用户名: 密码: 验证码:
大停电后的负荷恢复研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于现代社会对电力供应的依存度越来越高,大规模、长时间的停电事故将给社会、经济带来严重的负面影响,合理可行的系统恢复方案能有效加快恢复进程,减少停电损失。作为系统恢复控制的重要优化目标之一,负荷恢复贯穿于整个恢复过程,系统恢复的每一阶段都存在负荷投入的优化问题,负荷的全面快速恢复不仅能减少社会经济损失,而且能加速整个系统的重构过程。在认真学习和借鉴已有研究工作的基础上,本文从单点负荷恢复的基础理论研究入手,深入到实际恢复过程中各阶段负荷投入的优化问题,并详细研究了负荷投入与其他恢复目标的协调控制策略流程,构成了大停电后负荷恢复研究的整体框架。整个研究涉及了模型建立、算法求解、约束校验、策略流程、交互协调控制等多个具体方面的内容,针对负荷恢复问题建立了系统的研究体系和详细的分析方法,完善了系统恢复控制的研究框架。论文的研究工作和创新成果如下:
     1)针对系统恢复过程中具体变电站的负荷恢复能力进行研究,综合考虑系统频率约束、暂态电压下降约束、冷负荷启动特性和系统潮流等影响因素,建立了确定变电站单次最大负荷恢复量的通用模型。针对负荷投入时的频率跌落问题,提出用经验估算公式和平均系统频率模型进行计算;针对暂态电压下降约束,根据对精度和速度不同的要求,提出了两种校验方法;针对冷负荷启动特性,通过建立考虑温控负荷特性的计算公式来确定故障后实际接入的负荷量。根据实际的恢复进程和系统状态,所建立的通用模型可简化影响因素个数或选择简化的计算方法以提高计算速度。为提高搜索寻优时的收敛速度,提出用一种改进的二分法对模型进行求解。算例仿真验证了所建模型和算法的有效性。
     2)结合系统恢复前期机组启动过程中的特点,分析了该时期负荷恢复的作用和主要内容,提出了与该时期其他恢复目标相协调的恢复流程;针对平衡机组出力的负荷恢复问题,建立了一种多目标的数学模型,并根据贪心算法的基本思想,提出了一种基于重要性优先的求解算法。线路充电时的负荷恢复问题包括两种不同的情况,针对最优负荷量的确定问题,基于二分法的搜索思想,提出了相应的负荷量优化流程;针对最优负荷点的选择问题,首先确定了负荷点选择的基本原则,在此基础上提出了相应的优化策略。所提出的优化策略和协调流程使得相应的负荷恢复能够与机组启动和相关网架恢复过程安全、有序、协调进行。
     3)系统恢复后期,随着主力机组的并网和主干网架的形成,需要进行大规模的负荷投入,实际多个负荷点的总体恢复应在满足系统各种等式和不等式约束的前提下,根据各负荷点的大小、位置和重要性分阶段顺序进行的。本文将该问题构建成考虑多负荷点投入顺序的组合优化模型,即在目标函数中引入了负荷投入顺序的影响,并综合考虑了不同顺序下频率、电压、机组出力限值以及稳态潮流等多个约束的满足情况,即从频率约束和电压约束的角度,考虑了先投入负荷对后续负荷投入的影响;结合该阶段负荷恢复的实际特点,提出用一种自适应的粒子群优化算法对模型进行求解,通过分析个体极值的优劣实现优化过程中参数的自适应调整。实际算例验证了所建模型和方法的有效性。
     4)为实现各恢复操作或优化策略的功能模块化,将恢复控制中的各种问题从不同的层面进行分类;提出将某阶段的整体优化恢复目标分割为多个局部对象,通过局部的恢复控制方法实现对某一个或几个操作的优化,在此基础上提出了大停电后协调恢复控制的系统框架;基于不同的判断标志,对系统恢复状态进行划分和识别,确定不同局部恢复控制优化策略方法的实施时机;根据不同的恢复状态,提出相应的局部恢复控制策略,包括机组恢复策略、网架恢复策略、负荷恢复策略、并列合环恢复策略以及直流恢复策略等,并结合已有的协调恢复控制框架提出了各策略具体的实施流程。在时间和空间维度上实现了交互式的并行协调恢复控制,提高了恢复控制优化方案的实用性和可操作性,能有效应对电网各种突发性大停电事故。
As modern society is dependent on the power supply excessively, the widespread blackout has a serious negative effect to the social economy. In order to speed up the restoration process and reduce outage cost, proper scheme for system restoration should be determined in a reasonable way. As one of the optimization objectives in system restoration, load pickup should be focused on which exists in each stage of restorion process. The effective load reatoration is in favor of the unit start-up and network reconfiguration. Based on current researches, a detail study on load restoration has been carried out in this dissertation, which includes maximizing the restorable load amount for specific substation, load pickup optimization for different stages in practical restoration, coordination strategies for multi objectives and etc. The whole research refers to many specific aspects, such as mathematical model, sovling algorithms, checking constraints, restoration strategies and coordinative control. The dissertation presents a fully study on load restoration, which perfects the whole framework for power system restoration. Main contributions and innovations are described as following:
     1) During power system restoration, the maximum load amount that a substation can pick up at one time is a critical parameter to be determined. Many factors should be considered, such as frequency constraint, transient voltage-dip constraint, cold load pickup and steady-state voltage constraint. A general model is proposed for calculating the maximum restorable load amount, in which proper checking methods are presented to deal with these constraints. Frequency deviation is calculated by the average system frequency model or an estimation formula. The transient voltage-dip constraint can be dealt with by two checking methods according to different requirements of calculation speed and precision.Cold load pickup characteristics are addressed using derived formulas. The proposed model is adaptive to various scenarios and can speedup computations by neglecting unnecessary simulation. A modified bisection algorithm is proposed to solve the complex problem efficiently. The effectiveness is demonstrated by case studies performed on the IEEE14-bus system and a practical power system.
