用户名: 密码: 验证码:
钛基SCR催化剂及其脱硝性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氮氧化物是世界公认的大气污染物之一,以NH3为还原剂的选择性催化还原烟气脱硝技术(SCR)是治理烟气NOx污染最有效的技术。为了研究和探索SCR高效催化剂,对钛基催化剂的制备及其活性组分变化、反应过程参数变化等对NO的脱除性能影响进行了理论和实验研究。
     采用浸渍法制备了不同比例的V2O5/TiO2、V2O5-WO3/TiO2、CeO2/TiO2、CeO2-MnO2/TiO2、CeO2/TiO2-ZrO2催化剂样品。通过测试各催化剂的活性,研究了催化剂活性成分和助剂的含量变化对催化剂活性的影响。结果发现:1%和1.2%V2O5含量的V2O5/TiO2(质量比)催化剂,以及1.2%V2O5-10%WO3/TiO2(质量比)催化剂是实验得到的具有最佳活性的钒系催化剂组分配比。铈钛催化剂中,当CeO2负载量超过10%、反应温度为250-450℃、空速值为30000h-1时,CeO2/TiO2-ZrO2催化剂的脱硝效率稳定在94.55%-99.64%。
     考察了S02对催化剂活性的影响。SO2对V2O5/TiO2催化剂和CeO2/TiO2-ZrO2催化剂脱硝活性有一定的影响,但影响不大,说明具有抵抗SO2中毒的能力。V2O5/TiO2催化剂中添加助剂WO3,能够提高催化剂抗硫性能,脱硝效率高于V2O5/TiO2催化剂。
     烟气中同时存在SO2和水蒸气时,一定程度上影响了V2O5/TiO2催化剂和CeO2/TiO2-ZrO2催化剂脱除NO的能力,随着反应温度的升高,对催化剂脱硝性能的影响逐渐减小。高温阶段,水蒸气的存在,有利于CeO2/TiO2-ZrO2催化剂抵抗SO2中毒。
     研究了钾化合物对V2O5/TiO2催化剂活性的影响。实验结果表明:钾化合物对于V2O5/TiO2催化剂毒性较强,随着钾负载量的增加,脱硝率急剧下降。当催化剂添加WO3之后,NO脱除率有所提高,催化剂脱硝性能得到有效的改善。这说明,WO3具有一定的抗钾中毒性能。
     研究了反应温度、空速值、O2浓度、氨氮比和NO初始浓度等对V2O5-WO3/TiO2、Ce02/TiO2-ZrO2催化剂活性的影响,随着空速值的减小,氨氮比、O2浓度和NO初始浓度的增加,脱硝率均呈增加趋势。
     对V2O5-WO3/TiO2催化剂进行了动力学分析。在消除内外扩散影响和NH3/NO摩尔比大于1的情况下,通过计算得出V2O5-WO3/TiO2催化剂进行催化还原NO反应中NO的反应级数为1.0493,O2的反应级数为1.1366,得出了V2O5-WO3/TiO2催化剂宏观动力学反应速率方程。
Nitrogen oxides (NOx) are recognized as a major source of air pollution in the world. The selective catalytic reduction of NOx with NH3 as reductant is most efficient among the technologies abating NOx in flue gas at present. In order to study and explore high effective SCR catalyst, author take a theoretical and experimental research about titanium-based catalyst preparation、their active component changing、reaction parameters changing for effect of NO removal.
     Different components of V2O5/TiO2. V2O5-WO3/TiO2、CeO2/TiO2、CeO2-MnO2/TiO2、CeO2/TiO2-ZrO2 catalysts have been prepared by the impregnation method. On the catalytic activity testing, the effect of catalytic activity for active ingredients and additives content on the catalytic changing have been studied. The results show that, the ratio of 1% V2O5/TiO、1.2%V2O5 /TiO2 and 1.2%V2O5-10%WO3/TiO2 are the best active catalysts for vanadium department. When CeO2 loading content is more than 10% and space velocity is 30000h-1, NO removal efficiency can be kept in the range of 94.27%-99.63% at 250-450℃over CeO2/TiO2-ZrO2 catalyst.
