用户名: 密码: 验证码:
三重价态钙钛矿型锰氧化物的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钙钛矿型锰氧化物由于其内部的电荷、自旋、轨道及晶格等自由度间的强烈耦合,多种竞争机制下产生了丰富的物理现象,这些性质为开发自旋电子学器件提供了基本素材,同时钙钛矿锰氧化物也为凝聚态物理的研究提供了“天然实验室”,是自然界赐予人类的一块瑰宝。本论文的研究对象为La1-x-yCaxKyMnO3(LCKMO),其由于A位两种不同价态离子K和Ca的共同掺杂,使Mnn+呈现更为复杂的电子态分布,具备三重价态及原子级p-n结整流等多种新奇特性。本论文针对LCKMO材料的低维制备和电磁性能进行了研究,取得的结果如下:1)制备了不同维度的LCKMO材料,分别用水热法、脉冲激光沉积法和模板辅助沉积法制备了三维单晶,二维高质量薄膜和一维纳米管及零维纳米点材料。2)采用多种实验方法研究了LCKMO单晶和薄膜的电学性质,二者除表现基本磁阻特征外,更是呈现出明显的整流效应。3)对薄膜的磁热研究表明其在磁制冷应用方面有潜在的应用价值。5T下最大磁熵变为3.45Jkg~(-1)K~(-1),相对制冷
     效率为379.5Jkg~(-1),磁熵半峰宽为110K。各章节的主要内容概括如下:第一章介绍了钙钛矿锰氧化物的研究背景及相关基础理论,概述了新兴的自
     旋电子学及锰氧化物相关的器件应用,最后简述了论文的选题思路。第二章用多种实验方法如两电极法、变温原子力法、聚焦离子束辅助四电极法和交流频谱法研究了LCKMO单晶的电学性质,结果表明单晶材料具备明显
     的整流特性,在正向电压下快速开启,而在反向电压下则保持截止状态。第三章介绍了脉冲激光沉积法(PLD)制备LCKMO薄膜并对薄膜进行了系统表征。首先介绍了等离子体的形成及薄膜的生长动力学过程,然后有目的地优化薄膜的生长。ICP,XRD,SEM,TEM,XPS和RBS等表征说明钛酸锶基底上获得了较高晶体质量的LCKMO薄膜。
     第四章研究了薄膜的电磁学性能。在面内用四电极法研究了薄膜的输运特性,在面外方向,以SrRuO3作为底电极进行原子力测试,表明薄膜呈现良好的单向导通效应,最后对整流机制做了阐述。用等温磁化法研究了薄膜样品的磁熵性能,较大的磁熵半峰宽和相对制冷效率表明其在Ericsson磁制冷循环有较好的应用潜能。
     第五章介绍了La0.8Ca0.2MnO3(LCMO)和LCKMO低维纳米材料的制备。用阳极氧化铝模板(AAO)作为基底,PLD沉积后去除模板,则得到纳米管材料。实验中,对纳米管进行了系列表征,并对形成机理进行了解释。将超薄AAO转移到钛酸锶基底后,沉积后去除模板即可得到相应的纳米点材料,其纳米材料性能还在进一步研究。
     第六章对全文进行了总结,并对原子级p-n结材料在未来的研究和应用进行了展望。
     随着科技的发展进步,人类逐渐在纳米尺度认识和改造世界,通过操控原子和分子以创造新物质和新性能。本课题组基于实验结果提出的原子级p-n结概念,为新型电子信息材料的开发和新型器件构型提供了素材和设计思路。本文工作用多种实验方法进一步证实了结效应,并且丰富了样品的存在形式,同时表明材料有较好的磁热效应,为制备复合功能自旋电子学器件奠定了基础。
There are strong interactions among charge,orbital,spin and lattice existing inperovskite-type manganite. Those multiple competition mechanisms lead to a seriesof physical phenomenon which can be used as a basis for developing spintronicdevices. Simultaneously, perovskite-type manganite is a “Natural Laboratory” forcondensed matter research,and be considered a precious gift given by natural worldto mankind. This thesis is targeted on La1-x-yCaxKyMnO3(LCKMO), which co-dopedby monovalent potassium and bivalent calcium in A-site. Many novel properties suchas atomic-scale p-n junction, which is caused by complicated electronic statedistribution of Mnn+, were present in this compound. Here, we reported thepreparation of low dimensional LCKMO materials and their electromagnetic behavior,and the major results are as follows: a) LCKMO materials with four different kinds ofdimensions were prepared. Single crystal, film, nanotube and nanodot were preparedby hydrothermal synthesis and pulsed laser deposition method. b) The electronicproperties of single crystal and film were measured by several means, all the resultsreveal the rectify effect existing in LCKMO. c) The excellent MCE performance,which may cause by K ions substituted and strain effect in the LCKMO film, revealsits great applicative potentialities as magnetic cooling refrigerant. The main contentsfor each section in this dissertation are presented as follows:
     In chapter1, we introduce the research background and related basic theories ofperovskite-type manganit. A brief sketch of the rising spintronics andmanganite-based devices and its applications were given, and the choice item andbasic thought of this thesis are stated at last.
     In chapter2, we studied the electrical properties of LCKMO single crystals usingseveral kinds of experimental method such as two electrodes, variable temperatureatomic force microscope, focused ion beam assisted four electrodes and alternatingcurrent spectrometry. The perceptible rectify effects are consistently shown in singlecrystal test. When the crystal is forward biased, the current abruptly increase at thethreshold voltage, and the crystal cut off with the reverse bias applied.
     In chapter3, LCKMO films are prepared by pulsed laser deposition (PLD)method and then characterized systematically. The formation of laser-induced plasmaand kinetic process of the film growth are briefly introduced at the beginning, and usethem as the basis for optimization the growth conditions of the film purposefully. ICP,XRD, SEM, TEM, XPS and RBS are used to analyzing the resultant film, and theresults indicate that the LCKMO films with high crystalline quality were obtained onSrTiO3(STO) single crystal substrate.
     In chapter4, the electromagnetic properties of the LCKMO film were studied.The in plane transport properties was studied using four wire method, and the out ofplane was measured by atomic force microscope using a SrRuO3film as bottomelectrode. The expected rectify effect was observed and its mechanism was discussed.With the magnetic field change of5T, the maximum magnetic entropy change andrelative cooling power of the film is3.45J·kg~(-1)·K~(-1)and379.5J·kg~(-1), respectively. Anotable case is that the full width at half maximum of|ΔSM|is110K, which isdesirable for the Ericsson cycle. The excellent MCE performance of the LCKMO filmreveals its great applicative potentialities as magnetic cooling refrigerant.