     2) After a major blackout, the primary units of system should be restarted first. In this process, it is necessary to pick up reasonable loads to keep system stability and improve restoration efficiency. According to characteristics of this stage, this dissertation presents detailed contents of load restoration and related restoration strategies, which are coordinated with unit start-up. For load restoration of stabilizing generators, a multi-objective model is established. According to the principle of greedy algorithm, a method based on load priority is proposed to solve the problem efficiently. For load restoration during energizing high voltage line, two different situations are discussed. The optimization strategy based on bisection algorithm is described for determining reasonable load amount and a basic principle is given for choosing different load feeders. The effectiveness is demonstrated by case studies performed on the IEEE9-bus system and a practical black-start test system.
     3) During last stage of network reconfiguration after major blackout, loads should be picked up in sequence with considering certain constraints, which is a multi-constraint, non-linearity, integer programming problem. A combinatorial optimization model is proposed with considering the sequencing problem of load pickup, in which effects of pickup sequence are taken into consideration in both objective function and constraints. As the large optimization scale of restorable loads during last stage of network reconfiguration, a new adaptive particle swarm optimization algorithm is adopted to solve the proposed model. The adaptive strategy of parameters is carried out by comparing individual optimum in iterative process. Case studies performed on the actual Shandong power system demonstrate that the proposed model effectively reflects sequencing problem and the adopted algorithm can satisfy the practical requirement on computation speed.
     4) In order to achieve independent modules for different restoration actions or strategies, issues during system restoration are classified from different aspects. The whole optimization goal in certain stage is divided into many local objectives, in which one or several operation actions can be optimized by local restoration strategies. And a cooperation framework for system restoration is established in an interactive way. According to specific criterion, different system restoration states are defined with employing the corresponding local restoration strategies, which include unit start-up, network reconfiguration, load restoration, paralleling operation, DC restoration and etc. The implementation flow corresponding to specific local restoration strategy is also given in the proposed cooperation framework. From the perspective of both space and time dimensions, the present strategy can be carried out in a parallel processing way, which improves the availability and feasibility of restoration schemes. Case studies demonstrate that the proposed framework and strategies can deal with different emergency blackouts effectively.
引文
[1]王梅义,吴竞昌,蒙定中.大电网系统技术.北京:中国电力出版社,1995.
    [2]Taylor C W.电力系统电压稳定.北京:中国电力出版社,2002.
    [3]王梅义.有感于美国西部电网大停电.电网技术,1996,20(9):43-46.
    [4]U.S.-Canada power system outage task force. Final report on the August 14, 2003 blackout in the United States and Canada. https://reports.energy.gov/.
    [5]周孝信,郑健超,沈国荣,等.从美加东北部电网大面积停电事故中吸取教训.电网技术,2003,27(9):1.
    [6]薛禹胜.综合防御由偶然故障演化为电力灾难——北美“8.14”大停电的警示.电力系统自动化,2003,27(18):1-5,37.