     Influence of SO2 on denitrification performance of catalyst have been studied. The activity of V2O5/TiO2 and CeO2/TiO2-ZrO2 have been affect by SO2, but the affect is little, it is indicating that the catalysts have a ability of resistance to SO2 poisoning.
     V2O5/TiO2 catalysts add additives of WO3, which can improve the performance of resistance to sulfur, denitrification efficiency is obvious higher than V2O5/TiO2 catalyst, when SO2 and water vapor exist simultaneously, The NO removal capacity of CeO2/TiO2-ZrO2 have been affect by SO2, NO removal efficiency increases with rising resction temperature. Existing of water vapor which is propitious to resistance to SO2 poisoning over CeO2/TiO2-ZrO2 at high temperature stage.
     Influence of loading potassium over V2O5/TiO2 catalyst have been studied. The results show that, V2O5/TiO2 catalyst have been strong poisoned by potassium, the NO removal efficiency decreases with the increasing loading of potassium. When V2O5/TiO2 catalysts add additives of WO3, V2O5/TiO2 catalytic activity is improved and NO removal efficiency is also increased after adding to WO3, it show that WO3 have capability to resist potassium poisoning.
     The effect over V2O5/TiO2 and CeO2/TiO2-ZrO2 catalysts by reaction temperature, space velocity, O2 concentration, NH3/NO ration, NO initial concentration have been studied. With space velocity decreasing, NH3/NO ration, O2 concentration, NO initial concentration increasing, denitrification rate show an increasing trend.
     Dynamic analysis of V2O5-WO3/TiO2 have been carried out. In the case of removing influence of internal and external diffusion, NH3/NO ration beyond to 1, reaction order of NO being 1.0493 and reaction order of O2 being 1.1366 have been attained by computing, thus reaction rate equation of V2O5-WO3/TiO2 catalyst can be attained.
引文
[1]李保刚.选择性催化还原(SCR)烟气脱硝技术探讨[J].宁夏电力,2006,(4):61-64
    [2]国家环保总局,国家质量监督检验检疫总局.GB13223—2003火电厂大气污染排放标准[S].北京:中国环境科学出版社,2003
    [3]陈静,祝瑞芳,孙士英.火电厂烟气中氮氧化物的控制与去除方法[J].黑龙江电力,2009,31(1):43-50
    [4]李滨丹,吴宁.探讨汽车尾气污染危害与对策.环境科学与管理[J].2009,34(7):174-177
    [5]AnuPam S, William E, Ellison C. Lessons learned from SCR experience of coal fired units in Japan, Europe and USA[C].2002 conference on SCR and non-catalytic reduction for NOx control,2005:15-16
    [6]杨宗鑫,王兵,林孟雄,胥锋.大气污染过程中氮氧化合物对大气的危害及防治[J]内蒙古石油化工,2008,21:24-26
    [7]毛艳丽,任伟松,鲁志鹏等.大气中氮化物的污染现状及危害[J].煤炭技术,2007,26(5):5-7
    [8]L. A.Sparks, J.M.Lockhart. Demonstration of SCR technology to control nitrogen oxide emissions from high-sulfur[R]. USA:DOE Office of Fossil Energy,2003:12
    [9]Christian Andersson, Leif Lind. Comparison of TiO2-based oxide catalysts for the seleetive catalytic reduetion of NO[J]. Applied Catalysis,2005,23:123-134
