] Yu FH, Westenbroek RE, Silos-Santiago Ⅰ, McCormick KA, Lawson D, Ge P, Ferriera H, Lilly J, DiStefano PS, Catterall WA, Scheuer T, Curtis R. Sodium channel β4, a new disulfide-linked auxiliary subunit with similarity to β2. J Neurosci. 2003, 23(20): 7577-7585.
    [20] Whitaker WR, Clare JJ, Powell AJ, Chen YH, Faull RL, Emson PC. Distribution of voltage-gated sodium channel α-subunit and β-subunit mRNAs in human hippocampal formation, cortex, and cerebellum. J Comp Neurol. 2000, 422(1): 123-139.
    [21] Meadows L, Malhotra JD, Stetzer A, Isom LL, Ragsdale DS. The intracellular segment of the sodium channel β1 subunit is required for its efficient association with the channel α subunit. J Neurochem. 2001, 76(6): 1871-1878.
    [22] Oh Y, Sashihara S, Black JA, Waxman SG. Na~+ channel β1 subunit mRNA: differential expression in rat spinal sensory neurons. Mol Brain Res. 1995, 30: 357-361.
    [23] Black JA, Dib-Hajj S, McNabola K, Jeste S, Rizzo MA, Kocsis JD, Waxman SG. Spinal sensory neurons express multiple sodium channel α-subunit mRNAs. Mol Brain Res. 1996,43: 117-131.
    [24] Morgan K, Stevens EB, Shah BS, Cox PJ, Dixon AK, Lee K, Richardson PJ, Pinnock RD, Hughes J, Mizuguchi K, Jackson AP. β3: an additional auxiliary subunit of the voltage-sensitive sodium channel that modulates channel gating with distinct kinetics. Proc Natl Acad Sci USA 2000, 97:2308-2313.
    [25] Moran O, Conti F. Skeletal muscle sodium channel is affected by an epileptogenic β1 subunit mutation. Biochem Biophys Res Commun. 2001, 282(1): 55-59.
    [26] Roden DM, Geo rge AL Jr. Structure and function of cardiac sodium and potassium
    
    channels. Am JPhysio l. 1997, 273 (2p t2): H5112-5125.
    [27] Shah BS, Stevens EB, Gonzalez MI, Bramwell S, Pinnock RD, Lee K and Dixon AK:β3, a novel auxiliary subunit for the voltage-gated sodium channel, is expressed preferentially in sensory neurons and is upregulated in the chronic constriction injury model of neuropathic pain. Eur J Neurosci. 2000, 12: 3985-3990.
    [28] Catterall WA. Structure and function of voltage-sensitive ion channels. Science. 1988, 242(4875): 50-61.
    [29] Auld VJ, Goldin AL, Krafte DS, Catterall WA, Lester HA, Davidson N, Dunn RJ. A neutral amino acid change in segment ⅡS4 dramatically alters the gating properties of the voltage-dependent sodium channel. Proc Natl Acad Sci USA. 1990, 87(1): 323-327.
    [30] Penzotti JL, Fozzard HA, Lipkind GM, Dudley SC Jr. Differences in saxitoxin and tetrodotoxin binding revealed by mutagenesis of the Na~+ channel outer vestibule. Biophys J. 1998, 75(6): 2647-2657.
    [31] Herzog RI, Liu CJ, Waxman SJ, Cummins TR. Calmodulin binds to the C terminus of sodium channels Na_vl.4 and Na_1l.6 and differentially modulates their functional properties. J Neurosci. 2003, 23(23): 8261-8270.
    [32] Smith FL, Lindsay RJ. Paradoxical enhancement of bupivacaine anesthesia in mice by drugs that open sodium channels. Pharmacology. 2003, 67(2): 90-98.
    [33] Maejima H, Kinoshita E, Seyama I, Yamaoka K. Distinct sites regulating grayanotoxin binding and unbinding to D4S6 of Na_v1.4 sodium channel as revealed by improved estimation of toxin sensitivity. J Biol Chem. 2003, 278(11): 9464-9471.
    [34] Cummus TR, Aglieco F, Dib-hajj SD. Critical molecular determinants of voltage-gated sodium channel sensitivity to μ-conotoxins GⅢA/B. Mol Pharmacol. 2002, 61: 1192-1201.
    [35] Noda M, Shimizu S, Tanabe T, Takai T, Kayano T, Ikeda T, Takahashi H, Nakayama H, Kanaoka Y, Minamino N, et al. Primary structure of Electrophorus electricus sodium channel deduced from cDNA sequence. Nature. 1984, 312(5990): 121-127
    [36] Sato C, Ueno Y, Asai K, Takahashi K, Sato M, Engel A, Fujiyoshi Y. The voltage-sensitive sodium channel is a bellshaped molecule with several cavities. Nature. 2000, 409: 1047-1051.