    [7]薛禹胜,肖世杰.综合防御高风险的小概率事件:对日本相继天灾引发大停电及核泄漏事件的思考.电力系统自动化,2011,35(8):1-11.
    [8]李再华,白晓民,丁剑,等.西欧大停电事故分析.电力系统自动化,2007,31(1):1-3,32.
    [9]林伟芳,孙华东,汤涌,等.巴西“11.10”大停电事故分析及启示.电力系统自动化,2010,34(7):1-5.
    [10]唐斯庆,张弥,李建设,等.海南电网“9.26"大面积停电事故的分析与总结.电力系统自动化,2006,30(1):1-7,16.
    [11]刘有飞,蔡斌,吴素农.电网冰灾事故应急处理及反思.电力系统自动化,2008,32(8):10-13.
    [12]Salvati R, Sforna M, Pozzi M. Restoration project [Italian power restoration plan]. IEEE Power and Energy Magazine,2004,2(1):44-51.
    [13]高翔,庄侃沁,孙勇.西欧电网“11.4”大停电事故的启示.电网技术,2007,31(1):25-31.
    [14]Adibi M M, Borkoski J N, Kafka R J. Power system restoration-the second task force report. IEEE Transactions on Power Systems,1987,2(4):927-932.
    [15]NERC/WSCC planning standards. Western Systems Coordinating Council, 2000.
    [16]电力系统安全稳定控制技术导则.中华人民共和国国家经济贸易委员会,2000.
    [17]电力系统黑启动方案编制和实施技术规范(试行).国家电力调度通信中心,2005.
    [18]谌军,曾勇刚,杨晋柏,等.南方电网黑启动方案.电力系统自动化,2006, 30(9):80-83,87.
    [19]张其明,王万军.陕西电网黑启动方案研究.电网技术,2002,26(4):42-45,48.
    [20]吴涛,郭嘉阳,李华伟.华北电网利用十三陵抽水蓄能电厂水电机组进行黑启动的试验研究.电网技术,2001,25(3):56-58.
    [21]林济铿,么莉,孟宪朋,等.天津电网黑启动试验研究.电网技术,2008,32(5):55-58.
    [22]王洪涛,袁森,邱夕兆,等.遵循PDCA循环的山东电网黑启动试验.电力自动化设备,2010,30(2):145-149.
    [23]褚骏伟.电力系统分析.北京:中国电力出版社,1995.
    [24]Lindstrom R R. Simulation and field tests of the black start of a large coal-fired generating station utilizing small remote hydro generation. IEEE Transactions on Power Systems,1990,5(1):162-168.
    [25]房鑫炎,郁惟镛,熊惠敏,等.电力系统黑启动的研究.中国电力,2000,33(1):40-43.
    [26]周云海.大停电事故后恢复控制技术研究[博士学位论文].北京:清华大学,2001.
    [27]Adibi M M, Fink L H. Power system restoration planning. IEEE Transactions on Power Systems,1994,9(1):22-28.
    [28]Ancona J J. A framework for power system restoration following a major power failure. IEEE Transactions on Power Systems,1995,10(3):1480-1485.
    [29]Adibi M M, Milanicz D P, Volkmann T L. Remote cranking of steam electric stations. IEEE Transactions on Power Systems,1996,11(3):1613-1618.
    [30]Adibi M M, Alexander R W, Avramovic B. Overvoltage control during restoration. IEEE Transactions on Power Systems,1992,7(4):1464-1470.
    [31]Delfino B, Denegri G B, Invernizzi M, et al. Black-start and restoration of a part of the Italian HV network:modelling and simulation of a field test. IEEE Transactions on Power Systems,1996,11(3):1371-1379.
    [32]何宝灵,刘玉田,王洪涛,等.利用抽水蓄能黑启动大型火电机组辅机的频率估计.电力自动化设备,2008,28(5):68-71.
    [33]杨艳,赵书强,顾雪平,等.黑启动方案中启动厂用负荷时电压与频率的仿真校验.继电器,2004,32(8):22-25,51.
    [34]Adibi M M, Alexander R W, Milanicz D P. Energizing high and extra-high voltage lines during restoration. IEEE Transactions on Power Systems,1999, 14(3):1121-1126.
    [35]周云海,闵勇.恢复控制中的系统重构优化算法研究.中国电机工程学报,2003,23(4):67-70.