    [10]沈伯雄,韩永富,刘亭.氨选择性非催化还原烟气脱硝研究进展[J].化工进展,2008,27(9):1323-1327
    [11]周俊虎,卢志民,王智化,杨卫娟,吕明,岑可法.氮还原剂NOx还原反应及热分解的实验研究[J].2006,22(1):4-7
    [12]M. Tayyeb Javed, W. Nimmo, Asif Mahmood, Naseem Irfan. Effect of oxygenated liquid additives on the urea based SNCR process[J]. Journal of Environmental Management, 2009,90:3429-3435
    [13]韩奎华,路春美,牛胜利,高攀.气体先进再燃脱硝试验研究[J].中国电机工程学报,2009,29(20):47-51
    [14]甄天雷,路春美,高攀,牛胜利,刘兆萍.天然气再燃/先进再燃降低NO排放的实验研究[J].锅炉技术,2008,39(5):74-78
    [15]J.P. Bingue, A.V.Saveliev, L.A. Kennedy. NO reburning in ultrarich filtration combustion of methane[J]. Proceedings of the Combustion Institute,2007,31:3417-3424
    [16]孙克勤,钟秦.火电厂烟气脱硝技术及工程应用[M].北京:化学工业出版社,2007,2
    [17]Metcalfe I S, Sundaresan S. Oxygen storage in automobile exhaust catalyst[J]. Chem Eng Sci,1986,41(4):1109-1112
    [18]Michael D.Amiridisa, Robert V.Duevelb, Israel E.Wachs. The effect of metal oxide additives on the activity of V2O5/TiO2 catalysts for the selective catalytic reduction of nitric oxide by ammonia[J]. Applied Catalysis B:Environmental,1999,20:111-122
    [19]Qi Gongshin, Yang Ralph T. Performance and kinetics study for low-temperature SCR of NO with NH3 over MnOx-CeO2 catalyst[J]. J Catalysis,2003,217:434
    [20]Luis Alemany, Luca Lietti, Natale Ferlazzo, et al. Reactivity and physicochemical characrerization of V2O5-WO3/TiO2 De-NOx catalysts[J]. J Catalysis,1995,155:11
    [21]朱崇兵,金保升,李锋,翟俊霞.SO2氧化对SCR法烟气脱硝的影响[J].锅炉技术,2008,39(3):68-72
    [22]G.W. Spitznagel, K. Huttenhofer, J.K. Beer, in:J.N. Armor[R]. Enviromental Catalysis, ACS Symp. Ser, vol.552, American Society, Washington,1994:p.172
    [23]王树荣,王琦,王建华,高翔,骆仲泱,岑可法.选择性催化还原脱硝技术在燃煤电厂的应用及发展[J].电站系统工程,2005,21(4):11-13
    [24]Jeong Hoi Goo a, Muhammad Faisal Irfan a, Sang Done Kim a, Sung Chang Hong b. Effects of NO2 and SO2 on selective catalytic reduction of nitrogen oxides by ammonia[J]. Chemosphere,2007,67:718-723
    [25]Yan H C, Yao Y F, Yu. Ceria in automotive exhaust catalysts of oxygen storage[J]. J. Catal,1984,86 (2):254-265
    [26]张晓丽,高彪,李腾,周乃锋,郑修成,吴世华.Cu/CeO2纳米催化剂的制备及性[J].郑州大学学报,2008,40(4):78-83
    [27]赵清森,孙路石,向军,石金明,王乐乐,殷庆栋,胡松.CuO/y-Al2O3和 CuO-CeO2-Na2O/Y-Al2O3催化吸附剂的脱硝性能[J].中国电机工程学报,2008,28(8):52-57
    [28]黄妍,童志权,伍斌,张俊丰.V2O5-CeO2/TiO2催化剂上低温氨选择性催化还原NO的性能[J].燃料化学学报,2008,36(5):616-620
    [29]Vargas M A L, Larrubia Vargas, Marzia Casanova, et al. An IR study of thermally stable V2O5-WO3-TiO2 SCR catalyst modified with silica and rare-earths (Ce, Tb, Er)[J]. Applied Catalysis B:Environmental,2007,75:308-316
    [30]沈伯雄,史展亮,施建伟,杨婷婷,赵宁.基于Mn-CeOx/ACFN的低温SCR脱硝[J].化工进展,2008,27(1):87-91
    [31]金杏妹编著.工业应用催化剂[M].上海:华东理工大学出版社,2004