     In chapter5, Low dimensional materials of perovskite-type manganite nanotubeand nanodot were prepared by template assisted pulsed laser deposition. After thedeposition on anodic aluminum oxide (AAO) nanopore membrane, we obtained the nanotube by removing the template in alkaline condition. The structure、morphologyand magnetic properties are characterized and the formation mechanism of the NTs isalso proposed. When we transfer the ultrathin AAO template to STO and then executePLD deposition,nanodot structure formed on STO substrate corresponding to the poredistribution. Further research is required to fully understand their performanceinduced by scale shrinking.
     In chapter6, a brief summary based on the full text was present, and the futureresearch and applications of atomic p-n junction were look forward.
     With the development of science and technology and the progress of society,humankind are understanding and transforming the objective world in nano-scalegradually, individual atoms and molecules were manipulated to produce newmaterials and new properties. Based on the experimental results, our group proposedthe idea of atomic scale p-n junction firstly. We provided ingredient and designthinking for new generation electronic information materials and devices architecture.In this thesis, diverse forms of LCKMO were developed, the existing of junctioneffect was verified by using multiple means, and its magnetocaloric effect was alsostudies. Those works lays a good foundation for the preparation of spintronics devicewith complex functions.
引文
[1] Thompson, S. and S. Parthasarathy, Moore's law: the future of Si icroelectronics[J]. Materials Today,2006.9(6):20‐25.
    [2] Vogel, E.M., Technology and metrology of new electronic materials and devices[J]. Nature Nanotechnology,2007.2(1):25‐32.
    [3] Voss, D., Cheap and cheerful circuits [J]. Nature,2000.407(6803):442‐444.
    [4] Song, H., Y. Kim, Y.H. Jang, et al., Observation of molecular orbital gating[J].Nature,2009.462(7276):1039‐1043.
    [5.] Avouris, P., J. Appenzeller, R. Martel, et al., Carbon nanotube electronics [J].Proceedings of the Ieee,2003.91(11):1772‐1784.
    [6.] Xia, Y.N., P.D. Yang, Y.G. Sun, et al., One‐dimensional nanostructures: Synthesis,characterization, and applications [J]. Advanced Materials,2003.15(5):353‐389.
    [7] Likharev, K.K., Single‐electron devices and their applications [J]. Proceedings ofthe Ieee,1999.87(4):606‐632.
    [8] Coey, J.M.D., M. Viret, and S. von Molnár, Mixed‐valence manganites [J].Advances in Physics,2009.58(6):571‐697.
    [9] Scott, J.F., Applications of Modern Ferroelectrics [J]. Science,2007.315(5814):954‐959.
    [10] Thiel, S., G. Hammerl, A. Schmehl, et al., Tunable quasi‐two‐dimensional electrongases in oxide heterostructures [J]. Science,2006.313(5795):1942‐1945.
    [11] Takagi, H. and H.Y. Hwang, An Emergent Change of Phase for Electronics [J].Science,2010.327(5973):1601‐1602.12] Jonker, G.H. and J.H. Van Santen, Ferromagnetic compounds of manganese withperovskite structure [J]. Physica,1950.16(3):337‐349.
    [13] Zener, C., Interaction between the d‐Shells in the Transition Metals. II.Ferromagnetic Compounds of Manganese with Perovskite Structure [J]. PhysicalReview,1951.82(3):403‐405.
    [14] Zener, C., Interaction Between the d Shells in the Transition Metals [J]. PhysicalReview,1951.81(3):440‐444.
    [15] Zener, C. and R.R. Heikes, Exchange Interactions [J]. Reviews of Modern Physics,1953.25(1):191‐198.
    [16] Goodenough, J.B., Theory of the Role of Covalence in the Perovskite‐TypeManganites [La, M(II)]MnO3[J]. Physical Review,1955.100(2):564‐573.
    [17] Anderson, P.W. and H. Hasegawa, Considerations on Double Exchange [J].Physical Review,1955.100(2):675‐681.
    [18] Millis, A.J., P.B. Littlewood, and B.I. Shraiman, Double Exchange Alone Does NotExplain the Resistivity of La1‐xSrxMnO3[J]. Physical Review Letters,1995.74(25):5144‐5147.
    [19] Millis, A.J., B.I. Shraiman, and R. Mueller, Dynamic Jahn‐Teller Effect and ColossalMagnetoresistance in La1‐xSrxMnO3[J]. Physical Review Letters,1996.77(1):175‐178.
    [20] Millis, A.J., Lattice effects in magnetoresistive manganese perovskites [J]. Nature,1998.392(6672):147‐150.
    [21] de Gennes, P.G., Effects of Double Exchange in Magnetic Crystals [J]. PhysicalReview,1960.118(1):141‐154.
    [22] Thomson, W., On the Electro‐Dynamic Qualities of Metals:‐‐Effects ofMagnetization on the Electric Conductivity of Nickel and of Iron [J]. Proceedingsof the Royal Society of London,1856.8(ArticleType: research‐article/Fullpublication date:1856‐1857/):546‐550.
    [23] Searle, C.W. and S.T. Wang, Studies of the ionic ferromagnet (LaPb)MnO3. V.Electric transport and ferromagnetic properties [J]. Canadian Journal of Physics,1970.48(17):2023‐2031.
    [24] Baibich, M.N., J.M. Broto, A. Fert, et al., Giant Magnetoresistance of(001)Fe/(001)Cr Magnetic Superlattices [J]. Physical Review Letters,1988.61(21):2472‐2475.
    [25] Grünberg, P., R. Schreiber, Y. Pang, et al., Layered Magnetic Structures: Evidencefor Antiferromagnetic Coupling of Fe Layers across Cr Interlayers [J]. PhysicalReview Letters,1986.57(19):2442‐2445.
    [26] von Helmolt, R., J. Wecker, B. Holzapfel, et al., Giant negative magnetoresistancein perovskitelike La2/3Ba1/3MnO3ferromagnetic films [J]. Physical Review Letters,1993.71(14):2331‐2333.
    [27] Jin, S., T.H. Tiefel, M. McCormack, et al., Thousandfold change in resistivity inmagnetoresistive la‐ca‐mn‐o films [J]. Science (New York, N.Y.),1994.264(5157):413‐5.
    [28] Schiffer, P., A.P. Ramirez, W. Bao, et al., Low Temperature Magnetoresistance andthe Magnetic Phase Diagram of La1‐xCaxMnO3[J]. Physical Review Letters,1995.75(18):3336‐3339.