    [36]Adibi M M, Milanicz D P, Volkmann T L. Simulating transformer taps for remote cranking operations. IEEE Computer Applications in Power,1996,9(3): 24-29.
    [37]周云海,闵勇.负荷的快速恢复算法研究.中国电机工程学报,2003,23(3):74-79.
    [38]Kostic T, Germond A J, Alba J J. Optimization and learning of load restoration strategies. International Journal of Electrical Power and Energy Systems,1998, 20(2):131-140.
    [39]Adibi M M, Borkoski J N, Kafka R J, et al. Frequency response of prime movers during restoration. IEEE Transactions on Power Systems,1999,14(2): 751-756.
    [40]Nielson E K, Adibi M M, Barrie O, et al. System operations challenges. IEEE Transactions on Power Systems,1988,3(1):118-126.
    [41]Schultz R D, Mason G A. Blackstart utilization of remote combustiont, analytical analysis and field test. IEEE Transactions on Power Apparatus and Systems,1984, PAS-103(8):2186-2191.
    [42]Kirkby B, Hirst E. New blackstart standards needed for competitive markets. IEEE Power Engineering Review,1999,19(2):9-11.
    [43]Liu C C, Liou K L, Chu R F, et al. Generation capability dispatch for bulk power system restoration:a knowledge-based approach. IEEE Transactions on Power Systems,1993,8(1):316-325.
    [44]de Mello F P, Westcott J C. Steam plant startup and control in system restoration. IEEE Transactions on Power Systems,1994,9(1):93-101.
    [45]董张卓,焦建林,孙启宏.用层次分析法安排电力系统事故后火电机组恢复的次序.电网技术,1997,21(6):48-54.
    [46]刘强,石立宝,周明,等.电力系统恢复中机组恢复的优化选择方法.电工技术学报,2009,24(3):164-170.
    [47]Adibi M M, Adsunski G, Jenkins R, et al. Nuclear plant requirements during power system restoration. IEEE Transactions on Power Systems,1995,10(3): 1486-1491.
    [48]Hannett L N, de Mlello F P, Tylinski G H, et al. Validation of nuclear plant auxiliary power supply by test. IEEE Transactions on Power Apparatus and Systems,1982, PAS-101(9):3068-3074.
    [49]Hassan I D, Weronick R, Bucci R M, et al. Evaluating the transient performance of standby diesel-generator units by simulation. IEEE Transactions on Energy Conversion,1992,7(3):470-477.
    [50]Yeager K E, Willis J R. Modeling of emergency diesel generators in an 800 megawatt nuclear power plant. IEEE Transactions on Energy Conversion,1993, 8(3):433-441.
    [51]Adibi M M, Clelland P, Fink L, et al. Power system restoration-a task force report. IEEE Transactions on Power Systems,1987,2(2):271-277.
    [52]Adibi M M, Kafka R J. Power system restoration issues. IEEE Computer Applications in Power,1991,4(2):19-24.
    [53]Jadid S, Salami A. Accurate model of hydroelectric power plant for load pickup during power system restoration. IEEE TENCON 2004, ChiangMai, Thailand, 2004,3:307-310.
    [54]Furukawa K, Izena A, Shimojo T, et al. Governor control study at the time of a black start. IEEE Power Engineering Society General Meeting, Denver, USA, 2004,2:1521-1526.
    [55]Lindenmeyer D. A framework for power system restoration[博士学位论文].Canada:University of British Columbia,2000.
    [56]刘映尚,吴文传,冯永青,等.黑启动过程中的负荷恢复.电网技术,2007,31(13):17-22.
    [57]Wang Q, Ajjarapu V. A novel approach to implement generic load restoration in continuation-based quasi-steady-state analysis. IEEE Transactions on Power Systems,2005,20(1):516-518.
    [58]Mcdonald J E, Bruning A M. Cold load pickup. IEEE Transactions on Power Apparatus and Systems,1979, PAS-98(4):1384-1386.
    [59]Ihara S, Schweppe F C. Physically based modeling of cold load pickup. IEEE Transactions on Power Apparatus and System,1981, PAS-100(9):4142-4150.
    [60]程改红,徐政.基于粒子群优化的最优负荷恢复算法.电力系统自动化,2007,31(16):62-65,79.
    [61]Adibi M M, Fink L H, Andrews C J, et al. Special considerations in power system restoration. IEEE Transactions on Power Systems,1992,7(4): 1419-1427.
