用户名: 密码: 验证码:
低维银纳米结构的合成和表面等离激元性质的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于金属纳米结构的表面等离激元光子学的研究是目前很活跃的一个研究领域,在此基础上发展起来的表面增强光谱技术和表面等离激元共振传感技术已经在众多领域得到了深入的研究和广泛的应用,表面等离激元波导在光电子集成器件方面也存在巨大的应用潜力。本论文的研究工作主要是在合成银纳米结构的基础上展开的,对纳米结构的表面拉曼散射光谱、银纳米线波导及其核壳结构的表面等离激元传播性质和远程激发表面光化学反应进行了研究。
     首先,本文利用化学上多元醇还原硝酸银的方法来合成银纳米颗粒。通过优化实验条件,控制反应物的浓度、反应速度和反应时间,合成了形状均匀的银纳米球、银纳米米和银纳米线等低维银纳米结构。并利用溶胶-凝胶法制备了厚度均匀的银纳米球和银纳米线的二氧化硅核壳结构。
     其次,本文研究了二氧化硅壳层对银纳米线波导传播性质的影响。通过在银纳米线及其核壳结构上铺上均匀的荧光分子,并测量纳米线上不同位置的荧光分子被激发后在出射端的发射光强的方法,给出光强相对激发位置的函数关系,再通过数据拟合得到不同壳层厚度的银纳米线上表面等离激元的传播长度。结果表明二氧化硅壳层提高了银纳米线对电磁场的空间限制作用。同时,对于介质折射率较小的玻璃基底,二氧化硅壳层的存在使银纳米线上表面等离激元的传播距离有所减小,而对于介质折射率较大的硅基底,二氧化硅壳层则增加了银纳米线上表面等离激元的传播距离。
     然后,本文提出并研究了利用银纳米线波导来研究远程激发偏振依赖的表面光化学反应。通过照射银纳米线的一端来激发传播的表面等离激元,表面等离激元能够沿着银纳米线进行有效传播。传播过程中会在不连续点被以光子的形式耦合出来,如,银纳米线的末端、存在银纳米颗粒或其他银纳米线的位置。本文通过原位测量银纳米颗粒-银纳米线体系和银纳米线交叉体系的间隙内分子的表面增强拉曼散射光谱,证明局域电场增强效应引发了分子的表面光化学反应。
     最后,本文利用铝材料在紫外区域的表面等离激元共振性质,采用含时密度泛函理论研究了蒽醌分子的铝3-蒽醌-铝3结模型的深紫外针尖共振增强拉曼散射的化学增强机制,计算结果显示在铝的表面等离激元作用下共振增强拉曼散射信号强度与正常拉曼散射信号强度相比有七个数量级的提高。
The plasmonics has recently been a very active research field based on the variousmetal nanostructures. The technologies of surface-enhanced Raman scattering (SERS)and surface plasmon resonance (SPR) have been studied deeply and applied widely inmany fields. Plasmonic waveguide also possess great potential applications for nanooptoelectronic integration. The work of this dissertation is carried out based on thesynthesis of the silver nanostructures. The surface Raman scattering spectra ofnanostructures and the properties of the propagating surface plasmon polaritons (SPPs)on silver nanowires and Ag-SiO2core-shell nanowires are investigated deeply in thisdissertation. The remote excitation polarization-dependent surface photochemicalreaction by plasmonic waveguide is also studied.
     First, the silver nanostructures are synthesized by chemically reducing AgNO3withpolyol in this dissertation. The low dimensional uniform Ag nanostructures, such as Agnanospheres and Ag nanowires and Ag nanorices, are obtained under optimal experimentconditions by controling the reactionants concentration, reaction time and speed. Thesilica core shell structure of the silver nanospheres and nanowires are also fabricated bythe sol-gel method.
     Second, the impact of silica layer on the propagating properties of Ag namowirewaveguide is investigated. The emitting intensity from the end of nanowire is measuredthrough exciting the fluorescent molecules localed on different position of the nanowire.The propagation lengths of surface plasmon polaritons on silver nanowires with differentthickness silica layers can be obtained by linear fitting according to the function ofintensity as the excitation point. The result indicates that the Ag-SiO2core-shellnanowires confine the electromagnetic field stronger than bare Ag nanowire. For glasssubstrate with small refractive index, the propagation lengths of SPPs on Ag-SiO2core-shell nanowires are shorter than that of bare silver nanowires with the samediameter, while they are longer for the silicon substrate with big refractive index.