    [37] Goldin AL. Mechanisms of sodium channel inactivation. Curr Opin Neurobiol. 2003, 13(3): 284-90.
    [38] Rohl CA, Boeckman FA, Baker C, Scheuer T, Catterall WA, Klevit RE. Solution structure of the sodium channel inactivation gate. Biochemistry. 1999, 35(3): 855-861
    [39] Miyamoto K, Kanaori K, Nakagawa T, Kuroda Y: Solution structures of the inactivation
    
    gate particle peptides of rat brain type-ⅡA and human heart sodium channels in SDS micelles. J Pept Res. 2001, 57: 203-214.
    [40] Liu Y, Jurman ME, Yellen G. Dynamic rearrangement of the outer mouth of a K~+ channel during gating. Neuron 1996, 16: 859-867.
    [41] Ong B-H, Tomaselli GF, Balser JR. A structural rearrangement in the sodium channel pore linked to slow inactivation and use dependence. J Gen Physiol. 2000, 116: 653-661.
    [42] O'Reilly JP, Wang SY, Wang GK. Residue-specific effects on slow inactivation at V787 in D2-S6 of Na_v1.4 sodium channels. Biophys J. 2001, 81(4): 2100-2111.
    [43] Kondratiev A, Tomaselli GF. Altered gating and local anesthetic block mediated by residues in the Ⅰ-S6 and Ⅱ-S6 transmembrane segments of voltage-dependent Na~+ channels. Mol Pharmacol. 2003, 64(3): 741-752.
    [44] Herzog RI. Cummins TR, Waxman SG Persistent TTX-resistant Na~+ current affects resting potential and response to depolarization in simulated spinal sensory neurons. J Neurophysiol. 2001, 86(3): 1351-1364.
    [45] Hilber K, Sandtner W, Kudlacek O, Schreiner B, Glaaser Ⅰ, Schutz W, Fozzard HA, Dudley SC, Todt H. Interaction between fast and ultra-slow inactivation in the voltage-gated sodium channel. Does the inactivation gate stabilize the channel structure? J Biol Chem 2002, 277(40): 37105-37115.
    [46] Dudley SC Jr, Chang N, Hall J, Lipkind G, Fozzard HA, French RJ. μ-conotoxin GⅢA interactions with the voltage-gated Na~+ channel predict a clockwise arrangement of the domains. J Gen Physiol. 2000, 116(5): 679-690.
    [47] Todt H, Dudley SC Jr, Kyle JW, French RJ, Fozzard HA. Ultra-slow inactivation in mu1 Na+ channels is produced by a structural rearrangement of the outer vestibule.Biophys J.1999, 76(3):1335-1345.
    [48] Ji S, Sun W, George AL Jr, Horn R, Barchi RL. Voltage-dependent regulation of modal gating in the rat SkM1 sodium channel expressed in Xenopus oocytes. J Gen Physiol. 1994, 104(4): 625-643.
    [49] Joho RH, Moorman JR, VanDongen AM, Kirsch GE, Silberberg H, Schuster G, Brown AM. Toxin and kinetic profile of rat brain type Ⅲ sodium channels expressed in Xenopus oocytes. Brain Res Mol Brain Res. 1990, 7(2): 105-113.
    [50] Maue RA, Kraner SD, Goodman RH, Mandel G. Neuron-specific expression of the rat brain type Ⅱ sodium channel gene is directed by upstream regulatory elements. Neuron. 1990, 4(2): 223-231.
    [51] Catterall WA, Chandy KG, Clapham DE, Gutman GA, Hofmann F, Harmar AJ, Abernethy DR, Spedding M. International Union of Pharmacology: Approaches to the
    
    Nomenclature of Voltage-Gated Ion Channels Pharmacol Rev 2003, 55: 573-574.
    [52] Felipe A, Knittle TJ, Doyle KL, Tamkun MM, Primary structure and differential expression during development and pregnancy of a novel voltage-gated sodium channel in the mouse. J Biol Chem. 1994, 269(48): 30125-30131.
    [53] Watanabe E, Hiyama TY, Kodama R, Noda M. NaX sodium channel is expressed in non-myelinating Schwann cells and alveolar type Ⅱ cells in mice. Neurosci Lett. 2002, 330(1): 109-113.