    [62]Adibi M M, Milanicz D P. Reactive capability limitation of synchronous machines. IEEE Transactions on Power Systems,1994,9(1):29-40.
    [63]Adibi M M, Polyak R A, Griva I A, et al. Optimal transformer tap selection using modified barrier-augmented Lagrangian method. IEEE Transactions on Power Systems,2003,18(1):251-257.
    [64]Adibi M M, Milanicz D P, Volkmann T L. Optimizing generator reactive power resources. IEEE Transactions on Power Systems,1999,14(1):319-326.
    [65]Huang J A, Audette L, Harrison S. A systematic method for power system restoration planning. IEEE Transactions on Power Systems,1995,10(2): 869-875.
    [66]程改红,徐政.电力系统故障恢复过程中的过电压控制.电网技术,2004,28(11):29-33.
    [67]钱家骊,袁大陆,徐国政.对1000kV电网操作过电压及相位控制高压断路器的讨论.电网技术,2005,29(10):1-4.
    [68]李膨源,顾雪平.基于神经网络的黑启动操作过电压快速预测.电网技术,2006,30(3):66-70.
    [69]张玉琼,顾雪平.基于随机统计分析的黑启动操作过电压的计算校验.电工技术学报,2005,20(5):92-97.
    [70]Povh D, Schultz W. Analysis of overvoltages caused by transformer magnetizing inrush current. IEEE Transactions on Power Apparatus and Systems,1978, PAS-97(4):1355-1365.
    [71]Morin G. Service restoration following a major failure on the hydro-Quebec power system. IEEE Transactions on Power Delivery,1987,2(2):454-463.
    [72]Ketabi A, Ranjbar A M, Feuillet R. Analysis and control of temporary overvoltages for automated restoration planning. IEEE Transactions on Power Delivery,2002,17(4):1121-1127.
    [73]程改红,徐政.电力系统故障恢复初期的谐波过电压问题.电网技术,2005,29(10):14-19.
    [74]Adibi M M, Milanicz D P. Protective system issues during restoration. IEEE Transactions on Power Systems,1995,10(3):1492-1497.
    [75]Sidhu T S, Tziouvaras D A, Apostolov A P, et al. Protection issues during system restoration. IEEE Transactions on Power Delivery,2005,20(1):47-56.
    [76]刘映尚,张碧华,周云海.黑启动过程中继电保护和安全自动装置的特性和运行.中国电力,2005,38(5):25-28.
    [77]李阳坡,顾雪平,刘艳.电力系统黑启动过程中线路继电保护的配置与整定.电力系统自动化,2006,30(7):89-92.
    [78]江长明,闫贺群,许鹏.华北电网黑启动试验.电力系统自动化,2000,24(22):57-58.
    [79]刘隽,李兴源,许秀芳.互联电网的黑启动策略及相关问题.电力系统自动化,2004,28(5):93-97.
    [80]郁惟镛,房鑫炎,熊惠敏.华东电网黑起动方案研究之一.电力系统及其自动化学报,2000,12(2):1-4.
    [81]国家电力公司东北公司.电力工程师手册(电气卷下).北京:中国电力出版社,2002.
    [82]Wuderlich S, Adibi M M, Fischl R, et al. An approach to standing phase angle reduction. IEEE Transactions on Power Systems,1994,9(1):470-478.
    [83]张炳达,罗彬,张洁华.基于正序基波电压合成相量的发电机并网条件核算法.中国电机工程学报,2006,26(6):52-56.
    [84]Hazarika D, Sinha A K. An algorithm for standing phase angle reduction for power system restoration. IEEE Transactions on Power Systems,1999,14(4): 1213-1218.
    [85]叶华,刘玉田.系统恢复中环网并列合闸角的最优调控.电力系统自动化,2011,32(24):17-22.
    [86]Simburger E J, Hubert F J. Low voltage bulk power system restoration simulation. IEEE Transactions on Power Apparatus and Systems,1981, PAS-100(11):4479-4484.
    [87]Sakaguchi T, Matsumoto K. Development of a knowledge based system for power system restoration. IEEE Transactions on Power Apparatus and Systems, 1983, PAS-102(2):320-329.
    [88]Adibi M M, Kafka L R J, Milanicz D P. Expert system requirements for power system restoration. IEEE Transactions on Power Systems,1994,9(3): 1592-1600.
    [89]Lieu K L, Liu C C, Chu R F. Tie line utilization during power system restoration. IEEE Transactions on Power Systems,1995,10(1):192-199.