     Next, it is proposed and researched that the polarization-dependent surface photochemical reaction can be excited remotely by plasmonic waveguide. SPPs aregenerated at the end of a silver nanowire by incidence light, and propagate efficientlyalong the nanowire. It can be coupled out in photons at the discontinuities of the wirewith nanoparticles or another nanowire as nanoantenna. The remote excitationpolarization-dependent SERS spectra obtained experimentally in the nanogaps of thesystems of nano particles-wire and crossing nanowires reveal the occurrence of surfacecatalytic reaction.
     Last, the chemical enhancement mechanisms on deep ultraviolet tip-enhancedRaman scattering spectra of anthraquinone in Al3-anthraquinone-Al3junction are studiedwith time dependent density functional theory for plasmon resonance properties ofAluminum in UV range. The results reveal that the Raman spectrum is resonance Ramanscattering, and chemical enhancement is on the order of 107.
引文
[1] Barnes W L, Dereux A, Ebbesen T W. Surface Plasmon Subwavelength Optics[J]. Nature, 2003,424 (6950): 824-830.
    [2] Zayats A V, Smolyaninov I I. Near-Field Photonics: Surface Plasmon Polaritons and LocalizedSurface Plasmons[J]. Journal of Optics A: Pure and Applied Optics, 2003, 5: S16.
    [3] Steinmann W. Experimental Verification of Radiation of Plasma Oscillations in Thin SilverFilms[J]. Physical Review Letters, 1960, 5 (10): 470-472.
    [4] Hoheisel W, Jungmann K, Vollmer M, et al. Desorption Stimulated by Laser-InducedSurface-Plasmon Excitation[J]. Physical Review Letters, 1988, 60 (16): 1649-1652.
    [5] Raether H. Surface Plasmons[M]. Springer-Verlag Berlin, 1988.
    [6] Salomon L, Bassou G, Aourag H, et al. Local Excitation of Surface Plasmon Polaritons atDiscontinuities of a Metal Film: Theoretical Analysis and Optical near-Field Measurements[J].Physical Review B, 2002, 65 (12): 125409.
    [7] Zhu J. Surface Plasmon Resonance from Bimetallic Interface in Au–Ag Core–Shell StructureNanowires[J]. Nanoscale Research Letters, 2009, 4 (9): 977-981.
    [8] Chen C, De Castro A, Shen Y. Surface-Enhanced Second-Harmonic Generation[J]. PhysicalReview Letters, 1981, 46 (2): 145-148.
    [9] Nitzan A, Brus L E. Theoretical-Model for Enhanced Photochemistry on Rough Surfaces[J].Journal of Chemical Physics, 1981, 75 (5): 2205-2214.
    [10] Xu H X. A New Method by Extending Mie Theory to Calculate Local Field in Outside/inside ofAggregates of Arbitrary Spheres[J]. Physics Letters A, 2003, 312 (5-6): 411-419.
    [11] Wei H, Reyes-Coronado A, Nordlander P, et al. Multipolar Plasmon Resonances in IndividualAg Nanorice[J]. Acs Nano, 2010, 4 (5): 2649-2654.
    [12] Novotny L, Bian R X, Xie X S. Theory of Nanometric Optical Tweezers[J]. Physical ReviewLetters, 1997, 79 (4): 645-648.
    [13] Xu H, K ll M. Surface-Plasmon-Enhanced Optical Forces in Silver Nanoaggregates[J]. PhysicalReview Letters, 2002, 89 (24): 246802.
    [14] Volpe G, Quidant R, Badenes G, et al. Surface Plasmon Radiation Forces[J]. Physical ReviewLetters, 2006, 96 (23): 238101.
    [15] Li Z, K ll M, Xu H. Optical Forces on Interacting Plasmonic Nanoparticles in a FocusedGaussian Beam[J]. Physical Review B, 2008, 77 (8): 085412.
    [16] Moskovits M. Surface-Enhanced Spectroscopy[J]. Reviews Of Modern Physics, 1985, 57 (3):783-826.
    [17] Kall M, Xu H X, Johansson P. Field Enhancement and Molecular Response inSurface-Enhanced Raman Scattering and Fluorescence Spectroscopy[J]. Journal of RamanSpectroscopy, 2005, 36 (6-7): 510-514.
    [18] Xu H X, Wang X H, Persson M P, et al. Unified Treatment of Fluorescence and RamanScattering Processes near Metal Surfaces[J]. Physical Review Letters, 2004, 93 (24): 243002.