    [32]赵毅,朱振峰,贺瑞华,胡峻涛,李军奇.V2O5-WO3/TiO2基SCR催化剂的研究进展[J].材料导报,2009,23(1):28-31
    [33]Olthof B, Khodakov A, Bell A T, et al. Effects of support composition and pretreatment conditions on the structure of vanadia dispersed on SiO2, Al2O3, TiO2 and ZrO2[J]. Phys.Chem,2000,104(7):1516-1528
    [34]Bauerle G, Lietti L, Ramis G, et al. Chemical and mechanistic aspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts[J]. Applied Catalysis B: Environmental,1998,18:1-36
    [35]K.Tanabe, M.Itoh, K.Morishige, H.Hattori. Proceedings of the international symposium on preparation of catalysts[M]. Brussels,1975,65
    [36]Seong Moon Jung, Paul Grange. Characterization and reactivity of pure TiO2-SO42-SCR catalyst:influence of SO42-content[J]. Catalysis Today,2000,59:305-312
    [37]Motonobu Kobayashi, Mitsuharu Hagi. V2O5-WO3/TiO2-SiO2-SO42- catalysts:Influence of active components and supports on activities in the selective catalytic reduction of NO by NH3 and in the oxidation of SO2[J]. Applied Catalysis B:Environmental,2006,63: 104-113
    [38]Saracco G, Specchia S, Specchia V. Catalytically modified fly-ash filters for NO reduction with NH3 [J]. Chem EngSci,1996,51(24):5289-5297
    [39]李敏,仲兆平.氨选择性催化还原(SCR)脱除氮氧化物的研究[J].能源研究与利 用,2004,2:24-27
    [40]V I PaArvulescu, P Grange, B Delmon. Catalytic removal of NO[J]. Catalysis Today 1998,46:243
    [41]N.Y.Topsoe. Catalysis for NOx Abatement[J]. Catteeh.1997,12:125-134
    [42]鲁佳易,卢啸风,刘汉周,陈继辉.SCR法烟气脱硝催化剂及其应用特性的探讨[J].电站系统工程,2008,24(1):5-8
    [43]J.A.Dumesic, N. Y.Topsoe, H.Topsoe, et al. Kinetics of selective catalyic reduction of nitric oxide by ammonia over vanadia\titania[J]. Catal,1996:163:409
    [44]V.Tufano, M.Turco. Kinetic modeling of nitric oxide reduction over a high-surface area V2O5-TiO2 catalyst[J]. Appl.Catal B2,1993,9:26
    [45]M.Turco, L.Lisi, R.Pirone, et al. Effect of water on the kinetics of nitric oxide reduction over a high-surface-area V205-TiO2catalyst[J]. Appl.Catal.1994, B:3(2-3):133-149
    [46]张秋林.CaO对SCR催化剂选择的影响[J].能源研究与利用,2006,6:29-30
    [47]Onodera S, IKegami Y. Infrared and Raman spectra of ammonium, potassium, rubidium, and cesium metavanadates [J]. Inorganic Chemistry,1980,19:615-618
    [48]Kamata H, Takahashi K, Odenbrand Cui. The role of K2O in the selective reduction of NO with NH3 over a V2O5-WO3/TiO2 commercial selective catalytic reduction catalyst [J]. Journal of Molecular Catalysis A:Chemical,1999,139:189-198
    [49]朱崇兵,金保升,仲兆平,李锋,翟俊霞.WO3对于V2O5/TiO2脱硝催化剂的抗中毒作用[J].锅炉技术,2009,40(1):63-67
    [50]朱崇兵,金保升,仲兆平,李锋,陈玲霞,翟俊霞.K2O对于V2O5-WO3/TiO2催化剂的中毒作用[J].东南大学学报,2008,38(1):101-105
    [51]胡石磊,叶代启.钾对催化剂选择性催化还原氮氧化物的性能影响特性研究[J].环境污染与防治,2008,30(7):43-46