    [90]Teo C Y, Shen W. Real-time generation and supervision of a dynamic restoration plan for bulk-power systems. Electric Power Systems Research, 2000,53(2):113-122.
    [91]Shimakura K, Inagaki J, Matsunoki Y, et al. A knowledge-based method for making restoration plan of bulk power system. IEEE Transactions on Power Systems,1992,7(2):914-920.
    [92]Kirschen D S, Volkmann T L. Guiding a power system restoration with an expert system. IEEE Transactions on Power Systems,1991,6(2):558-566.
    [93]Kojima Y, Warashina S, Nakamura S, et al. Development of a guidance method for power system restoration. IEEE Transactions on Power Systems,1989,4(3): 1219-1227.
    [94]Nadira R, Dy Liacco T E, Loparo K A. A hierarchical interactive approach to electric power system restoration. IEEE Transactions on Power Systems,1992, 7(3):1123-1131.
    [95]邱晓燕,唐海平,李兴源,等.基于专家系统和数值计算的电力系统恢复.中国电机工程学报,1996,16(6):413-416.
    [96]Liu C C, Lee S J, Venkata S S. An expert system operational aid for restoration and loss reduction of distribution systems. IEEE Transactions on Power Systems,1988,3(2):619-626.
    [97]Lee H J, Park Y M. A restoration aid expert system for distribution substations. IEEE Transactions on Power Delivery,1996,11(4):1765-1770.
    [98]Gaing Z L, Lu C N, Chang B S, et al. An object-oriented approach for implementing power system restoration package. IEEE Transactions on Power Systems,1996,11(1):483-489.
    [99]Ma T K, Liu C C, Tsai M S, et al. Operational experience and maintenance of online expert system for customer restoration and fault testing. IEEE Transactions on Power Systems,1992,7(2):835-842.
    [100]Aamodt A, Plaza E. Case-based reasoning:foundational issues, met hodological variations and system approaches. Artificial Intelligence Communications,1994, 7(1):39-59.
    [101]Islam S, Chowdhury N. A case-based Windows graphic package for the education and training of power system restoration. IEEE Transactions on Power Systems,2001,16(2):181-187.
    [102]周云海,胡翔勇,罗斌.基于案例推理的大停电恢复系统设计.电力系统自动化,2007,31(18):87-90.
    [103]Smyth B, Keane M T, Cunningham P. Hierarchical case-based reasoning integrating case-based and decompositional problem-solving techniques for plant-control software design. IEEE Transactions on Knowledge and Data Engineering,2001,13(5):793-812.
    [104]王洪涛,刘玉田,邱夕兆.基于分层案例推理的黑启动决策支持系统.电力系统自动化,2004,28(11):49-52.
    [105]Momoh J A, Ma X W, Tomsovic K. Overview and literature survey of fuzzy set theory in power systems. IEEE Transactions on Power Systems,1995,10(3): 1676-1690.
    [106]Hsu Y Y, Kuo H C. A heuristic based fuzzy reasoning approach for distribution system service restoration. IEEE Transactions on Power Delivery,1994,9(2): 948-953.
    [107]Lee S J, Lim S I, Ahn B S. Service restoration of primary distribution systems based on fuzzy evaluation of multi-criteria. IEEE Transactions on Power Systems,1998,13(3):1156-1163.
    [108]刘天琪.超高压大系统最优恢复计划的多目标模糊决策法.电力系统自动化,2000,24(15):27-31.
    [109]Rodriguez J R A, Vargas A. Fuzzy-heuristic methodology to estimate the load restoration time in MV networks. IEEE Transactions on Power Systems,2005, 20(2):1095-1102.
    [110]张志毅,陈允平.基于模糊多属性决策的黑启动方案优选.高电压技术,2007,33(3):42-45,52.
    [111]张志毅,陈允平,袁荣湘.系统重构阶段机组最优恢复次序的模糊多属性决策法.电工技术学报,2007,22(11):153-157.
    [112]钟慧荣,顾雪平.基于模糊层次分析法的黑启动方案评估及灵敏度分析.电力系统自动化,2010,34(16):34-37.
    [113]Wu J S, Liu C C, Liou K L, et al. A Petri net algorithm for scheduling of generic restoration actions. IEEE Transactions on Power Systems,1997,12(1):69-76.
    [114]Fountas N A, Hatziargyriou N D, Valavanis K P. Hierarchical time-extended Petri nets as a generic tool for power system restoration. IEEE Transactions on Power Systems,1997,12(2):837-843.