    [29] Wei, J.Y.T., N.C. Yeh, and R.P. Vasquez, Tunneling Evidence of Half‐MetallicFerromagnetism in La0.7Ca0.3MnO3[J]. Physical Review Letters,1997.79(25):5150‐5153.
    [30] Park, J.H., E. Vescovo, H.J. Kim, et al., Direct evidence for a half‐metallicferromagnet [J]. Nature,1998.392(6678):794‐796.
    [31] Park, J.H., E. Vescovo, H.J. Kim, et al., Magnetic Properties at Surface Boundaryof a Half‐Metallic Ferromagnet La0.7Sr0.3MnO3[J]. Physical Review Letters,1998.81(9):1953‐1956.
    [32] Voorhoeve, R.J.H., J.P. Remeika, and L.E. Trimble, Nitric Oxide andPerovskite‐Type Catalysts: Solid State and Catalytic Chemistry, in The CatalyticChemistry of Nitrogen Oxides, R. Klimisch and J. Larson, Editors.1975, SpringerUS. p.215‐233.
    [33] Viswanathan, B., CO Oxidation and NO Reduction on Perovskite Oxides [J].Catalysis Reviews,1992.34(4):337‐354.
    [34] Xu, J.‐J., D. Xu, Z.‐L. Wang, et al., Synthesis of Perovskite‐Based PorousLa0.75Sr0.25MnO3Nanotubes as a Highly Efficient Electrocatalyst for RechargeableLithium‐Oxygen Batteries [J]. Angewandte Chemie International Edition,2013.52(14):3887‐3890.
    [35] T. Venkatesan, M.R., Zi‐Wen Dong, and S.B.O.a.R. Ramesh, Manganite‐baseddevices: opportunities, bottlenecks and challenges [J]. Philosophical Transactionsof the Royal Society A: Mathematical, Physical and Engineering Sciences,1998.356(1742):1661‐1680.
    [36] Haghiri‐Gosnet, A.M. and J.P. Renard, CMR manganites: physics, thin films anddevices [J]. Journal of Physics D‐Applied Physics,2003.36(8):R127‐R150.
    [37] Bersuker, I.B., The Jahn‐Teller effect.2006, New York: Cambridge UniversityPress.
    [38] Bersuker, I.B., Modern Aspects of the Jahn Teller Effect Theory and ApplicationsTo Molecular Problems [J]. Chemical Reviews,2001.101(4):1067‐1114.
    [39] Li, C., K.C.K. Soh, and P. Wu, Formability of ABO3perovskites [J]. Journal of Alloysand Compounds,2004.372(1‐2):40‐48.
    [40] Liang, L., L. Wencong, and C. Nianyi, On the criteria of formation and latticedistortion of perovskite‐type complex halides [J]. Journal of Physics andChemistry of Solids,2004.65(5):855‐860.
    [41] Sun, Y., W. Tong, X. Xu, et al., Possible double‐exchange interaction betweenmanganese and chromium in LaMn1‐xCrxO3[J]. Physical Review B,2001.63(17):174438.
    [42] Sun, Y., W. Tong, X. Xu, et al., Tuning colossal magnetoresistance response by Crsubstitution in La0.67Sr0.33MnO3[J]. Applied Physics Letters,2001.78(5):643‐645.
    [43] Jaime, M., M.B. Salamon, M. Rubinstein, et al., High‐temperature thermopowerin La2/3Ca1/3MnO3films: Evidence for polaronic transport [J]. Physical Review B,1996.54(17):11914‐11917.
    [44] Kanamori, J., Superexchange interaction and symmetry properties of electronorbitals [J]. Journal of Physics and Chemistry of Solids,1959.10(2–3):87‐98.
    [45] Anderson, P.W., Antiferromagnetism. Theory of Superexchange Interaction [J].Physical Review,1950.79(2):350‐356.
    [46] Anderson, P.W., New Approach to the Theory of Superexchange Interactions [J].Physical Review,1959.115(1):2‐13.
    [47] Shenoy, V.B., D.D. Sarma, and C.N.R. Rao, Electronic Phase Separation inCorrelated Oxides: The Phenomenon, Its Present Status and Future Prospects [J].Chemphyschem,2006.7(10):2053‐2059.
    [48] Rao, C.N.R., P.V. Vanitha, and A.K. Cheetham, Phase separation in metal oxides[J]. Chemistry‐a European Journal,2003.9(4):828‐836.
    [49] Radaelli, P.G., R.M. Ibberson, D.N. Argyriou, et al., Mesoscopic and microscopicphase segregation in manganese perovskites [J]. Physical Review B,2001.63(17):172419.
    [50] Uehara, M. and S.‐W. Cheong, Relaxation between charge order andferromagnetism in manganites: Indication of structural phase separation [J].Europhys. Lett.,2000.52(6):674.
    [51] Fath, M., S. Freisem, A.A. Menovsky, et al., Spatially inhomogeneousmetal‐insulator transition in doped manganites [J]. Science,1999.285(5433):1540‐1542.
    [52] Vitins, J. and P. Wachter, Doped EuTe: A mixed magnetic system [J]. PhysicalReview B,1975.12(9):3829‐3839.
    [53] Teresa, J.M.D., M.R. Ibarra, P.A. Algarabel, et al., Evidence for magnetic polaronsin the magnetoresistive perovskites [J]. Nature,1997.386(6622):256‐259.
    [54] Papavassiliou, G., M. Fardis, M. Belesi, et al.,55Mn NMR Investigation ofElectronic Phase Separation in La1‐xCaxMnO3for0.2≤x≤0.5[J]. PhysicalReview Letters,2000.84(4):761‐764.
    [55] Papavassiliou, G., M. Fardis, M. Belesi, et al., Polarons and phase separation inlanthanum‐based manganese perovskites: A139La and55Mn NMR study [J].Physical Review B,1999.59(9):6390‐6394.
    [56] Heffner, R.H., J.E. Sonier, D.E. MacLaughlin, et al., Observation of Two TimeScales in the Ferromagnetic Manganite La1‐xCaxMnO3, x≈0.3[J]. PhysicalReview Letters,2000.85(15):3285‐3288.
    [57] Renner, C., G. Aeppli, B.G. Kim, et al., Atomic‐scale images of charge ordering ina mixed‐valence manganite [J]. Nature,2002.416(6880):518‐521.
    [58] Ward, T., S. Liang, K. Fuchigami, et al., Reemergent Metal‐Insulator Transitions inManganites Exposed with Spatial Confinement [J]. Physical Review Letters,2008.100(24).
    [59] Zhai, H.‐Y., J.X. Ma, D.T. Gillaspie, et al., Giant Discrete Steps in Metal‐InsulatorTransition in Perovskite Manganite Wires [J]. Physical Review Letters,2006.97(16):167201.
