用户名: 密码: 验证码:
三氧化二钒生产废水中高浓度氨氮脱除的工业性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本课题研究了吹脱法净化三氧化二钒(V_2O_3)生产过程中产生的高浓度氨氮废水。
     攀枝花钢铁集团攀宏钒制品有限公司三氧化二钒生产过程中产生浓度较高的氨氮废水,如直接排放将会对金沙江水体造成恶劣影响。废水中氨氮的脱除有生物法和物理—化学法。在对现场情况进行了充分调研,以及综合考虑技术可行性和经济合理性的前提下,课题采用吹脱法进行处理。吹脱法脱氨具有投资少、运行成本低、工艺简单、易于改造等特点,是适合工业化应用的氨氮脱除技术。
     本研究对该技术进行了全面的机理研究、实验室试验、中等试验以及工业性研究,确定pH值、温度、吹脱时间是影响氨氮脱除效率的主要因素。在废水水温80℃、pH 11.5的情况下,对1.5m~3废水进行吹脱除氨,处理时间90分钟时,出水NH_3-N浓度全部达到(GB8978-1996)污水综合排放一级标准值15mg/l以下,平均值为8.98mg/l,通过延长反应时间可使废水中氨氮浓度进一步脱除至1mg/l以下。在处理过程中COD_(cr),和SS也得以去除,出水平均浓度分别为37.5mg/l和14.5mg/l。出水的pH值高于一级排放标准的6~9,不能直接排放,但部分出水可回用于石灰消解工序,其余出水经加酸调节后可作为工艺冲洗水或外排。采用硫酸对吹脱出的氨完全吸收,产生的硫酸铵稀溶液回用于三氧化二钒生产工艺中的洗涤工序,避免二次污染的产生。本课题采用间断试验为主,采用多台设备的异步操作可以实现废水的连续处理。
     本课题的研究可为吹脱法净化高浓度氨氮废水的工程设计提供理论指导和设计依据,工程运行后将为攀宏公司每年节约费用296.5万元,每年将减少向金沙江排放NH_3-N约1555.2吨。
Air stripping had been studied to remove the high concentration of ammonia-nitrogen (NH3-N) from vanadium sesquioxide (V2O3) wastewater in this project.
    High concentration of ammonia-nitrogen wastewater was drained off in the production of vanadium sesquioxide (V2O3) in Panzhihua Steel Group Panhong Vanadium Production Ltd. If this wastewater were emitted into Jinsha River directly, the water system would be deeply suffered. Biotechnology and physic-chemical technology can be used to remove ammonia-nitrogen from wastewater. Air stripping had been selected to deal with wastewater after considered feasibility of technology and economy. Air stripping, featured with low capital, low operating cost, simple installation and ease retrofit, was emerged as an available NH3-N control technology, which is suited for the industrial application.
    In this study, involving mechatiism investigation, the bench-scale experiment, middle experiment and industrial research, the results showed that the value of pH, the temperature and the time of air stripping were three main factors that could effect the efficiency of removing NH3-N. At the temperature of 80 , the PH of 11.5 and the removal time of 90min, the average concentration of NH3-N in outlet water was 8.98mg/l, which was satisfactory for grade- I of Integrated Emission Standard of Wastewater (GB8978-1996). By delaying the removing time, the concentration of NH3-N in the wastewater could be decreased under lmg/1. CODcr and SS had also been removed in this process. The average concentration of CODcr in outlet water was 37.5 mg/1, and the average concentration of SS was 14.5 mg/1. The value of pH in outlet water was higher than grade- I of Emission Standard (6-9), so this water were not permitted to emit. But a certain quantity of the water could be reused in the working procedure of hydrolyzing calcare
    ousness, and the remains could be reused as washing water or emitted directly after neutralization by acid. The volatilized ammonia in removing process had been absorbed completely by using vitriol, which could produce dilute ammonium sulfate that should be reused in washing process in V2O3 production, which could avoid secondary pollution. This study
    
    
    
    focused on the discontinuous experiment. The continuing removing system would be realized if several equipments were operated as asynchronous working.
    Undoubtedly, this study provided the theoretical guidelines and quantitative basis for the engineering design of removing the high concentration of NH3-N from wastewater by air stripping. If the removing system was set up, it could save 2.965 million Yuan for Panhong Vanadium Production Ltd. every year, and 1555.2 ton NH3-N would be cut down that were not emitted into Jinsha River.