    [115]Yang H T, Huang C M. Distribution system service restoration using fuzzy Petri Net models. International Journal of Electrical Power and Energy Systems, 2002,24(5):395-403.
    [116]刘栋,陈允平,沈广,等.基于UML和Petri网的电力系统恢复模型.高电压技术,2006,32(6):90-93.
    [117]刘栋,陈允平,沈广,等.电力系统恢复相关问题及其三层Petri网建模.高电压技术,2006,32(7):109-112.
    [118]马骞,杨以涵,刘文颖,等.基于对象Petri网技术的电力系统故障恢复方法.电网技术,2005,29(3):21-28.
    [119]Kim H, Ko Y, Jung K H. Artificial neural-network based feeder reconfiguration for loss reduction in distribution systems. IEEE Transactions on Power Delivery, 1993,8(3):1356-1366.
    [120]Hsu Y Y, Huang H M. Distribution system service restoration using the artificial neural network approach and pattern recognition method. IEE Proceedings: Generation, Transmission and Distribution,1995,142(3):251-256.
    [121]Bretas A S, Phadke A G. Artificial neural networks in power system restoration. IEEE Transactions on Power Delivery,2003,18(4):1181-1186.
    [122]Salazar H, Gallego R, Romero R. Artificial neural networks and clustering techniques applied in the reconfiguration of distribution systems. IEEE Transactions on Power Delivery,2006,21(3):1735-1742.
    [123]Sadeghkhani I, Ketabi A, Feuillet R. Estimation of Temporary Overvoltages during Power System Restoration using Artificial Neural Network.15th International Conference on Intelligent System Applications to Power Systems, Curitiba, Brazil,2009,1-6.
    [124]Nagata T, Sasaki H. A multi-agent approach to power system restoration. IEEE Transactions on Power Systems,2002,17(2):457-462.
    [125]王洪涛,刘玉田,邱夕兆,等.基于多agent的电力系统主从递阶恢复决策.电力系统自动化,2006,30(15):5-9.
    [126]Solanki J M, Khushalani S, Schulz N N. A Multi-Agent Solution to Distribution Systems Restoration. IEEE Transactions on Power Systems,2007,22(3): 1026-1034.
    [127]Xu Y, Liu W. Novel multiagent based load restoration algorithm for microgrids. IEEE Transactions on Smart Grid,2011,2(1):152-161.
    [128]Ye D, Zhang M, Sutanto D. A hybrid multiagent framework with Q-learning for power grid systems restoration. IEEE Transactions on Power Systems,2011, 26(4):2434-2441.
    [129]顾雪平,韩忠晖,梁海平.电力系统大停电后系统分区恢复的优化算法.中国电机工程学报,2009,29(10):41-46.
    [130]沈广,陈允平,刘栋.基于最小生成树编码的配电网恢复遗传算法.电力系统自动化,2007,31(14):81-84.
    [131]魏智博,刘艳,顾雪平.基于DPSO算法以负荷恢复为目标的网络重构.电力系统自动化,2007,31(1):28-42.
    [132]葛朝强,唐国庆,王磊.综合智能式的故障恢复专家系统——与故障恢复算法集相结合的自学习模糊专家系统.电力系统自动化,2000,24(2):17-21.
    [133]Kostic T, Cherkaoui R, Germond A, et al. Decision aid function for restoration of transmission power systems:conceptual design and real time considerations. IEEE Transactions on Power Systems,1998,13(3):923-929.
    [134]刘玉田,王春义.基于数据仓库的网架恢复群体智能决策支持系统.电力 系统自动化,2009,33(1):45-50.
    [135]周云海,闵勇,杨滨.黑启动及及其决策支持系统.电力系统自动化,2001,25(15):4346,62.
    [136]Fink L H, Liou K L, Liu C C. From generic restoration actions to specific restoration strategies. IEEE Transactions on Power Systems,1995,10(2): 745-752.
    [137]Adibi M M, Fink L H. Overcoming restoration challenges associated with major power system disturbances-Restoration from cascading failures. IEEE Power and Energy Magazine,2006,4(5):68-77.
    [138]Ketabi A, Ranjbar A M, Feuillet R. A new method for dynamically calculation of load steps during power system restoration.2000 Canadian Conference on Electrical and Computer Engineering, Halifax, Canada,2000,1:158-162.
    [139]Ding X. Optimal load shedding and restoration[博士学位论文]. USA:Clemson University,2001.