    [54] Darboux I, Lingueglia E, Pauron D, Barbry P, Lazdunski M. A new member of the amiloride-sensitive sodium channel family in Drosophila melanogaster peripheral nervous system. Biochem Biophys Res Commun. 1998, 246(1): 210-216.
    [55] Maier SK, Westenbroek RE, Yamanushi TT, Dobrzynski H, Boyett MR, Catterall WA, Scheuer T. An unexpected requirement for brain-type sodium channels for control of heart rate in the mouse sinoatrial node. Proc Natl Acad Sci USA. 2003, 100(6): 3507-3512.
    [56] Bendahhou S, Cummins TR, Tawil R, Waxman SG, Ptacek LJ. Activation and inactivation of the voltage-gated sodium channel: role of segment S5 revealed by a novel hyperkalaemic periodic paralysis mutation. J Neurosci. 1999, 19(12): 4762-4771.
    [57] Ogata N, Tatebayashi H. Kinetic analysis of two types of Na~+ channels in rat dorsal root ganglia. J Physiol. 1993, 466: 9-37.
    [58] Su X, Wachtel RE, Gebhart GF. Capsaicin sensitivity and voltage-gated sodium currents in colon sensory neurons from rat dorsal root ganglia. Am J Physiol. 1997, 277: G1180-G1188.
    [59] Song J, Jang YY, Shin YK, Lee C, Chung S. N-Ethylmaleimide modulation of tetrodotoxin-sensitive and tetrodotoxin-resistant sodium channels in rat dorsal root ganglion neurons. Brain Res. 2000, 855(2): 267-273.
    [60] Fjell J, Cummins TR, Dib-Hajj SD, Fried K, Black JA and Waxman SG: Differential role of GDNF and NGF in the maintenance of two TTX-resistant sodium channels in adult DRG neurons. Mol Brain Res 1999, 67: 267-282.
    [61] Shon KJ, Olivera BM, Watkins M, Jacobsen RB, Gray WR, Floresca CZ, Cruz LJ, Hillyard DR, Brink A, Terlau H, Yoshikami D. μ-Conotoxin PⅢA, a new peptide for discriminating among tetrodotoxin-sensitive Na channel subtypes. J Neurosci. 1998, 18(12): 4473-4481.
    [62] Cannon SC, Strittmatter SM. Functional expression of sodium channel mutations identified in families with periodic paralysis. Neuron 1993, 10:317-326.
    [63] Yang N, Ji S, Zhou M, Pta'cek LJ, Barchi RL, Horn R, George Jr AL Sodium channel
    
    mutations in paramyotonia congenita exhibit similar biophysical phenotypes in vitro. Proc Natl Acad Sci USA 1994, 91: 12785-12789.
    [64] Hayward LJ, Sandoval GM, Cannon SC. Defective slow inactivation of sodium channels contributes to familial periodic paralysis. Neurology. 1999, 52(7): 1447-1453.
    [65] Schuize-Bahr E, Fenge H, Etzrodt D, Haverkamp W, Monnig G, Wedekind H, Breithardt G, Kehl HG. Long QT syndrome and life threatening arrhythmia in a newborn: molecular diagnosis and treatment response. Heart. 2004, 90(1): 13-6.
    [66] Moric E, Herbert E, Trusz-Gluza M, Filipecki A, Mazurek U, Wilczok T. The implications of genetic mutations in the sodium channel gene(SCN5A). Europace. 2003, 5(4): 325-334.
    [67] Wallace RH, Wang DW, Singh R, Scheffer IE, George AL Jr, Phillips HA, Saar K, Reis A. Johnson EW, Sutherland GR, Berkovic SF, Mulley JC. Febrile seizures and generalized epilepsy associated with a mutation in the Na~+-channel β1 subunit gene SCN1B. Nat Genet. 1998, 19(4): 366-70.
    [68] Watanabe E, Fujikawa A, Matsunaga H, Yasoshima Y, Sako N, Yamamoto T, Saegusa C, Noda M. Na_v2/NaG channel is involved in control of salt-intake behavior in the CNS. J Neurosci 2000, 20: 7743-7751.
    [69] Fitzsimons JT. Angiotensin, thirst, and sodium appetite. Physiol Rev 1997, 78: 583-686.
    [70] Bourque CW, Oliet SHR. Osmoreceptors in the central nervous system. Ann Rev Physiol 1997, 59: 601-619.
    [71] Peng K, Shu Q, Liu Z, Liang S. Function and solution structure of huwentoxin-Ⅳ, a potent neuronal tetrodotoxin(TTX)-sensitive sodium channel antagonist from Chinese bird spider Selenocosmia huwena. J Biol Chem. 2002, 277(49): 47564- 47571.