    [52]姜烨,高翔,杜学森,毛剑宏,骆仲泱,岑可法.钾盐对V2O5/TiO2催化剂NH3选择性化还原NO反应的影响[J].中国电机工程学报,2008,28(35):21-26
    [53]张军,汉春利,刘坤磊,徐益谦.煤中碱金属及其在燃烧中的行为[J].热能与动力工程,1999,14(80):83-85
    [54]Johannes Due-Hansen, Soghomon Boghosian b, Arkady Kustov a, Peter Fristrup a,George Tsilomelekis b, Kenny Stahl a, Claus Hviid Christensen a, Rasmus Fehrmann a.anadia-based SCR catalysts supported on tungstated and sulfated zirconia:Influence of doping with potassium[J]. Journal of Catalysis,2007,251:459-473
    [55]陆育辉,付名利,叶代启.硫酸化NOx选择性催化还原脱硝催化剂的研究进展[J].工业催化,2007,15(3):20-24
    [56]黄张根,朱珍平,刘振宇等.V205/AC催化剂对氨还原NO的研究[J].环境化学,2002,21(5):448-453
    [57]Phil Won Seo a, Kwang Hee Park b, Sung Chang Hong c, SO2 durability enhancement of ball milled V/TiO2 catalyst[J]. Journal of Industrial and Engineering Chemistry,2010,16: 283-287
    [58]Zhanggen Huang, Zhengping Zhu, et al. Formation and reaction of ammonium sulfate salts on V2O5/AC catalyst during selective catalytic reduction of nitric oxide by ammonia at low temperatures [J]. Journal of Catalysis,2003,214:213-219
    [59]陶建忠,李国祥,佟德辉.H20和S02在NH3选择性催化还原NOx过程中的影响[J].内燃机工程,2008,29(3):56-59
    [60]张建平,王运泉,张汝国等.煤及其燃烧产物中砷的分布特征[J].环境科学研究,1999,12(1):27-29
    [61]Asa Kling, Christer Andersson, Ase Myringer, et al. Alkali deactivation of high-dust SCR catalysts used for NOx reduction exposed to flue gas from 100 MW-scale biofuel and peat fired boilers:Influence of flue gas composition[J]. Applied Catalysis B: Environmental,2006,69:240-251
    [62]L. Lisi. Single and combined deactivating effect of alkali metals and HCI on commercial SCR catalysts[J]. Applied Catalysis B:Environmental 50 (2004) 251~258
    [63]Steven A.Benson, Jason D.Laumb, Charlene R.Crocker, SCR et al. SCR catalyst performance in flue gases derived from subbituminous and lignite coals[J]. Fuel Processing Technology,2005,86:577-613
    [64]Luca Lietti, Pio Forzatti, Gianguido Ramis et al. Potassium doping of vanadia/titania de-NOx catalysts:Surface characterization and reactivity study[J]. Applied Catalysis B: Environmental,1993,3:13-35
    [65]Constance L.Senior, David O.Lignell, Adel F.Sarofim, et al. Modeling arsenic partitioning in coal-fired power plants[J]. Combustion and Flame,2006,147:209-221
    [66]Friederike C.Lange, et al. Infrared-spectroscopic investigation of selective catalytic reduction catalysts poisoned with arsenic oxide[J]. Applied Catalysis B:Environmental, 1996,8:245-265
    [67]W.L.Prins, Z.L.Nuninga. Design and experience with catalytic reduction for SCR-deNOx[J]. Catalysis Today,1993,16:187-205
    [68]Jens Beck, Robert Muller, Jurgen Brandenstein, et al. The behaviour of phosphorus in flue gases from coal and secondary fuel co-combustion [J]. Fuel,2005,84:1911-1919