引文
[1] 黄道鑫,提钒炼钢.北京:冶金工业出版社,2000,2-35
    [2] 杜鹤桂,高炉冶炼钒钛磁铁矿原理.北京:科学出版社,1996,100
    [3] 《有色金属提取冶金手册》编委会,有色金属提取冶金手册——稀有高熔点金属(下).北京:冶金工业出版社,1999,291
    [4] 刘淑清,世界主要钒制品生产厂家及能力,钢铁钒钛,2000,21(2):74
    [5] 胡克俊,国外钒的应用现状及攀钢钒产品的开发建议,钢铁钒钛,2000,21(1):64-70
    [6] EI-Ahraf, A., Willis,W.V. Management of Animal Waste. In: Environmental Health Problems and Technological Solutions. Praeger, London, 1996
    [7] Ten Have, P.J.W., Nitrogen and the industrial processing of pig manure. In: Proceedings of the First International Symposium on Nitrogen Flow in Pig Production and Environmental Consequences. Pudoc Scientific Publishers, Wageningen, The Netherlands, 1993, 386-397
    [8] Rulkens,W.H., Ten Have, P.J.W., Central processing of pig manure in the Netherlands. Water Science and Technology, 1994, 30(7): 157-165
    [9] Elzing,A., Monteny, G.J., Modeling and experimental determination of ammonia emission rates from a scale model dairy-cow house. Transactions of the ASAE, 1997, 40(3):721-726
    [10] Van Rijn J., Shilo M, Bejerano T, Nizan S, . The effect of inorganic nitrogen on microorganisms and fish in fishponds. In: Sarig,S.(Eds.), Research in Modern Aquaculture. Proceedings of the 3~(rd) Status Seminar held from April 27 to May 1 1987, Plaza Hotel, Tiberias, Israel, under the auspices of the German Israeli Cooperation in Science and Technology. Special Publication of European Aquaculture Society, vol. 11, EAS, Oostende,1990, 3-27
    [11] Frances J, Nowak B F, Allan G L, Effects of ammonia on juvenile silver perch (Bidyanus bidyanus). Aquaculture. 2000, 183. 95-103
    [12] Christian Antileo, Estrella Aspe, Homero Urrutia, et al. Nitrifying Biomass Acdlimation to High Ammonia Concentration. Journal of Environmental Engineering, 2002, 128 (4): 367-375
    [13] W.H.Rulkens, A.Klapwijk, H.C.Willers. Recovery of valuable nitrogen compounds from agricultural liquid wastes: potential possibilities, bottlenecks and future technological challenges. Environmental pollution, 1998, 102 (S1): 727-735
    [14] Lema J M, Mendez R, Blazquez R. Characteristics of landfill leachates and alternatives for their treatment: a review. Water Air Soil Pollut, 1988, 40:223-250
    [15] Mogens Henze, Poul Harremoes, Jes la Cour Jansen, et al. Wastewater Treatment, Biological and Chemical Processes. (Third Edition) Berlin Heidelberg: Springer Press, 2002, 90-109
    [16] Willers,H.C., Derikx,P.J.L. Emission of ammonia and nitrous oxide from aerobic treatment of veal calf slurry. Journal of Agricultural Engineering Research, 1996, 63: 345-352
    [17] Akunna J C, Biazeau C, Moletta R. Nitrate and nitrite reductions with anaerobic sludge using various carbon sources:glucose, glycerol, acetic acid, lactic acid and
    
    methanol. Wat. Res., 1993, 27:1303-1312
    [18] Purschert I, Siegrist H, Gujer W, Enhanced denitrification with methanol at WWTP. Wat. Sci.Tech. 1996, 33(12): 117-126
    [19] 张希衡,水污染控制工程.北京:冶金工业出版社,1997
    [20] Willers,H.C., Derikx,P.J.L. Nitrification limitation in animal slurries at high temperatures. Bioresource Technology, 1998, 64:47-54
    [21] Andreottola G, Bortone G, Tilche A, Experimental calibration and validation of a simulation model for nitrification -denitrification in SBRs. Wat. Sci. Tech. 1997, 35(1): 113-120
    [22] Stante L, Cellamare C, Malaspina F, et al. Biological phosphate removal in a pure culture of Lampropedia spp. Wat. Res. 1997, 31(6): 1317-1324
    [23] Tilche A, Bacilieri E, Bortone G,et al., Biological phosphorus and nitrogen removal in a full scale sequencing batch reactor treating piggery wastewater. Wat. Sci.Tech. 1999,40(1),199-206
    [24] Brouwer H., Klapwijk A., Keesman K., Identification of activated sludge and wastewater characteristics using respirometric batch-experiments. Wat. Res. 1998,32: 1240-1254
    [25] Spanjers H., Vanrolleghem P.A., Respirometry as a tool for rapid characterization of wastewater and activated sludge. Wat. Sci.Tech. 1996, 31(2): 105-114
    [26] Spanjers H., Vanrolleghem P.A., Respirometry in control of the activated sludge process. Wat. Sci. Tech. 1996,34(2): 117-126