    [72] He XL, Li HM, Zeng ZH, Liu XQ, Wang M, Wang DC. Crystal structures of two alpha-like scorpion toxins: non-proline cis peptide bonds and implications for new binding site selectivity on the sodium channel. J Mol Biol. 1999, 292(1): 125-135.
    [73] Fletcher JI, Chapman BE, Mackay JP, Howden ME, King GF. The structure of versutoxin(δ-atracotoxin-Hv1) provides insights into the binding of site 3 neurotoxins to the voltage-gated sodium channel. Structure. 1997, 5(11): 1525-1535.
    [74] Kinoshita E, Maejima H, Yamaoka K, Konno K, Kawai N, Shimizu E, Yokote S, Nakayama H, Seyama I. Novel wasp toxin discriminates between neuronal and cardiac sodium channels. Mol Pharmacol. 2001, 59(6): 1457-1463.
    [75] Scott RH, Thatcher NM, Ayar A, Mitchell SJ, Pollock J, Gibson MT, Duce IR, Moya E, Blagbrough IS. Extracellular or intracellular application of argiotoxin-636 has inhibitory actions on membrane excitability and voltage-activated currents in cultured rat sensory
    
    neurons. Neuropharmacology. 1998, 37:1563-1578.
    [76] Huey RB, Moody WJ. Neuroscience and evolution. Snake sodium channels resist TTX arrest. Science. 2002, 297(5585): 1289-90.
    [77] Fozzard HA, Lipkind G. The guanidinium toxin binding site on the sodium channel. Jpn Heart J. 1996, 37(5): 683-692.
    [78] Nielsen KJ, Watson M, Adams DJ, Hammarstrom AK, Gage PW, Hill JM, Craik DJ, Thomas L, Adams D, Alewood PF, Lewis RJ. Solution structure of μ-conotoxin PⅢA, a preferential inhibitor of persistent tetrodotoxin-sensitive sodium channels. J Biol Chem. 2002, 277(30): 27247-27255.
    [79] Keizer DW, West PJ, Lee EF, Yoshikami D, Olivera BM, Bulaj G, Norton RS. Structural basis for tetrodotoxin-resistant sodium channel binding by μ-conotoxin SmⅢA. J Biol Chem. 2003, 278(47): 46805-46813.
    [80] Li RA, Ennis IL, Velez P, Tomaselli GF, Marban E. Novel structural determinants of μ-conotoxin(GⅢB) block in rat skeletal muscle(μl)Na~+ channels. J Biol Chem 2000, 275:27551-27558.
    [81] Cummins TR, Aglieco F, Dib-Hajj SD. Critical molecular determinants of voltage-gated sodium channel sensitivity to μ-conotoxins GⅢA/B. Mol Pharmacol. 2002, 61(5): 1192-1201.
    [82] Penzotti JL, Fozzard HA, Lipkind GM, Dudley SCJr. Differences in saxitoxin and tetrodotoxin binding revealed by mutagenesis of the Na~+ channel outer vestibule. Biophys J. 1998, 75, 2647-2657.
    [83] Stephan MM, Potts JF, Agnew WS. The microI skeletal muscle sodium channel: mutation E403Q eliminates sensitivity to tetrodotoxin but not to μ-conotoxins GⅢA and GⅢB. J Membr Biol. 1994, 137(1): 1-8.
    [84] Kimura T, Kinoshita E, Yamaoka K, Yuki T, Yakehiro M, Seyama I. On site of action of grayanotoxin in domain 4 segment 6 of rat skeletal muscle sodium channel. FEBS Lett. 2000, 465(1): 18-22.
    [85] Chen HJ, Gordon D, Heinemann SH. Modulation of cloned skeletal muscle sodium channels by the scorpion toxins Lqh Ⅱ, Lqh Ⅲ, and LqhaIT. Pflügers Arch-Eur J Physiol 2000, 439: 423-432.
    [86] Sun YM, Bosmans F, Zhu RH, Goudet C, Xiong YM, Tytgat J, Wang DC. Importance of the conserved aromatic residues in the scorpion alpha-like toxin BmK M1: the hydrophobic surface region revisited. J Biol Chem. 2003, 278(26): 24125-24131.
    [87] Corzo G, Gilles N, Satake H, Villegas E, Dai L, Nakajima T, Haupt J. Distinct primary structures of the major peptide toxins from the venom of the spider Macrothele gigas that
    
    bind to sites 3 and 4 in the sodium channel. FEBS Lett. 2003, 547(1-3): 43-50.