    [60] Bibes, M. and A. Barthelemy, Oxide spintronics [J]. Ieee Transactions on ElectronDevices,2007.54(5):1003‐1023.
    [61] Prinz, G.A., Magnetoelectronics [J]. Science,1998.282(5394):1660‐1663.
    [62] Pickett, W.E. and D.J. Singh, Electronic structure and half‐metallic transport inthe La1‐xCaxMnO3system [J]. Physical Review B,1996.53(3):1146‐1160.
    [63] Soulen, R.J., J.M. Byers, M.S. Osofsky, et al., Measuring the Spin Polarization of aMetal with a Superconducting Point Contact [J]. Science,1998.282(5386):85‐88.
    [64] Worledge, D.C. and T.H. Geballe, Maki analysis of spin‐polarized tunneling in anoxide ferromagnet [J]. Physical Review B,2000.62(1):447‐451.
    [65] Sugiura, M., K. Uragou, M. Noda, et al., First demonstration of rectifyingproperty of p‐i‐n heterojunctions fabricated by tri‐layered semiconducting oxides[J]. Japanese Journal of Applied Physics Part1‐Regular Papers Short Notes&Review Papers,1999.38(4B):2675‐2678.
    [66] Tanaka, H., J. Zhang, and T. Kawai, Giant Electric Field Modulation of DoubleExchange Ferromagnetism at Room Temperature in the PerovskiteManganite/Titanate p‐n Junction [J]. Physical Review Letters,2001.88(2).
    [67] Zhang, J., H. Tanaka, and T. Kawai, Rectifying characteristic in all‐perovskite oxidefilm p‐n junction with room temperature ferromagnetism [J]. Applied PhysicsLetters,2002.80(23):4378.
    [68] Sun, J.R., B.G. Shen, Z.G. Sheng, et al., Temperature‐dependent photovoltaiceffects in the manganite‐based heterojunction [J]. Applied Physics Letters,2004.85(16):3375‐3377.
    [69] Sun, J.R., C.M. Xiong, and B.G. Shen, Large magnetoresistance effects near roomtemperature in manganite heterojunction [J]. Applied Physics Letters,2004.85(21):4977‐4979.
    [70] Sun, J.R., S.Y. Zhang, B.G. Shen, et al., Rectifying and photovoltaic properties ofthe heterojunction composed of CaMnO3and Nb‐doped SrTiO3[J]. AppliedPhysics Letters,2005.86(5).
    [71] Sun, J.R., C.M. Xiong, B.G. Shen, et al., Manganite‐based heterojunction and itsphotovoltaic effects [J]. Applied Physics Letters,2004.84(14):2611‐2613.
    [72] Sun, J.R., C.M. Xiong, T.Y. Zhao, et al., Effects of magnetic field on themanganite‐based bilayer junction [J]. Applied Physics Letters,2004.84(9):1528.
    [73] Huang, Y.H., K.J. Jin, K. ZHao, et al., Photoelectric Characteristic ofLa0.9Sr0.1MnO3/SrNb0.01Ti0.99O3p–n Heterojunctions [J]. Chinese Physics Letters,2006.23(4):982‐985.
    [74] Lu, H.‐B., K.‐J. Jin, Y.‐H. Huang, et al., Picosecond photoelectric characteristic inLa0.7Sr0.3MnO3/Si p‐n junctions [J]. Applied Physics Letters,2005.86(24):241915.
    [75] Susaki, T., N. Nakagawa, and H.Y. Hwang, Transport mechanisms inmanganite‐titanate heterojunctions [J]. Physical Review B,2007.75(10):104409.
    [76] Jin, K.‐j., H.‐b. Lu, K. Zhao, et al., Novel Multifunctional Properties Induced byInterface Effects in Perovskite Oxide Heterostructures [J]. Advanced Materials,2009.21(45):4636‐4640.
    [77] Ahn, C.H., J.M. Triscone, and J. Mannhart, Electric field effect in correlated oxidesystems [J]. Nature,2003.424(6952):1015‐1018.
    [78] Mathews, S., Ferroelectric Field Effect Transistor Based on Epitaxial PerovskiteHeterostructures [J]. Science,1997.276(5310):238‐240.
    [79] Wu, T., S.B. Ogale, J.E. Garrison, et al., Electroresistance and Electronic PhaseSeparation in Mixed‐Valent Manganites [J]. Physical Review Letters,2001.86(26):5998‐6001.
    [80] Kanki, T., Y.‐G. Park, H. Tanaka, et al., Electrical‐field control of metal–insulatortransition at room temperature in Pb(Zr0.2Ti0.8)O3/La1‐xBaxMnO3field‐effecttransistor [J]. Applied Physics Letters,2003.83(23):4860.
    [81] Kanki, T., H. Tanaka, and T. Kawai, Electric control of room temperatureferromagnetism in a Pb(Zr0.2Ti0.8)O3/La0.85Ba0.15MnO3field‐effect transistor [J].Applied Physics Letters,2006.89(24):242506.
    [82] Ueno, K., S. Nakamura, H. Shimotani, et al., Electric‐field‐inducedsuperconductivity in an insulator [J]. Nature Materials,2008.7(11):855‐858.
    [83] Ueno, K., S. Nakamura, H. Shimotani, et al., Discovery of superconductivity inKTaO3by electrostatic carrier doping [J]. Nature Nanotechnology,2011.6(7):408‐412.
    [84] Dhoot, A., C. Israel, X. Moya, et al., Large Electric Field Effect in Electrolyte‐GatedManganites [J]. Physical Review Letters,2009.102(13).
    [85] Lu, Y., X.W. Li, G.Q. Gong, et al., Large magnetotunneling effect at low magneticfields in micrometer‐scale epitaxial La0.67Sr0.33MnO3tunnel junctions [J]. PhysicalReview B,1996.54(12):R8357‐R8360.
    [86] Sun, J.Z., W.J. Gallagher, P.R. Duncombe, et al., Observation of large low‐fieldmagnetoresistance in trilayer perpendicular transport devices made using dopedmanganate perovskites [J]. Applied Physics Letters,1996.69(21):3266.
    [87] Jo, M.‐H., N.D. Mathur, N.K. Todd, et al., Very large magnetoresistance andcoherent switching in half‐metallic manganite tunnel junctions [J]. PhysicalReview B,2000.61(22):R14905‐R14908.
    [88] Bowen, M., M. Bibes, A. Barthélémy, et al., Nearly total spin polarization inLa2/3Sr1/3MnO3from tunneling experiments [J]. Applied Physics Letters,2003.82(2):233.