    [27] Harry Brouwer, Michiel Bloemen, Bram Klapwijk, et al. Feedforward control of nitrification by manipulating the aerobic volume in activated sludge plants. Wat. Sci. Tech. 1998, 38(3): 245-254
    [28] Boon N., Goris J., Top E.M., et al. Bioaugmentation of activated sludge by an indigenous 3-chloroaniline-degrading Comamonas testosteroni strain. Appl.Environ. Microbiol. 2000, 66: 2906-2913
    [29] R Moser, K Udert, D Wild, et al. Products from primary sludge fermentation and their suitability for nutrient removal. Wat. Sci. Tech. 1998, 38(1): 265-273
    [30] Azevedo B.D., Mavinic D.S., Robinson H.D., The effect of ammonia loading and operating temperature on nitrification and denitrification of a high ammonia landfill leachate. Canadian Journal of Civil Engineering. 1995, 22(3): 524-534
    [31] Shiskowski D.M., Mavinic D.S., Biological treatment of high ammonia landfill leachate using pre-denitrification and pre/post denitrification processes. In: 4th Annual Environmental Engineering Specialty Conference. Alberta, 1996, 321-332
    [32] Shiskowski D.M., Mavinic D.S., Biological treatment of high ammonia leachate: Influence of external carbon during initial startup. Wat. Res. 1997,32(8): 2533-2541
    [33] Blancheton J.P., Developments in recirculation systems for Mediterranean fish species. Aquacult. Eng. 2000, 22:17-31
    [34] Fdzpolanco F., Villaverde S., Garcia P.A., Temperature effect on nitrifying bacteria activity in biofilters activation and free ammonia inhibition. Wat. Sci.Tech. 1994, 30: 121-130
    [35] R.Grommen, I.Van Hauteghem, M.Van Wambeke. An improved nitrifying enrichment to remove ammonium and nitrite from freshwater aquaria systems. Aquaculture. 2002, 211: 115-124
    
    
    [36] Janning K.F., Mesterton K., Harremoes P. Hydrolysis and degradation of filtrated organic particulates in a biofilm reactor under anoxic and aerobic conditions. Wat. Sci. Tech. 1997, 36(1): 279-286
    [37] Janning K.F., Le Tallec, Harremoes P. Hydrolysis of organic wastewater particles in lab scale and pilot scale biofilm reactors under anoxic and aerobic conditions. Wat. Sci.Tech. 1998, 38(8/9): 179-188
    [38] R.Canziani, R.Vismara, D.Basilico, Nitrogen removal in fixed-bed submerged biofilters without backwashing. Wat. Sci. Tech. 1999,40(4-5): 145-152
    [39] S Chuang, C F Ouyang, H C Yuang, et al. Phosphorus and polyhydroxyalkanoates variation in a combined process with activated sludge and biofilm. Wat. Sci. Tech. 1998, 37(4-5): 593-597
    [40] Martin Brockmann. Sludge activity under the condition of crossflow microfiltration. Wat. Sci. Tech. 1997, 35(10): 173-181
    [41] L Van Dijk, G C G Roncken. Membrane bioreactors for wastewater treatment: the state of the art and new development. Wat. Sci. Tech. 1997, 35(10): 35-41
    [42] Tatsuki Ueda, Kenji Hata. Domestic wastewater treatment by a submerged membrane bioreactor with gravitational filtration. Water Research, 1999:2888-2892
    [43] Freitas dos Santos. Treatment of pharmaceutical industry process wastewater using the extractive membrane bioreactor. Environmental Progress, 1999, 18(1): 34-39
    [44] Hadi Husain, Pierre Cote, Membrane bioreactor for municipal wastewater treatment. WQI March/April, 1999,19-22
    [45] Brindle K., Membrane bioreactor-today's effluent treatment process for tomorrow. UTA Iternational, 1997,2
    [46] Tatsuki Ueda. Effects of aeration on suction pressure in a submerged membrane bioreactor. Wat. Res. 1997,31 (3):489
    [47] Yasutoshi S. Filtration characteristics of hollow fiber microfiltration membranes used in membrane bioreactor for domestic wastewater treatment. Wat. Res. 1996,30(10):2385-2392
    [48] Urbain V. Integration of performance, Molecular biology and modeling to describe the activated sludge process. Wat. Sci.Tech. 1998, 37:223-229
    [49] Broda E. Two kinds of lithotrophs missing in nature. Z Allg Microbiol, 1977, 17:491-493
    [50] Bock,E., Schmidt,I., Zart,D. Nitrogen loss caused by denitrifying Nitrosomonas Cells using ammonium or hydrogen as electron donors and nitrite as electron acceptor. Arch. Microbiol., 1995, 163:16-20
    [51] Mulder A, Van de Graaf A A, Roberton L A, et al. Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor. FEMS Microbiol Ecology, 1995, 16: 177-184