    [88] Szeto TH, Birinyi-Strachan LC, Smith R, Connor M, Christie MJ, King GF, Nicholson GM. Isolation and pharmacological characterisation of delta-atracotoxin-Hv1b, a vertebrate-selective sodium channel toxin. FEBS Lett. 2000, 470(3): 293-299.
    [89] Grolleau F, Stankiewicz M, Birinyi-Strachan L, Wang XH, Nicholson GM, Pelhate M, Lapied B. Electrophysiological analysis of the neurotoxic action of a funnel-web spider toxin, delta-atracotoxin-HV1a, on insect voltage-gated Na~+ channels. J Exp Biol. 2001, 204(Pt 4): 711-721.
    [90] Little MJ, Zappia C, Gilles N, Connor M, Tyler MI, Martin-Eauclaire MF, Gordon D, Nicholson GM. delta-Atracotoxins from australian funnel-web spiders compete with scorpion alpha-toxin binding but differentially modulate alkaloid toxin activation of voltage-gated sodium channels. J Biol Chem. 1998, 273(42): 27076-27083.
    [91] Bai ZT, Chen B, Zhang XY, Fan GL, Ji YH. c-Fos expression in rat spinal cord induced by scorpion BmK venom via plantar subcutaneous injection. Neurosci Res. 2002, 44(4): 447-454.
    [92] Gordon D, Ilan N, Zilberberg N, Gilles N, Urbach D, Cohen L, Karbat I, Froy O, Gaathon A, Kallen RG; Benveniste M, Gurevitz M. An 'Old World' scorpion beta-toxin that recognizes both insect and mammalian sodium channels. Eur J Biochem. 2003, 270(12): 2663-2670.
    [93] Middleton RE, Warren VA, Kraus RL, Hwang JC, Liu CJ, Dai G, Brochu RM, Kohler MG, Gao YD, Garsky VM, Bogusky MJ, Mehl JT, Cohen CJ, Smith MM. Two tarantula peptides inhibit activation of multiple sodium channels. Biochemistry 2002, 41(50): 14734-14747.
    [94] 邹冈.基础神经药理学(第二版).科学出版社,1999,318-379.
    [95] Fainzilber M, Lodder JC, Kits KS, Kofman O, Vinnitsky I, Van Rietschoten J, Zlotkin E, Gordon D. A new conotoxin affecting sodium current inactivation interacts with the delta-conotoxin receptor site. J Biol Chem. 1995,270(3): 1123-1129.
    [96] Sudarslal S, Majumdar S, Ramasamy P, Dhawan R, Pal PP, Ramaswami M, Lala AK, Sikdar SK, Sarma SP, Krishnan KS, Balaram P. Sodium channel modulating activity in a δ-conotoxin from an Indian marine snail. FEBS Lett. 2003, 553(1-2): 209-212.
    [97] Shon KJ, Hasson A, Spira ME, Cruz LJ, Gray WR, Olivera BM. Delta-conotoxin GmⅥA, a novel peptide from the venom of Conus gloriamaris. Biochemistry 1994, 33(38): 11420-11425.
    [98] Volpon L, Lamthanh H, Barbier J, Gilles N, Molgo J, Menez A,; Lancelin JM. NMR solution structures of δ-conotoxin EⅥA1 from Conus ermineus that selectively acts on
    
    vertebrate neuronal Na+ channels. J Biol Chem. 2004, in press.
    [99] Barbier J, Lamthanh H, Le Gall F, Favreau P, Benoit E, Chen H, Gilles N, Ilan N, Heinemann SH, Gordon D, Menez A, Molgo J. A δ-Conotoxin from conus ermineus venom inhibits inactivation in vertebrate neuronal Na~+ channels but not in skeletal and cardiac muscles. J Biol Chem. 2004, 279(6): 4680-4685.
    [100] Zhang XY, Bai ZT, Chai ZF, Zhang JW, Liu Y, Ji YH. Suppressive effects of BmK IT2 on nociceptive behavior and c-Fos expression in spinal cord induced by formalin. J Neurosci Res. 2003, 74(1): 167-173.
    [101] Hodgkin AL, Huxley AF. The dual effect of membrane potential on sodium conductance in the giant axon of Loligo. J Physiol. 1952, 116(4): 497-506.
    [102] Wagner CA, Friedrich B, Setiawan I, Lang F, Broer S. The use of Xenopus laevis oocytes for the functional characterization of heterologously expressed membrane proteins. Cell Physiol Biochem. 2000, 10(1-2): 1-12.
    [103] 贺秉军,刘安西.细胞电生理技术在昆虫抗药性研究中的应用.昆虫学报,2001,44(4):574-581.