    [89] Garcia, V., M. Bibes, A. Barthélémy, et al., Temperature dependence of theinterfacial spin polarization of La2/3Sr1/3MnO3[J]. Physical Review B,2004.69(5):052403.
    [90] Yamada, H., Y. Ogawa, Y. Ishii, et al., Engineered Interface of Magnetic Oxides [J].Science,2004.305(5684):646‐648.
    [91] Bowen, M., A. Barthélémy, M. Bibes, et al., Spin‐Polarized TunnelingSpectroscopy in Tunnel Junctions with Half‐Metallic Electrodes [J]. PhysicalReview Letters,2005.95(13):137203.
    [92] Warburg, E., Magnetische Untersuchungen [J]. Annalen der Physik,1881.249(5):141‐164.
    [93] Brown, G.V., Magnetic heat pumping near room temperature [J]. Journal ofApplied Physics,1976.47(8):3673.
    [94] Kuwahara, H., Y. Tomioka, Y. Moritomo, et al., Striction‐CoupledMagnetoresistance in Perovskite‐Type Manganese Oxides [J]. Science,1996.272(5258):80‐82.
    [95] Radaelli, P.G., D.E. Cox, M. Marezio, et al., Charge, orbital, and magneticordering in La0.5Ca0.5MnO3[J]. Physical Review B,1997.55(5):3015‐3023.
    [96] Dai, P., J. Zhang, H.A. Mook, et al., Experimental evidence for the dynamicJahn‐Teller effect in La0.65Ca0.35MnO3[J]. Physical Review B,1996.54(6):R3694‐R3697.
    [97] Mitchell, J.F., D.N. Argyriou, C.D. Potter, et al., Structural phase diagram ofLa1‐xSrxMnO3+δ: Relationship to magnetic and transport properties [J]. PhysicalReview B,1996.54(9):6172‐6183.
    [98] Guo, Z.B., Y.W. Du, J.S. Zhu, et al., Large Magnetic Entropy Change inPerovskite‐Type Manganese Oxides [J]. Physical Review Letters,1997.78(6):1142‐1145.
    [99] Guo, Z.B., J.R. Zhang, H. Huang, et al., Large magnetic entropy change inLa0.75Ca0.25MnO3[J]. Applied Physics Letters,1997.70(7):904.
    [100] Guillou, F., U. Legait, A. Kedous‐Lebouc, et al., Development of a newmagnetocaloric material used in a magnetic refrigeration device [J]. EPJ Web ofConferences,2012.29:00021.
    [101] Morelli, D.T., A.M. Mance, J.V. Mantese, et al., Magnetocaloric properties ofdoped lanthanum manganite films [J]. Journal of Applied Physics,1996.79(1):373.
    [102] Xi, S., W. Lu, and Y. Sun, Magnetic properties and magnetocaloric effect ofLa0.8Ca0.2MnO3nanoparticles tuned by particle size [J]. Journal of Applied Physics,2012.111(6):063922.
    [103] Lampen, P., N.S. Bingham, M.H. Phan, et al., Impact of reduceddimensionality on the magnetic and magnetocaloric response of La0.7Ca0.3MnO3[J]. Applied Physics Letters,2013.102(6):062414.
    [104] Debnath, J.C., R. Zeng, J.H. Kim, et al., Anisotropic and excellentmagnetocaloric properties of La0.7Ca0.3MnO3single crystal with anomalousmagnetization [J]. Materials Science and Engineering: B,2012.177(1):48‐53.
    [105] Debnath, J.C., J.H. Kim, Y. Heo, et al., Correlation between structuralparameters and the magnetocaloric effect in epitaxial La0.8Ca0.2MnO3/LaAlO3thin film [J]. Journal of Applied Physics,2013.113(6):063508.
    [106] Moya, X., L.E. Hueso, F. Maccherozzi, et al., Giant and reversible extrinsicmagnetocaloric effects in La0.7Ca0.3MnO3films due to strain [J]. Nature Materials,2013.12(1):52‐58.
    [107]] Wang, Y., X. Lu, Y. Chen, et al., Hydrothermal synthesis of two perovskiterare‐earth manganites, HoMnO3and DyMnO3[J]. Journal of Solid StateChemistry,2005.178(4):1317‐1320.
    [108]] Chen, Y., H. Yuan, G. Li, et al., Crystal growth and magnetic property oforthorhombic RMnO3(R=Sm–Ho) perovskites by mild hydrothermal synthesis [J].Journal of Crystal Growth,2007.305(1):242‐248.
    [109] Hu, W., Y. Chen, H. Yuan, et al., Structure, Magnetic, and FerroelectricProperties of Bi1‐xGdxFeO3Nanoparticles [J]. The Journal of Physical Chemistry C,2011.115(18):8869‐8875.
    [110] Hu, W., Y. Chen, H. Yuan, et al., Hydrothermal synthesis, characterization andcomposition‐dependent magnetic properties of LaFe1xCrxO3system (0≤x≤1)[J].Journal of Solid State Chemistry,2010.183(7):1582‐1587.
    [111]胡滨,三种价态钙钛矿型锰氧化物薄膜的制备与性质研究.2008,吉林大学:长春.
    [1] Feng, S.H. and R.R. Xu, New materials in hydrothermal synthesis [J]. Accountsof Chemical Research,2001.34(3):239-247.
    [2] Chen, Y., H. Yuan, G. Tian, et al., Mild hydrothermal synthesis and magneticproperties of the manganates Pr1xCaxMnO3[J]. Journal of Solid State Chemistry,2007.180(1):167-172.
    [3] Chen, Y., H. Yuan, G. Li, et al., Crystal growth and magnetic property oforthorhombic RMnO3(R=Sm–Ho) perovskites by mild hydrothermal synthesis[J]. Journal of Crystal Growth,2007.305(1):242-248.
    [4] Chu, X., K. Huang, M. Han, et al., Self-construction of Magnetic HollowLa0.7Sr0.3MnO3Microspheres with Complex Units [J]. Inorganic Chemistry,2013.52(8):4130-4132.
    [5] Feng, S., H. Yuan, Z. Shi, et al., Three oxidation states and atomic-scale p–njunctions in manganese perovskite oxide from hydrothermal systems [J]. Journalof Materials Science,2007.43(7):2131-2137.
    [6]初学峰,黄科科,侯长民等,La1-x-yCaxKyMnO3的可控合成及表征[J].高等学校化学学报,2013.34(1):40-44.
    [7] Binnig, G., C.F. Quate, and C. Gerber, Atomic Force Microscope [J]. PhysicalReview Letters,1986.56(9):930-933.