    [52] Van de Graaf A A, Mulder A. Anaerobic oxidation of ammonium is a biologicaily mediated process. Appl. Environ. Microbiol, 1995, 64(4): 1246-1251
    [53] H.Siegrist, S.Reithaar and P. Lais. Nitrogen loss in a nitrifying rotating contactor treating ammonium rich leachate without organic carbon. Wat. Sci.Tech. 1998, 37 (4-5): 589-591
    [54] Hippen A., Rosenwinkel K.H. Aerobic Deammonification: a new experience in the treatment of wastewaters. Wat. Sci. Tech. 1996, 35 (10): 111-120
    [55] Van de Graaf A A. Autotrophic growth of Anaerobic Ammonium Oxidizing
    
    Microorganisms in a Fluidized Bed Reactor. Microbiology, 1996, 142:2187-2196
    [56] Schmidt Ingo, Bock Eberbard. Anaerobic Ammonium Oxidation with Nitrogen Dioxide by Nitrosomonas Eutropha. Arch. Microbiol, 1997, 167: 106-111
    [57] Strous Marc. Key Physiology of Anaerobic Ammonium Oxidation. Appl. Environ. Microbiol, 1999, 65(7): 3248-3250
    [58] Van de Graaf A A. Metabolic Pathway of Anaerobic ammonium oxidation on the Basis of ~(15)N Studies in a Fluidized Bed Reactor. Microbiology, 1997, 143:2415-2421
    [59] Straous M. Ammonium removal from concentrated waste streams with the anaerobic ammonium oxidation (ANAMMOX) process in different configurations. Wat Res. 1997, 31: 1955-1962
    [60] Stuven R. The Impact of Organic Mater on Nitric oxide Formation by Nitrosomonas Eurpaea. Arch. Microbiol, 1992, 158:439-443
    [61] Muller E B.Simultaneous NH_3 Oxidation and N_2 Production at Reduced O_2 Tensions by Sewage Sludge Subcultured with Chemolithotrophic Medium. Biodegradation, 1995, 6: 339-349
    [62] Haniki K. Nitifi cation at Low Level of Dissolved Oxygen with and without Organic Loading in a Suspended Growth Reactor. Wat. Res, 1990, 24(3): 297-302
    [63] Joanna Surmacz,Andrzej Cichon and Korneliusz Miksch. Nitrogen removal from wastewater with high ammonia nitrogen concentration via shorter nitrification and denitrification. Wat. Sci. Tech. 1997, 36 (10): 73-78
    [64] Jetten M.S.A. More sustainable municipal waste water treatment system. Wat. Sci. Tech. 1997, 35: 171-180
    [65] Mulde J W, Rogier Van Kempen. N-removal by SHARON. IAWQ conference, 1997, 30-31
    [66] STOWA. Treatment of nitrogen-rich return flows of sewage treatment plants. Single reactor system for high ammonium removal over nitrite. STOWA report, 1996, 96-01
    [67] Hans M.Janus and Helle F. van der Roest. Don't reject the idea of treating reject water. Wat. Sci. Tech. 1997, 35 (10): 27-34
    [68] Senthilnathan P.R. and Ganczarczyk J.J. Application of biomass carriers in activated sludge process. Wastewater Treatment by Immobilized Cells, R.D.Tyagi and K.Vembu, (eds), CRC Press, Bosten, Massachusetts, USA, 1990, 103-141
    [69] del la Noue J, Chevalier P. and Proulx D. Effluent treatment with immobilized microalgae and cyanobacteria: a critical assessment. Wastewater Treatment by Immobilized Cells, R.D.Tyagi and K.Vembu, (eds), CRC Press, Bosten, Massachusetts, USA, 1990:143-152
    [70] Bewtra J.K. and Biswas N. Biological processes in toxic waste treament. Wastewater Treatment by immobilized Cells, R.D.Tyagi and K.Vembu, (eds), CRC Press, Bosten, Massachusetts, USA, 1990:191-222
    [71] van Ginkel, C.G. Tramper J, Luyben K.A.M. and Klapwijk A. Characterization of Nitrosomonas europaea immobilized in calcium alginate. Enzyme Microb. Technol. 1983, 5: 304-307
    [72] Tramper J, Suwinska-Borowiec G. and Klapwijk A. Characterization of nitrifying bacteria immobilized in calcium alginate. Enzyme Microb.Technol., 1985, 7:155-160
    [73] Tramper J. and Grootjen D.R.J. Operating performance of Nitrobacter agilis immobilized in carrageenan. Enzyme Microb. Technol., 1986, 8:477-480
    [74] Tada M, Kimata T, Mori N. and Emori H. Nitrogen removal systems using immobilized microorganisms in synthetic resin. Hitachi Review, 1990, 39(6): 379-386
    
    
    [75] Atkinson B. Immobilized cells, their application and potential. Process Engineering Aspects of Immobilized Cell Systems. The Institution of Chemical Engineers, Warwickshire, England, 1984.