    [104] Gillespie JI, Meves H. The time course of sodium inactivation in squid giant axons. J Physiol. 1980, 299: 289-307.
    [105] Cahalan MD. Modification of sodium channel gating in frog myelinated nerve fibres by Centruroides sculpturatus scorpion venom. J Physiol. 1975, 244(2): 511-34.
    [106] Ulbricht W, Wagner HH. The reaction between tetrodotoxin and membrane sites at the node of Ranvier: its kinetics and dependence on pH. Philos Trans R Soc Lond B Biol Sci. 1975,270(908): 353-63.
    [107] Llinas R, Sugimori M, Lin JW, Cherksey B. Blocking and isolation of a calcium channel from neurons in mammals and cephalopods utilizing a toxin fraction(FTX) from funnel-web spider poison. Proc Natl Acad Sci USA. 1989, 86(5): 1689-1693.
    [108] Stampfli R. Voltage clamp analysis of local anesthetic actions on the frog Ranvier node. Naunyn Schmiedebergs Arch Exp Pathol Pharmakol. 1968, 260(2): 203-204.
    [109] Yeh JZ, Takeno K, Rosen GM, Narahashi T. Ionic mechanism of action of a spin-labeled local anesthetic on squid axon membranes. J Membr Biol. 1975, 25(3-4): 237-247.
    [110] Kuhn FJ, Greeff NG. Gating properties of a sodium channel with three arginines substituted by histidines in the central part of voltage sensor S4D4. J Membr Biol. 2003, 193(1): 23-34.
    [111] De Leon L, Ragsdale DS. State-dependent access to the batrachotoxin receptor on the sodium channel. Neuroreport. 2003, 14(10): 1353-1356.
    
    
    [112] Hille B, Campbell DT. An improved vaseline gap voltage clamp for skeletal muscle fibers. J Gen Physiol. 1976, 67(3): 265-293.
    [113] Taglialatela M, Toro L, Stefani E. Novel voltage clamp to record small, fast currents from ion channels expressed in Xenopus oocytes. Biophys J. 1992, 61(1): 78-82.
    [114] Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981,391(2): 85-100.
    [115] 陈军.膜片钳实验技术.科学出版社,2001,6-7.
    [116] 康华光等.膜片钳技术及其应用.科学出版社,2003,1-20.
    [117] 杜育哲,贺秉军,刘丽,刘安西.膜片钳技术及其应用.天津农学院学报,2001,8(2):24-26.
    [118] Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981, 391(2): 85-100.
    [119] Edwards FA, Konnerth A, Sakmann B, Takahashi T. A thin slice preparation for patch clamp recordings from neurones of the mammalian central nervous system. Pflugers Arch. 1989, 414(5): 600-612.
    [120] Bevan S, Chiu SY, Gray PT, Ritchie JM. The presence of voltage-gated sodium, potassium and chloride channels in rat cultured astrocytes. Proc R Soc Lond B Biol Sci. 1985, 225(1240): 299-313.
    [121] Bezanilla F. Single sodium channels from the squid giant axon. Biophys J. 1987, 52(6): 1087-90.
    [122] Benndorf K. Patch clamp analysis of Na channel gating in mammalian myocardium: reconstruction of double pulse inactivation and voltage dependence of Na currents. Gen Physiol Biophys. 1988, 7(4): 353-377.
    [123] Gahwiler BH, Llano I. Sodium and potassium conductances in somatic membranes of rat Purkinje cells from organotypic cerebellar cultures. J Physiol. 1989, 417: 105-122.
    [124] Ogata N, Tatebayashi H. Kinetic analysis of two types of Na~+ channels in rat dorsal root ganglia. J Physiol. 1993, 466: 9-37.
    [125] Yatani A. Kitsch GE, Possani LD, Brown AM.Effects of New World scorpion toxins on single-channel and whole cell cardiac sodium currents. Am J Physiol. 1988,254(3 Pt 2): H443-451.
    [126] Nicholson GM, Willow M, Howden ME, Narahashi T. Modification of sodium channel gating and kinetics by versutoxin from the Australian funnel-web spider Hadronyche versuta. Pflugers Arch. 1994, 428(3-4): 400-409.
    
    
    [127] Tahmoush AJ, Schaller KL, Zhang P, Hyslop T, Heiman-Patterson T, Caldwell JH. Muscle sodium channel inactivation defect in paramyotonia congenita with the thr1313met mutation. Neuromuscul Disord. 1994, 4(5-6): 447-454.
    [128] Pusch M, Noda M, Stuhmer W, Numa S, Conti F. Single point mutations of the sodium channel drastically reduce the pore permeability without preventing its gating. Eur Biophys J. 1991, 20(3): 127-133.