    [8] Sun, Z.G., H. Kuramochi, H. Akinaga, et al., Conductive atomic force microscopystudy of silica nanotrench structure [J]. Applied Physics Letters,2007.90(4):042106.
    [9] Guaino, P., M. Gillet, R. Delamare, et al., Modification of electrical properties oftungsten oxide nanorods using conductive atomic force microscopy [J]. SurfaceScience,2007.601(13):2684-2687.
    [10] Douhéret, O., L. Lutsen, A. Swinnen, et al., Nanoscale electricalcharacterization of organic photovoltaic blends by conductive atomic forcemicroscopy [J]. Applied Physics Letters,2006.89(3):032107.
    [11] Gao, X.S., B.J. Rodriguez, L.F. Liu, et al., Microstructure and Properties ofWell-Ordered Multiferroic Pb(Zr,Ti)O3/CoFe O4Nanocomposites [J]. Acs Nano,2010.4(2):1099-1107.
    [12] Zhang, Y., F. Ye, J. Lin, et al., Increased conductance of individualself-assembled GeSi quantum dots by inter-dot coupling studied by conductiveatomic force microscopy [J]. Nanoscale Research Letters2012.7(1):278.
    [13]吴荣,用导电原子力显微镜研究锗硅量子点和量子环的形貌和电学特性.2007,复旦大学:上海.
    [14] Pomarico, A.A., D. Huang, J. Dickinson, et al., Current mapping of GaN films byconductive atomic force microscopy [J]. Applied Physics Letters,2003.82(12):1890.
    [15] Lee, L., C.-S. Ku, W.-C. Ke, et al., Current Properties of GaN V-Defect UsingConductive Atomic Force Microscopy [J]. Japanese Journal of Applied Physics,2006.45(No.31):L817-L820.
    [16] L.A. Giannuzzi, F.A.S., A review of focused ion beam milling techniques forTEM specimen preparation [J]. Micron,1999.30:8.
    [17] Reyntjens, S. and R. Puers, A review of focused ion beam applications inmicrosystem technology [J]. Journal of Micromechanics and Microengineering,2001.11(4):287-300.
    [18] Tseng, A.A., Recent Developments in Nanofabrication Using Focused Ion Beams[J]. Small,2005.1(10):924-939.
    [19] Munroe, P.R., The application of focused ion beam microscopy in the materialsciences [J]. Materials Characterization,2009.60(1):2-13.
    [20] Lucille A. Giannuzzi, F.A.S., ed. Introduction to focused ion beams:instrumentation, theory, techniques and practice.2005.
    [21] Nagase, M., H. Takahashi, Y. Shirakawabe, et al., Nano-Four-Point Probes onMicrocantilever System Fabricated by Focused Ion Beam [J]. Japanese Journalof Applied Physics,2003.42(Part1, No.7B):4856-4860.
    [22] Gu, W., H. Choi, and K. Kim, Universal approach to accurate resistivitymeasurement for a single nanowire: Theory and application [J]. Applied PhysicsLetters,2006.89(25):253102.
    [23] Murata, M., H. Yamamoto, F. Tsunemi, et al., Four-Wire ResistanceMeasurements of a Bismuth Nanowire Encased in a Quartz Template UtilizingFocused Ion Beam Processing [J]. Journal of Electronic Materials,2012.41(6):1442-1449.
    [1] Dijkkamp, D., T. Venkatesan, X.D. Wu, et al., Preparation of Y‐Ba‐Cu oxidesuperconductor thin films using pulsed laser evaporation from high Tc bulkmaterial [J]. Applied Physics Letters,1987.51(8):619.
    [2] Prellier, W., L. Ph, and B. Mercey, Colossal‐magnetoresistive manganite thin films[J]. Journal of Physics: Condensed Matter,2001.13(48):R915.
    [3] Chrisey, D. and H.G. K, eds. Pulsed Laser Deposition of Thin Films.2003.
    [4] Basting, D. and U. Stamm, The development of excimer laser technology‐Historyand future prospects [J]. Zeitschrift Fur Physikalische Chemie‐InternationalJournal of Research in Physical Chemistry&Chemical Physics,2001.215:1575‐1599.
    [5] Tsytovich, V.N., G.E. Morfill, and H. Thomas, Complex plasmas: I. Complexplasmas as unusual state of matter [J]. Plasma Physics Reports,2002.28(8):623‐651.
    [6]张端明,李智华,关丽等.脉冲激光沉积技术动力学机理与玻璃基功能薄膜.2005,湖北科技出版社.
    [7]吴自勤,王兵,薄膜生长.2001,科学出版社:北京.
    [8]唐伟忠.薄膜材料制备原理、技术及应用.2003,冶金工业出版社:北京.
    [9] Park, S.‐M., T. Ikegami, and K. Ebihara, Effects of substrate temperature on theproperties of Ga‐doped ZnO by pulsed laser deposition [J]. Thin Solid Films,2006.513(1–2):90‐94.
    [10] Jalan, B., R. Engel‐Herbert, T.E. Mates, et al., Effects of hydrogen anneals onoxygen deficient SrTiO3‐x single crystals [J]. Applied Physics Letters,2008.93(5).
    [11]] Gupta, V. and A. Mansingh, Influence of postdeposition annealing on thestructural and optical properties of sputtered zinc oxide film [J]. Journal ofApplied Physics,1996.80(2):1063‐1073.
    [12] Nakamura, S., T. Mukai, M. Senoh, et al., Thermal Annealing Effects on P‐TypeMg‐Doped GaN Films [J]. Japanese Journal of Applied Physics.31(Copyright (C)1992Publication Board, Japanese Journal of Applied Physics):L139.
    [13] Hou, Y.‐Q., D.‐M. Zhuang, G. Zhang, et al., Influence of annealing temperature onthe properties of titanium oxide thin film [J]. Applied Surface Science,2003.218(1–4):98‐106.
    [14] Ding, Y.F., J.S. Chen, and E. Liu, Epitaxial L10FePt films on SrTiO3by sputtering [J].Journal of Crystal Growth,2005.276(1–2):111‐115.
    [15]张继成,唐永建,吴卫东等, X射线反射法测量CH薄膜的密度和厚度[J].强激光与粒子束,2007.19(8):1317‐1320.
    [16]李玉德,林晓燕,杜树成等, X射线反射率的讨论[J].大学物理,2006.25(3):9‐11.
    [17]徐章程,郭常霖,黄继颇等,用同步辐射X射线反射率法研究薄膜结构[J].功能材料与器件学报,1998.4(4):273‐276.