    [76] Yang L. and Alleman J.E. Investigation of batchwise nitrite build-up by an enriched nitrification culture. Wat. Sci. Tech., 1992, 26(5-6): 997-1005.
    [77] Preston, K.T. and Alleman, J.E. Co-immobilization of nitrifying bacteria and clinoptilolite for enhanced control of nitrification. Proceedings of the 48th Industrial Waste Conference, Purdue University, West Lafayette, Indiana, USA, 1993, 407-412
    [78] Lei Yang. Investigation of Nitrification by Co-Immobilized Nitrifying Bacterria and Zeolite in a Batchwise Fluidized Bed. Wat. Sci. Tech. 1997, 35 (8): 169-175
    [79] Lehmkuhl,J. Verfahren fur die Ammonium-Elimination. WLB Wasser, Luff Und Boden, 1990, 11-12:46-48
    [80] Buchanan J.R., Mote C.R., Thermodynamics of Struvite Formation. Transactions of the ASAE, 1994, 37(2): 617-621
    [81] Battistoni P, Fava G, Pavan P, et al., Phosphate removal in anaerobic liquors by struvite crystallization without addition of chemicals. Wat. Res., 1997, 31(11): 2925-2929
    [82] 刘刚,丁雪红,秦朝远,化学沉淀法处理氨氮废水技术,环境工程,1998,16 (5):24-27
    [83] Siegrist,H.,Gajcy, D., Sulzer, S., Nitrogen elimination from digester supematant with magnesium-ammonium-phosphate precipitation. Chemical Water and Wastewater treatment Ⅱ,Klute R. and Hahn H.(Eds),Springer Verlag, Berlin, 1994
    [84] H.Siegrist, Nitrogen removal from digester supernatant-comparison of chemical and biological methods. Wat. Sci. Tech. 1996, 34 (1-2): 399-406
    [85] Halling S B, Jorgensen S E, The removal of nitrogen compounds from wastewater. London and New York: Elsevier Science Publishers B. V., 1993, 12
    [86] Moll,W. Studie zur Verwertung naehrstoffhaltiger Schlaemme, Inst: fuer Bodenkunde der Justus Liebig Universitaet, Giessen, 1991.
    [87] BUWAL, Stickstoffentfernung aus dem Schlammwasser von Klaeranlagen. Schriftenreihe Umwelt. Nr. 195.Bern. 1993.
    [88] P Battistoni, P Pavan, F Cecchi, et al., Phosphate removal in real anaerobic supernatants: modeling and performance of a fluidized bed reactor. Wat. Sci. Tech. 1998, 38(1): 275-283
    [89] Drese,J., Stripping as a cheap solution for the livestock waste problem. Pt/Procestechnology, 1988, 43(4): 43-45
    [90] Ozturk I, Altinbas M, Arikan O, et al., Anaerobic and chemical treatability of young landfill leachate. In: Proceedings of 7th International Waste Management and Landfill Symposium. 1999, October 4-8, Cagliari, Italy
    [91] Sylvie Graillon, Francoise Persin, Gerald Pourcelly, et al., Development of electrodialysis with bipolar membrane for the treatment of concentrated nitrate effluents. Desalination. 1996, 107:159-169
    [92] Djebbar Y, Narbaitz R M, Improved correlations for VOC air stripping packed towers. Wat. Sci. Tech. 1998, 38(6): 295-302
    [93] Narbaitz R M, Djebbar Y, Nonparametric modeling of mass transfer coefficients for air stripping packed towers. Can J. Civ. Eng. 1996, 23:549-559
    [94] Cheung K.C., Chu L.M., Wong M.H. Ammonia stripping as a pretreatment for landfill leachate. Water Air Soil Pollut. 1997, 94:209-221
    
    
    [95] Barnes D, Bliss P J, Gould BW, et al., Water and waste water engineering systems. London: Pitman Book Ltd., 1981, 475-478
    [96] Bo-Bertil Lind, Zsofia Ban, Stefan Byden, Nutrient recovery from human urine by struvite crystallization with ammonia adsorption on zeolite and wollastonite. Bioresource Technology. 2000, 73: 169-174
    [97] Tomazovic B, Ceranic T, Sijaric G, The properties of the NH_4- clinoptilolite. Zeolites. 1996, 16:301-312
    [98] Jama M A, Yucel H, Equilibrium studies of the sodium-ammonium, potassium-ammonium, and calcium-ammonium exchanges on clinoptilolite zeolite, Separation Science and Technology. 1989, 24(15): 1393-1416
    [99] C Ratanatamskul, C Chiemchaisri, K Yamamoto, The use of a zeolite-iron column for residual ammonia and phosphorus removal in the effluent from a membrane process as an on-site small-scale domestic wastewater treatment. Wat. Sci. Tech. 1995, 31(9):145-152
    [100] N A Booker, E L Cooney, A J Priestley, Ammonia removal from sewage using natural Australian zeolite. Wat. Sci. Tech. 1996,34(9): 17-24