    [129] 胡谦,施玉墚.丹皮酚对NG108-15细胞电压门控K~+,Na~+,Ca~(2+)流的抑制.生理学报,1994,46(6):575-580.
    [130] Wang QW, Li Q, Li ZW, Inhibitory effects of clonidine on GABA-activated currents in DRG neurons. Sheng Li Xue Bao, 1998, 50(1): 19-27.
    [131] Cao CM, Xia Q, Chen YY, Zhang X, Shen YL. Opioid receptor-mediated effects of interleukin-2 on the [Ca~(2+)]i transient and contraction in isolated ventricular myocytes of the rat. Pflugers Arch. 2002, 443(4): 635-642.
    [132] 贺秉军,刘安西,陈家童,孙金升,芮昌辉,孟香清.棉铃虫幼虫神经细胞的急性分离培养及其电压门控通道的膜片钳研究.昆虫学报,2001,44(4):422-427.
    [133] Gerevich Z, Borvendeg SJ, Schroder W, Franke H, Wirkner K, Norenberg W, Furst S, Gillen C, Illes P. Inhibition of N-type voltage-activated calcium channels in rat dorsal root ganglion neurons by P2Y receptors is a possible mechanism of ADP-induced analgesia. J Neurosci. 2004, 24(4): 797-807.
    [134] Wermeling D, Drass M, Ellis D, Mayo M, McGuire D, O'Connell D, Hale V, Chao S. Pharmacokinetics and pharmacodynamics of intrathecal ziconotide in chronic pain patients. J Clin Pharmacol. 2003, 624-636.
    [135] 王家福,彭贤瑾.我国南方捕鸟蛛一新种.湖南师范大学自然科学学报,1993,16(1):51-54.
    [136] 梁宋平,彭贤锦,黄仁槐等.我国南方捕鸟蛛一新种的生物化学鉴定(蜘蛛目,捕鸟蛛科).生命科学研究,1999,3(4):299-303.
    [137] Zhu Li et Song.中国大疣属(蜘蛛目:异仿蛛科)一新种.河北大学学报自然科学版,2000,20(4):358-361.
    [138] Peng K, Chen XD, Liang SP. The Effect of Huwentoxin-Ⅰ on Ca~(2+) Channel in Differentiated NG108-15 cells, a Patch-clamp Study. Toxicon, 2001, 39(4): 491-498.
    [139] Nicholson GM, Walsh R, Little MJ, et al. Characterisation of the effects of robustoxin, the lethal neurotoxin from the Sydney funnel-web spider Atrax robustus,on sodium channel activation and inactivation. Pflügers Arch, 1998,436(4): 117-126.
    [140] 梁宋平,覃于宾,张东裔,潘欣,陈湘定,谢锦云.虎纹捕鸟蛛毒的生物活性鉴定.动物学研究,1993,14(1):60-65.
    
    
    [141] 陈湘定,潘兴,纵湘等.虎纹捕鸟蛛(Selenocosmia huwena)料毒对蟾蜍神经肌肉接头传递的影响.湖南师范大学自然科学学报,1994,17(4):66-73.
    [142] Liang SP, Zhang DY, Zhou PA. Properties and amini acid sequence of huwentoxin-Ⅰ, a neurotoxin purified from the venom of the Chinese bird spider Selenocosmia Huwena. Toxicon, 1993, 31: 969-978.
    [143] Shu Q, Liang SP. Purification and characterization of huwentoxin-Ⅱ, a neurotoxic peptide from the venom of the Chinese bird spider Selenocosmia huwena. J. Pept. Res. 1999, 53(5): 486-491.
    [144] Lu SY, Liang SP, Gu XC. Three-dimensional structure of Selenocosmia huwena lectin-Ⅰ(SHL-Ⅰ) from the venom of the spider Selenocosmia huwena by 2D-NMR. J. Protein Chem. 1999, 18(5): 609-616.
    [145] Zhang PF, Chen P, Hu WJ, Liang SP. Huwentoxin-Ⅴ, a novel insecticidal peptide toxin from the spider Selenocosmia huwena, and a natural mutant of the toxin: indicates the key amino acid residues related to the biological activity. Toxicon. 2003, 42(1): 15-20.
    [146] Shu Q, Huang RH, Liang SP. Assignment of disulfide bonds of huwentoxin-Ⅱ by Edman degradation sequencing and step-wise thiol modification. Eur. J. Biochem. 2001, 268: 2031-2307.