    [140]张志毅,陈允平,袁荣湘.电力系统负荷恢复问题的混合遗传算法求解.电工技术学报,2007,22(2):105-109.
    [141]陈小平,顾雪平.基于遗传模拟退火算法的负荷恢复计划制定.电工技术学报,2009,24(1):171-175.
    [142]Chan M L, Dunlop R D, Schweppe F. Dynamic Equivalents for Average System Frequency Behavior Following Major Distribances. IEEE Transactions on Power Apparatus and Systems,1972, PAS-91(4):1637-1642.
    [143]Borghetti A, Migliavacca G, Nucci C A, et al. Black-start-up simulation of a repowered thermoelectric unit. Control Engineering Practice,2001,9(7): 791-803.
    [144]薛禹胜,徐泰山,刘兵,等.暂态电压稳定性及电压跌落可接受性.电力系统自动化,1999,23(14):4-8.
    [145]Shoup D J, Paserba J J, Taylor C W. A survey of current practices for transient voltage dip/sag criteria related to power system stability. IEEE PES Power Systems Conference and Exposition,2004,2:1140-1147.
    [146]徐泰山,牟宏,邱夕兆,等.山东电网暂态低电压切负荷紧急控制的量化分析.电力系统自动化,1999,23(21):9-11.
    [147]徐泰山,薛禹胜,韩祯祥.暂态电压稳定的模型要求和快速判断.电力系统自动化,1995,19(12):11-15.
    [148]Gupta V, Pahwa A. A voltage drop-based approach to include cold load pickup in design of distribution systems. IEEE Transactions on Power Systems,2004, 19(2):957-963.
    [149]Friend F. Cold load pickup issues.62nd Annual Conference for Protective Relay Engineers, Texas, USA,2009,176-187.
    [150]Adibi M M. Special consideration in power system restoration. The second working group report. IEEE Transactions on Power Systems,1994,9(1):15-21.
    [151]Fletcher R. Practical methods of optimization. Chichester, NY:Wiley,1987.
    [152]王晓东.计算机算法设计与分析(第2版).北京:电子工业出版社,2004.
    [153]Adibi M M, Martins N. Power system restoration dynamics issues. Power and Energy Society General Meeting-Conversion and Delivery of Electrical Energy in the 21st Century,2008,1-8.
    [154]夏道止.电力系统分析(下册).北京:中国电力出版社,1995.
    [155]周云海,刘映尚,胡翔勇.大停电事故后的系统网架恢复.中国电机工程学报,2008,28(10):32-36.
    [156]Zhang W, Liu Y. Multi-objective reactive power and voltage control based on fuzzy optimization strategy and fuzzy adaptive particle swarm. International Journal of Electrical Power and Energy Systems,2008,30(9):525-532.
    [157]杨维,李歧强.粒子群优化算法综述.中国工程科学,2004,6(5):87-94.
    [158]高尚,杨静宇.群智能算法及其应用.北京:中国水利水电出版社,2007.
    [159]鞠平,马大强.电力系统负荷建模.北京:中国电力出版社,2008.
    [160]刘艳.电力系统黑启动恢复及其决策支持技术的研究[博士学位论文].北京:华北电力大学,2007.
    [161]王春义.电力系统恢复辅助决策方法研究与系统开发[博士学位论文].济南:山东大学,2010.
    [162]刘强.电力系统恢复控制的协调优化[博士学位论文].北京:华北电力大学,2009.
    [163]王春义,刘玉田.输电网架恢复的动态优化决策方法.电力系统自动化,2011,35(2):23-27,78.
    [164]王洪涛,刘玉田.电力系统恢复的主从递阶决策模型及其优化算法.中国电机工程学报,2007,27(1):8-13.
    [165]王洪涛,刘玉田.基于NSGA-II的多目标输电网架最优重构.电力系统自动化,2009,33(23):14-18.
    [166]刘艳,顾雪平.基于节点重要度评价的骨架网络重构.中国电机工程学报,2007,27(10):20-27.
    [167]王华伟,曾南超,蒋卫平,等.±660kV中蒙直流工程送端孤岛运行方式最小功率启动研究.电网技术,2010,34(5):83-87.
    [168]Kunder P.电力系统稳定与控制.北京:中国电力出版社,2002.
    [169]周剑,苏寅生,王新宝.云广直流在南方电网黑启动及系统恢复过程的作用.南方电网技术,2010,4(4):48-51.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700