    [101] Peters,T., Past and future of membrane filtration for the purification of landfill leachate. In:Proceedings of the Sardinia 99,Seventh International Waste Management and Landfill Symposium. S.Margherita di Pula,Cagliari,Italy, October 4-8, 1999, 335-344
    [102] Kapoor A, Viraraghavan T, Nitrate removal from drinking water-review. J Environ. Eng. 1997, (4): 371-80
    [103] Mcllavine RW, Cross flow membrane market accelerates. Filtration & Separation, 1999, (1-2): 24-26
    [104] Trebouet D., Schlumpf J.P., Jaouen P. Effect of operating conditions on the nanofiltration of landfill leachates:pilot-scale studies. Environ. Technol. 1999, 20: 587-596
    [105] H Kurama, J Poetzschke, R Haseneder, The application of membrane filtration for the removal of ammonium ions from potable water. Wat. Res. 2002, 36:2905-2909
    [106] S.K.Marttinen, R.H.Kettunen, K.M.Sormunen, et al. Screening of physical-chemical methods for removal of organic material, nitrogen and toxicity from low strength landfill leachates. Chemosphere. 2002, 46:851-858
    [107] Awadalla F.T., Striez C., Lamb K. Removal of ammonium and nitrate ions from mine effluents by membrane technology. Sep. Sci.Technol. 1994, 29(4): 483-495
    [108] Klaassen,R.,van Voorneburg,F., Removal of Ammonia from Liquid Manure and Waste Waters with Membrane Chemo-sorption TNO report Ref. no. R95-118,TNO, Apeldoorn,the Netherlands. 1995
    [109] Eckenfelder W.W., Principles of water quality management. USA: CBI Publishing Company, 1980, 249-588
    [110] Bekker, P.H.A.M.J., Wet Oxidation of Animal Slurry at a Depth of 1500m. Pt/Procestechnology. 1988, 43(4): 38-41
    [111] Vande Woestyne M., Verstraete W. Biotechnology in the treatment of animal manure. Biotechnology in Animal Feeds and Animal Feeding. VCH Verlagsgesellschaft mbH, Weinheim, Germany, 1995., 311-327
    [112] Geurden,J.M.G., Vonken,H.H.B., Supercritical treatment of animal slurry:a new generation technology. Pt/Procestechnology. 1988, 43(4): 35-37
    
    
    [113] R Ukropec, B F M Kuster, J C Schouten, et al., Low temperature oxidation of ammonia to nitrogen in liquid phase. Applied Catalysis B: Environmental. 1999, 23: 45-57
    [114] Karrer, N.J., Ryhiner,G., Heinzle,E., Applicability test for combined biological-chemical treatment of wastewaters containing biorefractory compounds. Water Res. 1997, 31(5):1013-102
    [115] Beaman,M.S., Lambert, S.D., Graham,N.J.D., Anderson,R. Role of ozone and recirculation in the stabilization of landfills and leachates. Ozone Sci.Eng., 1998, 20: 121-132
    [116] Vollmuth, S., N. iessner, R. Degradation of PCDD, PCDF, PAH, PCB and chlorinated phenols during the destruction-treatment of landfill seepage water in laboratory model reactor(UV, ozone, and UV/ozone).Chemosphere, 1995, 30(12): 2317-2331
    [117] Wenzel,A., Gahr, A., Niessner, R. TOC-removal and degradation of pollutants in leachate using a thin-film photoreactor. Water Res., 1999, 33(4): 937-946
    [118] 孙德智,环境工程中的高级氧化技术.北京:化学工业出版社,200,15
    [119] Tung-Li Huang, Jardan M.Macinnes, Keith R.Cliffe, Nitrogen removal from wastewater by a catalytic oxidation method. Wat. Res. 2001,35(9): 2113-2120
    [120] Alaa El-Sadek, Jan Feyen, Wayne Skaggs, et al., Economics of nitrate losses from drained agricultural land. Journal of Environmental Engineering. 2002, 128(4): 376-383
    [121] W Wesley Eckenfelder, Industrial water pollution control. 3th edition. USA: McGraw-Hill, 2002, 537
    [122] Clair N Sawyer, Perry L Mccarty, Gene F Parkin, Chemistry for environmental engineering. 4th edition. USA: McGraw-Hill, 2000, 553
    [123] Perttu K L, Biomass production and nutrient removal from municipal wastes using willow vegetation filters. Journal of Sustainable Forestry. 1993, 1 (3): 57-70
    [124] Hasselgren K, Municipal wastewater recycling in energy forestry. In: 9th European Bioenergy Conference, Copenhagen, 24-27 June 1996
    [125] Kazuo Ichino, Masahiro Kasuya, Nitrogen removal in paddy fields: An option for water quality improvement in river. Ecological Engineering, 1998, 10:159-164
    [126] H Rosenqvist, P Aronsson, K Hasselgren, et al., Economics of using municipal wastewater irrigation of willow coppice crops. Biomass and Bioenergy. 1997, 12(1): 1-8