    [147] Shu Q, Liang SP. The structure of spider toxin huwentoxin-Ⅱ with unique disulfide linkage: evidence for structural evolution. Protein Sci. 2002, 11(2): 245-252.
    [148] 李冬玲.海南捕鸟蛛毒素结构与功能研究:博士学位论文,北京,北京大学,2004.
    [149] Souslova VA, Fox M, Wood JN, Akopian AN. Cloning and characterization of a mouse sensory neuron tetrodotoxin-resistant voltage-gated sodium channel gene, Scn10a. Genomics. 1997, 41: 201-209.
    [150] Feng G. Deák P, Chopra M. Hall L. Cloning and functional analysis of TipE, a novel membrane protein that enhances Drosophila para sodium channel function. Cell. 1995, 82: 1001-1011.
    [151] Noda M, Ikeda T, Kayano T, Suzuki H, Takeshima H, Kurasaki M, Takahashi H, Numa S. Existence of distinct sodium channel messenger RNAs in rat brain. Nature 1986, 320: 188-192.
    [152] Gellens ME, George JR AL, Chen LQ, Chahine M, Horn R, Barchi RL, Kallen RG. Primary structure and functional expression of the human cardiac tetrodotoxin-insensitive voltage-dependent sodium channel, Proc. Natl. Acad. Sci. USA. 1992.89: 554-558.
    [153] 朱奇.海南捕鸟蛛毒素Ⅲ的结构与功能研究及二硫键在蝎毒leiurotoxin-Ⅰ分子折叠、结构与生理活性中的作用:博士学位论文.北京,北京大学,2002.
    
    
    [154] 刘中华.湖南师范大学硕士研究生论文,2001.
    [155] Ji YH, Mansuelle P, Terakawa S, Kopeyan C, Yanaihara N, Hsu K, Rochat H.Two neurotoxins(BMK Ⅰ and BMK Ⅱ)from the venom of scorpion Buthus Matense Karsch: purification, amino acid sequences assessment of specific, activity. Toxicon. 1996, 34: 987-1002.
    [156] Wicher D, Penzlin H. ω-Toxins affect Na~+ currents in neurosecretory insect neurons. Receptors Channels. 1998, 5(6): 355-366.
    [157] Sanguinetti MC, Johnson JH, Hammerland LG, Kelbaugh PR, Volkmann RA, Saccomano NA, Mueller A. Heteropodatoxins: peptides isolated from spider venom that block K_v4.2 potassium channels. Mol Pharmacol. 1997, 51: 491-498.
    [158] Zhu MS, Song DX, Li TH. A new species of the family Theraphosidae, with taxonomic study on the species Selenocosmia hainana(Arachnida: Araneae). Journal of Baoding Teachers College, 2001, 14(2): 1-6.
    [159] Diao JB, Lin Y, Tang JZ, Liang SP. cDNA sequence analysis of seven peptide toxins from the spider Selenocosmia huwena. Toxicon. 2003, 42: 715-723.
    [160] 徐叔云,卞如濂,陈修.药理实验方法学.1982年,666-667.
    [161] Wang CZ, Jiang H, Ou ZL, Chen JS, Chi CW. 2003. cDNA cloning of two A-superfamily conotoxins from Conus striatus. Toxicon. 42(6): 613-619.
    [162] Sahara Y, Gotoh M, Konno K, Miwa A, Tsubokawa H, Robinson HP, Kawai N. A new class of neurotoxin from wasp venom slows inactivation of sodium current, Eur J Neurosci. 2000, 12: 1961-1970.
    [163] 贺秉军.抗性棉铃虫神经细胞的分离培养及其神经敏感性降低机制的膜片钳研究:博士学位论文.天津南开大学,2000.
    [164] Kauferstein S, Huys I, Lamthanh H, Stocklin R, Sotto F, Menez A, Tytgat J, Mebs D. A novel conotoxin inhibiting vertebrate voltage-sensitive potassium channels. Toxicon. 2003, 42(1): 43-52.
    [165] Adjadj E, Naudat V, Quiniou E, Wouters D, Sautiere P, Craescu CT. Solution structure of Lqh-8/6, a toxin-like peptide from a scorpion venom-structural heterogeneity induced by proline cis/trans isomerization. Eur J Biochem. 1997, 246(1): 218-27.
    [166] Zhu S, Bosmans F, Tytgat J. Adaptive evolution of scorpion sodium channel toxins. J Mol Evol. 2004, 58(2): 145-53.
    [167] 徐科等.穴居狼蛛(Lycosa sigoriensis)毒液中的一个抗菌多肽的鉴定和纯化.动物学报,1989,35(3):300-305.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700