    [69]Jens Beck, Sven Unterberger. The behaviour of phosphorus in the flue gas during the combustion of high-phosphate fuels[J]. Fuel,2006,85:1541-1549
    [70]Jens Beck, Jurgen Brandenstein, Sven Unterberger, et al. Effects of sewage sludge and meat and bone meal co-combustion on SCR catalysts[J]. Applied Catalysis B: Environmental,2004,49:15-25
    [71]J.A. Dumesic, N.Y.Topsue, T.Slabiak, P.Morsing, B.S.Clausen, E.ToErnqvist, H.Topsue. Proceedings of the 10th international congress on catalysis[R]. Budapest,1993, p.1325
    [72]Laura Casagrande, Luca Lietti a, Isabella Nova a, Pio Forzatti a, Alfons Baiker. SCR of NO by NH3 over Ti02-supported V2O5-MoO3 catalysts reactivity and redox behavior[J]. Applied Catalysis B:Environmental,1999,22:63-77
    [73]王尚弟,孙俊全.催化剂工程导论[M].北京:化学工业出版社,2001,7
    [74]王桂茹主编.催化剂与催化作用[M].大连:大连理工大学出版社,2004,7
    [75]代世峰,任德贻,唐跃刚.煤中常量元素的赋存特征与研究意义[J].煤田地质与勘测,2005,33(2):1-5
    [76]Guo Jinzhi. Think over vanadium catalyst for sulphuric acid production[J]. Suphuric Acid Industry,2005, (6):18
    [77]Hiroyuki Kamata a, Katsumi Takahashi a, C.U. Ingemar Odenbrand b,). The role of K2O in the selective reduction of NO with NH3 over a V2O5-WO3/TiO2 commercial selective catalytic reduction catalyst[J]. Journal of Molecular Catalysis A:Chemical,1999,139: 189-198
    [78]李作骏.多相催化反应动力学基础[M].北京:北京大学出版社,1988
    [79]lnomata M, Miyamoto A, Murakami Y. Mechanism of the reduction of NO and NH3 on vanadium oxide catalyst in the presence of oxygen under the dilute gas condition[J]. Journal of Catalysis,1980,62:140
    [80]王辉.NO选择催化氧化的催化剂和反应机理研究[D].上海:华东理工大学,1999
    [81]Bao-hua Yue, Ren-xian Zhou, Yue-juan Wang, et al. Effect of rare earths (La, Pr, Nd, Sm and Y) on the methane combustion over Pd/Ce-Zr/Al2O3 catalysts[J]. Appiled Catalysis A:General,2005,295:31-39
    [82]刘炜,童志权,罗婕.Ce-Mn/TiO2催化剂选择性催化还原NO的低温活性及抗毒化性能[J].环境科学学报,2006,26(8):1240-1245
    [83]张秋林,林涛,李伟徐,海迪龚,茂初,陈耀强.MnO2-CeO2/Ti0.25Zr0.25Al0.5O1.75整体式催化剂的低温NH3选择性催化还原NO性能研究[J].无机化学学报,2009,25(3):485-490
    [84]Sir, Zhang Y W, Li S J, Lin B X, Yan C H. Urea-based hydrothermally derived homogeneous nanostructured Ce1-xZrxO2(x=0~0.8) solid solutions:A strong correlation between oxygen storage capacity and lattice strain[J]. J PhysChem B,2004,108(33): 12481-12488
    [85]Hori C E, Permana H, Brenner A, More K, Rahmoeller K M, Belton D. Thermal stability of oxygen storage properties in a mixed CeO2-ZrO2 system[J]. Appl Catal B,1998,16(2): 105-117
    [86]Wenqing Xu, Yunbo Yu, Changbin Zhang, Hong He. Selective catalytic reduction of NO by NH3 over a Ce/TiO2 catalyst[J]. Catalysis Communications,2008,9:1453-1457

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700