    [127] Comin F A, Romero J A, Nitrogen removal and cycling in restored wetlands used as filters of nutrients for agricultural runoff. Wat. Sci. Tech. 1997, 35(5): 255-261
    [128] Greenway M, Nutrient content of wetland plants in constructed wetlands receiving municipal effluent in tropical Australia. Wat. Sci.Tech. 1997, 35(5): 135-142
    [129] Gschll T, Steinmann C, Constructed wetlands for effluent polishing of lagoons. Wat. Res. 1998, 33(2): 505-511
    [130] House C H, Combining constructed wetlands and aquatic and soil filter for reclamation and reuse of water. Ecol.Eng. 1999, 12:27-38
    [131] Kadlec H, Deterministic and stochastic aspects of constructed wetland performance and design. Wat. Sci. Tech. 1997,35(5): 149-154
    [132] Mckinlay R G, Kasperek K, Observations on decontamination of herbicide polluted water by marsh plant systems. Wat. Res. 1999, 32(2): 505-511
    [133] Mitsch W J, Wise K M, Water quality, fate of metals, and predictive model validation of a constructed wetland treating acid mine drainage. Wat. Res. 1998, 32(6): 1888-1900
    
    
    [134] Morris M, Herbert R, The design and performance of a vertical flow reed bed for the treatment of high ammonia,low suspended solids organic effluents. Wat. Sci. Tech. 1997, 35(5): 197-204
    [135] Richardson C J, Qian S S, Long-term phosphorus assimilative capacity in freshwater wetlands: a new paradigm for sustaining ecosystem structure and function. Environ Sci & Tech. 1999, 33(10): 1545-1551
    [136] Salmon C, Crabos J L, Artificial wetland performances in the purification efficiency of hydrocarbon wastewater. Water Air and Soil pollution. 1998, 104:313-329
    [137] Shutes R, The design of wetland systems for the treatment of urban runoff. Wat. Sci.Tech.1997,35(5): 19-25
    [138] Tyrell W, Trailing wetlands to treat coal mining wastewater in a low rainfall,high evaporation environment. Wat. Sci. Tech. 1997,35(5): 293-300
    [139] Vrhovsek D, Kukanja V, Constructed wetland(CW) for industrial wastewater treatment. Wat. Res. 1996, 30(10): 2287-2292
    [140] Vrhovsek D, Kukanja V, The use of constructed wetland for landfill leachate treatment. Wat. Sci.Tech. 1997,35(5):301-306
    [141] Wiebner A, Kuschk P, Treating a lignite pyrolysis wastewater in a constructed subsurface flow wetland. Wat. Res. 1999, 33(5): 1296-1302
    [142] Selma C Ayaz, Lutfi Akca, Treatment of wastewater by natural systems. Environment International. 2001, 26:189-195
    [143] Drizo A, Frost C A, Grace J, Physico-chemical screening of phosphate-removing substrates for use in constructed wetland systems. Wat. Res. 1999, 33(7): 3595-3602
    [144] Naiming Wang, William J Mitsch, A detailed ecosystem model of phosphorus dynamics in created riparian wetlands. Ecological Modelling. 2000, 126:101-130
    [145] Ayaz C S, Akca L, Treatment of wastewater by constructed wetland in small settlements. Wat. Sci.Tech. 2000, 41:69-73
    [146] P M Geary, J A Moore, Suitability of a treatment wetland for dairy wastewaters. Wat. Sci. Tech. 1999, 40(3): 179-185
    [147] Mars R, The role of the submergent macrophyte Triglochin Huegely in domestic greywater treatment. Ecol.Eng. 1999,12:57-66
    [148] Felde K V, Kunst S, N- and COD-removal in vertical flow systems. Wat. Sci.Tech. 1997
    [149] Jennifer A, Andrew H Baldwin, Christopher A Streb, An evaluation of a constructed wetland to treat wastewater from a dairy farm in Maryland, USA. Ecological Engineering. 2000, 14:199-206
    [150] Platzer C, Mauch K, Soil clogging in vertical flow reed beds -Mechanisms, parameters, consequence and solutions. Wat. Sci. Tech. 1997, 35(5): 175-181
    [151] Green M, Enhancing nitrification in vertical flow constructed wetlands utilizing a passive air. Wat.Res. 1998, 32(12): 3513-3520
    [152] D D Kozub, S K Liehr, Assessing denitrification rate limiting factors in a constructed wetland receiving landfill leachate. Wat. Sci. Tech. 1999, 40(3): 75-82
    [153] Talbot P, De La Note, Tertiary treatment of a wastewater with phormidium bohneri (Schmidle) under various light and temperature conditions. Wat. Res. 1993, 27: 153-159
    [154] Anon., Integrated Animal Waste Management. Task Force Report No.128.Council for Agricultural Science and Technology. USA. 1996.