    [18] Choi, J.W., J.D. Zhang, S.H. Liou, et al., Surfaces of the perovskite manganitesLa1‐xCaxMnO3[J]. Physical Review B,1999.59(20):13453‐13459.
    [19] Izumi, M., Y. Konishi, T. Nishihara, et al., Atomically defined epitaxy and physicalproperties of strained La0.6Sr0.4MnO3films [J]. Applied Physics Letters,1998.73(17):2497.
    [20] Horiba, K., A. Chikamatsu, H. Kumigashira, et al., In vacuo photoemission studyof atomically controlled La1xSrxMnO3thin films: Composition dependence of theelectronic structure [J]. Physical Review B,2005.71(15).
    [21] ZHANG, J., M.D. N., D.P. A., et al., The valence‐band structure of La1‐xCaxMnO3[J].Solid State Communications,1996.97(1).
    [22] Sagdeo, P.R., R.J. Choudhary, and D.M. Phase, Possible origin of electronic phaseseparation in La0.7Ca0.3MnO3[J]. Journal of Applied Physics,2008.104(6):063717.
    [23] Srivastava, M.K., T. Shripathi, D.M. Phase, et al., X‐ray diffraction andphotoelectron spectroscopy study of swift heavy ion irradiated Mn/p‐Si structure[J]. Applied Surface Science,2010.256(6):1664‐1667.
    [24] Koubaa, M., W. Cheikhrouhou‐Koubaa, and A. Cheikhrouhou, Effect of K dopingon the physical properties of La0.65Ca0.35xKxMnO3(0    [25] Perrière, J., Rutherford backscattering spectrometry [J]. Vacuum,1987.37(5–6):429‐432.
    [1] Fuhr, J.D., M. Granada, L.B. Steren, et al., Anisotropic magnetoresistance inmanganites: experiment and theory [J]. Journal of Physics: Condensed Matter,2010.22(14):146001.
    [2] Hao, C., B. Zhao, Y. Huang, et al., A‐site‐disorder‐dependent magnetocaloricproperties in the mono‐valent‐metal doped La0.7Ca0.3MnO3manganites [J].Journal of Alloys and Compounds,2011.509(19):5877‐5881.
    [3] Mahendiran, R., S.K. Tiwary, A.K. Raychaudhuri, et al., Structure,electron‐transport properties, and giant magnetoresistance of hole‐dopedLaMnO3systems [J]. Physical Review B,1996.53(6):3348‐3358.
    [4] Sdiri, N., R. Jemai, M. Bejar, et al., Electrical conductivity and dielectric analysisof the perovskite La0.7Ca0.3xKxMnO3(x=0.05and0.10)[J]. Solid StateCommunications,2008.148(11–12):577‐581.
    [5] Gupta, A., G.Q. Gong, G. Xiao, et al., Grain‐boundary effects on themagnetoresistance properties of perovskite manganite films [J]. Physical ReviewB,1996.54(22):R15629‐R15632.
    [6] Hwang, H.Y., S.W. Cheong, N.P. Ong, et al., Spin‐Polarized Intergrain Tunneling inLa2/3Sr1/3MnO3[J]. Physical Review Letters,1996.77(10):2041‐2044.
    [7] Li, Z.Q., Y.Q. Gao, and E.Y. Jiang, Epitaxial growth La0.67Ca0.33MnO3thin film byradio frequency sputtering method [J]. Applied Surface Science,2008.254(21):6959‐6961.
    [8] Roldán, J., F. Sánchez, V. Trtik, et al., Epitaxial SrRuO3thin films on LaAlO3(100)and Si(100)[J]. Applied Surface Science,2000.154–155(0):159‐164.
    [9] Wu, X.D., S.R. Foltyn, R.C. Dye, et al., Properties of epitaxial SrRuO3thin films [J].Applied Physics Letters,1993.62(19):2434.
    [10] E.K. Liu, B.S. Zhu, and J.S. Luo, eds. Semiconductor Physics.2010, PublishingHouse of Electronics Industry: Beijing,China.
    [11] Wang, D.J., J.R. Sun, Y.W. Xie, et al., Effects of lattice strains on the interfacialpotential in La0.66Ca0.33MnO3/SrTiO3:Nb heterojunctions [J]. Applied PhysicsLetters,2010.97(19):192503.
    [12] Feng, S., H. Yuan, Z. Shi, et al., Three oxidation states and atomic‐scale p–njunctions in43(7):2131‐2137.
    [13]黄科科,三重价态锰钙钛矿氧化物与原子尺寸p‐n结性能研究.2007,吉林大学:长春.
    [14] Phan, M.‐H. and S.‐C. Yu, Review of the magnetocaloric effect in manganitematerials [J]. Journal of Magnetism and Magnetic Materials,2007.308(2):325‐340.
    [15] Guillou, F., U. Legait, A. Kedous‐Lebouc, et al., Development of a newmagnetocaloric material used in a magnetic refrigeration device [J]. EPJ Web ofConferences,2012.29:00021.
    [16] Phan, M.‐H., H.‐X. Peng, and Y. Seong‐Cho, Large magnetocaloric effect in singlecrystal Pr0.63Sr0.37MnO3[J]. Journal of Applied Physics,2005.97(10):10M306‐10M306‐3.
    [17] Phan, M.‐H., S.‐C. Yu, and N.H. Hur, Excellent magnetocaloric properties ofLa0.7Ca0.3xSrxMnO3(0.05    [18] Zhong, W., C.‐T. Au, and Y.‐W. Du, Review of magnetocaloric effect inperovskite‐type oxides [J]. Chinese Physics B,2013.22(5):057501.
    [19] Koubaa, M., W. Cheikhrouhou‐Koubaa, and A. Cheikhrouhou, Effect of K dopingon the physical properties of La0.65Ca0.35xKxMnO3(0    [20] Koubaa, W.C.‐R., M. Koubaa, and A. Cheikhrouhou, Magnetic andmagnetocaloric properties of monovalent substituted La0.65Ca0.3M0.05MnO3(M=Na, Ag, K) perovskite manganites [J]. Journal of Physics: Conference Series,2009.153:012046.
    [21] Koubaa, M., W. Cheikhrouhou‐Koubaa, and A. Cheikhrouhou, Effect of Agdoping on structural, magnetic and magnetocaloric properties ofLa0.65Ca0.35xAgxMnO3manganites [J]. Journal of Alloys and Compounds,2009.473(1‐2):5‐10.
    [22] Lampen, P., N.S. Bingham, M.H. Phan, et al., Impact of reduced dimensionality onthe magnetic and magnetocaloric response of La0.7Ca0.3MnO3[J]. AppliedPhysics Letters,2013.102(6):062414.