    
    
    [155] Voltolina D, Cordero B, Nieves M, et al., Growth of Scenedesmus sp. In artificial wastewater. Biores. Technol. 1999,68:265-268
    [156] Victor J Nunez, Domenico Voltolina, Mario Nieves, et al., Nitrogen budget in Scenedesmus obliquus cultures with artificial wastewater. Bioresource Technology. 2001, 78:161-164
    [157] Nguyen Ngoc Bich, Mohammad Ismail Yaziz, Nordin Abdul Kadir Bakti, Combination of chlorella vulgaris and eichhornia crassipes for wastewater nitrogen removal. Wat. Res. 1999, 33(10): 2357-2362
    [158] Edwards P, Hassan M S, Chao C H, et al., Cultivation of duckweeds in septage-loaded earthen ponds. Bioresoured Tech. 1992,40:109-117
    [159] Mandi L, Marrakesh wastewater purification experiment using vascular aquatic plants Eichhornia crassipes and Lemna gibba. Wat. Sci.Tech. 1994, 29:283-287
    [160] Oron G, Duckweed culture for wastewater renovation and biomass production. Agri. Wat. Man. 1994,26:27-40
    [161] Hammouda O, Gaber A, Abdel-Hameed M S, Assessment of the effectiveness of treatment of Wastewater contaminated aquatic systems with Lemna gibba. Enz. Microb. Tech. 1995,17:317-323
    [162] Alaerts G J, Mahbubar Rahman M, Kelderman P, Performance analysis of a full-scale duckweed covered lagoon. Wat. Res. 1996, 30:843-852
    [163] Beaujean,J.M.E., Duckweed in the "Peel Region". Bogey Venlo BV, The Netherlands. 1997
    [164] Boniardi N, Vatta G, Rota R, et al., Removal of water pollutants by Lemna gibba. Chem. Eng. J. 1994, 54:41-48
    [165] Vatta G, Rota R, Boniardi N, et al., Dynamic modeling of wastewater treatment plants based on Lemna gibba. Biochem. Eng. J. 1995,57:37-48
    [166] S Korner, J E Vermaat, The relative importance of lemna gibba L., bacteria and algae for the nitrogen and phosphorus removal in duckweed-covered domestic wastewater. Wat. Res. 1998, 32(12): 3651-3661
    [167] Lee Y.W., Ong S.K., Sato C., Effects of heavy metals on nitrifying bacteria. Wat. Sci.Tech. 1997, 36(12): 69-74
    [168] Garrido J.M., Guerrero L., Mendez R., et al., Nitification of waste waters from fish-meal factories. Water SA. 1998,24(3): 245-249
    [169] I Kabdash, O Tunay, I Ozturk, et al., Ammonia removal from young landfill leachate by magnesium ammonium phosphate precipitation and air stripping. Wat. Sci.Tech. 2000, 41(1): 237-240
    [170] P H Liao, A Chen, K V Lo, Removal of nitrogen from swine manure wastewaters by ammonia stripping. Bioresource Technology. 1995, 54:17-20
    [171] Carlos Pelayo Ortiz, Jean-Philippe Steyer, Andre Bories, Carbon and nitrogen removal from wastewater by Candida utilis: kinetics aspects and mathematical modeling. Process Biochemistry. 1997, 32(3): 179-189
    [172] 沈耀良,王宝贞,吹脱法去除渗透液中氨的动力学及机理,污染防治技术,1999,12(2):67-70
    [173] Srinath,E.G., Loehr, R.C., Ammonia desorption by diffused aeration. J.Water Pollut. Control Fed. 1974, 46(8): 1939-1957
    [174] Collivignarelli,C., Bertanza, G., Baldi,M., Ammonia stripping from MSW landfill
    
    leachate in bubble reactors:process modeling and potimization. Waste Manage. Res. 1998, 16(5): 455-466
    [175] Kabdash,I.,Yilmaz,S.,Ankan,O., Ammonia removal from young landfill leachate by magnesium ammonium phosphate precipitation and air stripping. Water Sci. Technol. 2000,41(1): 237-240
    [176] O.Nowak,G.Wandl and K.Svardal. Long-term Experience with Biological Pretreatment of Rendering Plant Effluent. Wat. Sci.Tech. 1999, 40 (1): 37-44
    [177] 朱炳辰,化学反应工程,第三版,北京:化学工业出版社,2001,263
    [178] Jung,U. and Micko,S. Profitable conversion. Schott information, Mainz, 1997, 80:18-19

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700