    [23] Pereira, A.M., J.C.R.E. Oliveira, J.C. Soares, et al., Simulations of refrigeration onintegrated circuits using micro‐channels [J]. Journal of Non‐Crystalline Solids,2008.354(47‐51):5295‐5297.
    [24] Pecharsky, V.K. and K.A. Gschneidner, Magnetocaloric effect and magneticrefrigeration [J]. Journal of Magnetism and Magnetic Materials,1999.200(1‐3):44‐56.
    [25] Xu, P.F., S.H. Nie, K.K. Meng, et al., Co doping enhanced giant magnetocaloriceffect in Mn1xCoxAs films epitaxied on GaAs (001)[J]. Applied Physics Letters,2010.97(4):042502
    [26] de Campos, A., D.L. Rocco, A.M.G. Carvalho, et al., Ambient pressure colossalmagnetocaloric effect tuned by composition in Mn1‐xFexAs [J]. Nat Mater,2006.5(10):802‐804.
    [27] Belyea, D.D., T.S. Santos, and C.W. Miller, Magnetocaloric effect in epitaxialLa0.56Sr0.44MnO3alloy and digital heterostructures [J]. Journal of Applied Physics,2012.111(7):07A935.
    [28] Zhang, Q., S. Thota, F. Guillou, et al., Magnetocaloric effect and improvedrelative cooling power in (La0.7Sr0.3MnO3/SrRuO3) superlattices [J]. Journal ofPhysics: Condensed Matter,2011.23(5):052201.
    [29] Zhang, Q., J.H. Cho, B. Li, et al., Magnetocaloric effect in Ho2In over a widetemperature range [J]. Applied Physics Letters,2009.94(18):182501.
    [30] Wang, G., Z.D. Wang, and L.D. Zhang, Synthesis and magnetocaloric effect of(La0.47Gd0.2)Sr0.33MnO3polycrystalline nanoparticles [J]. Materials Science andEngineering: B,2005.116(2):183‐188.
    [31] Sun, Y., J. Kamarad, Z. Arnold, et al., Tuning of magnetocaloric effect in aLa0.69Ca0.31MnO3single crystal by pressure [J]. APL,2006.88(10):102505.
    [1] Moriarty, P., Nanostructured materials [J]. Reports on Progress in Physics,2001.64(3):297-381.
    [2] Bruce, P.G., B. Scrosati, and J.M. Tarascon, Nanomaterials for rechargeablelithium batteries [J]. Angewandte Chemie-International Edition,2008.47(16):2930-2946.
    [3] Gao, J.H., H.W. Gu, and B. Xu, Multifunctional Magnetic Nanoparticles: Design,Synthesis, and Biomedical Applications [J]. Accounts of Chemical Research,2009.42(8):1097-1107.
    [4] Iijima, S., Helical microtubules of graphitic carbon [J]. Nature,1991.354(7):56-58.
    [5] Rao, C.N.R., F.L. Deepak, G. Gundiah, et al., Inorganic nanowires [J]. Progressin Solid State Chemistry,2003.31(1-2):5-147.
    [6] R rvik, P.M., T. Grande, and M.-A. Einarsrud, One-Dimensional Nanostructuresof Ferroelectric Perovskites [J]. Advanced Materials,2011.23(35):4007-4034.
    [7] Liu, X., M. Li, Z. Hu, et al., Preparation and properties of theCoFe2O4/Bi3.15Nd0.85Ti3O12multiferroic composite coaxial nanotubes [J].Materials Letters,2012.82:57-60.
    [8] Xu, J.-J., D. Xu, Z.-L. Wang, et al., Synthesis of Perovskite-Based PorousLa0.75Sr0.25MnO3Nanotubes as a Highly Efficient Electrocatalyst forRechargeable Lithium-Oxygen Batteries [J]. Angewandte Chemie InternationalEdition,2013.52(14):3887-3890.
    [9] Dolz, M.I., W. Bast, D. Antonio, et al., Magnetic behavior of singleLa0.67Ca0.33MnO3nanotubes: Surface and shape effects [J]. Journal of AppliedPhysics,2008.103(8):083909.
    [10] Zhu, X., Z. Liu, and N. Ming, Perovskite oxide nanotubes: synthesis, structuralcharacterization, properties and applications [J]. Journal of Materials Chemistry,2010.20(20):4015.
    [11] Poinern, G.E.J., N. Ali, and D. Fawcett, Progress in Nano-Engineered AnodicAluminum Oxide Membrane Development [J]. Materials,2011.4(12):487-526.
    [12] Mao, Y., S. Banerjee, and S.S. Wong, Hydrothermal synthesis of perovskitenanotubes [J]. Chemical Communications,2003(3):408-409.
    [13] Liu, H.J., S.L. Lim, and C.K. Ong, Laterally mesoscopic-patternedLa0.67Sr0.33MnO3thin film by pulsed laser deposition on anodic aluminum oxidetemplate [J]. Materials Letters,2008.62(12-13):2006-2008.
    [14] Singh, S. and S.B. Krupanidhi, Synthesis and structural characterization of theantiferroelectric lead zirconate nanotubes by pulsed laser deposition [J]. AppliedPhysics A,2007.87(1):27-30.
    [15] Xi, S., W. Lu, and Y. Sun, Magnetic properties and magnetocaloric effect ofLa0.8Ca0.2MnO3nanoparticles tuned by particle size [J]. Journal of AppliedPhysics,2012.111(6):063922.
    [16] Lu, X., Y. Kim, S. Goetze, et al., Magnetoelectric Coupling in Ordered Arrays ofMultilayered Heteroepitaxial BaTiO3/CoFe2O4Nanodots [J]. Nano Letters,2011.11(8):3202-3206.
    [17] Gao, X.S., B.J. Rodriguez, L.F. Liu, et al., Microstructure and Properties ofWell-Ordered Multiferroic Pb(Zr,Ti)O3/CoFe O4Nanocomposites [J]. Acs Nano,2010.4(2):1099-1107.
    [18] Lee, W., H. Han, A. Lotnyk, et al., Individually addressable epitaxialferroelectric nanocapacitor arrays with near Tb inch2density [J]. NatureNanotechnology,2008.3(7):402-407.
    [19] Han, H., Y. Kim, M. Alexe, et al., Nanostructured Ferroelectrics: Fabricationand Structure-Property Relations [J]. Advanced Materials,2011.23(40):4599-4613.
    [20] Mishina E. D, Stadnichuk V. I, Alexandr S. S, et al. Ferroeletric nanostructuressputtered on alumina membranes [J]. Physica E,2004,25(1):35–41.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700