    [19] Nie S, Emory S R. Probing Single Molecules and Single Nanoparticles by Surface-EnhancedRaman Scattering[J]. Science, 1997, 275 (5303): 1102.
    [20] Kneipp K, Wang Y, Kneipp H, et al. Single Molecule Detection Using Surface-Enhanced RamanScattering (Sers)[J]. Physical Review Letters, 1997, 78 (9): 1667-1670.
    [21] Campion A, Kambhampati P. Surface-Enhanced Raman Scattering[J]. Chemical SocietyReviews, 1998, 27 (4): 241-250.
    [22] Humphrybaker R, Gratzel M, Steiger R. Drastic Fluorescence Enhancement andPhoto-Chemical Stabilization of Cyanine Dyes through Micellar Systems[J]. Journal of theAmerican Chemical Society, 1980, 102 (2): 847-848.
    [23] Lakowicz J R, Geddes C D, Gryczynski I, et al. Advances in Surface-Enhanced Fluorescence[J].Journal Of Fluorescence, 2004, 14 (4): 425-441.
    [24] Stefani F, Vasilev K, Bocchio N, et al. Surface-Plasmon-Mediated Single-MoleculeFluorescence through a Thin Metallic Film[J]. Physical Review Letters, 2005, 94 (2): 23005.
    [25] Ebbesen T W, Lezec H J, Ghaemi H F, et al. Extraordinary Optical Transmission throughSub-Wavelength Hole Arrays[J]. Nature, 1998, 391 (6668): 667-669.
    [26] Genet C, Ebbesen T. Light in Tiny Holes[J]. Nature, 2007, 445 (7123): 39-46.
    [27] Lezec H, Degiron A, Devaux E, et al. Beaming Light from a Subwavelength Aperture[J].Science, 2002, 297 (5582): 820.
    [28] Stockle R M, Suh Y D, Deckert V, et al. Nanoscale Chemical Analysis by Tip-Enhanced RamanSpectroscopy[J]. Chemical Physics Letters, 2000, 318 (1-3): 131-136.
    [29] Bailo E, Deckert V. Tip-Enhanced Raman Scattering[J]. Chemical Society Reviews, 2008, 37(5): 921-930.
    [30] Pettinger B, Ren B, Picardi G, et al. Nanoscale Probing of Adsorbed Species by Tip-EnhancedRaman Spectroscopy[J]. Physical Review Letters, 2004, 92 (9): 96101.
    [31] Takahara J, Yamagishi S, Taki H, et al. Guiding of a One-Dimensional Optical Beam withNanometer Diameter[J]. Optics Letters, 1997, 22 (7): 475-477.
    [32] Guo X, Qiu M, Bao J M, et al. Direct Coupling of Plasmonic and Photonic Nanowires forHybrid Nanophotonic Components and Circuits[J]. Nano Letters, 2009, 9 (12): 4515-4519.
    [33] Yan R, Pausauskie P, Huang J, et al. Direct Photonic-Plasmonic Coupling and Routing in SingleNanowires[J]. Proceedings of the National Academy of Sciences, 2009, 106 (50): 21045-21050.
    [34] Kou Y, Ye F W, ChEn X F. Low-Loss Hybrid Plasmonic Waveguide for Compact andHigh-Efficient Photonic Integration[J]. Optics Express, 2011, 19 (12): 11746-11752.
    [35] Wei H, Wang Z, Tian X, et al. Cascaded Logic Gates in Nanophotonic Plasmon Networks[J].Nature Communications, 2011, 2: 387.
    [36] Ambati M, Nam S H, Ulin-Avila E, et al. Observation of Stimulated Emission of SurfacePlasmon Polaritons[J]. Nano Letters, 2008, 8 (11): 3998-4001.
    [37] Ni W, Ambj rnsson T, Apell S P, et al. Observing Plasmonic Molecular Resonance Couplingon Single Gold Nanorods[J]. Nano Letters, 2010, 10 (1): 77-84.
    [38] Fofang N T, Park T H, Neumann O, et al. Plexcitonic Nanoparticles: Plasmon ExcitonCoupling in Nanoshell J-Aggregate Complexes[J]. Nano Letters, 2008, 8 (10): 3481-3487.
    [39] Le F, Lwin N, Steele J, et al. Plasmons in the Metallic Nanoparticle-Film System as a TunableImpurity Problem[J]. Nano Letters, 2005, 5 (10): 2009-2013.
    [40] Kneipp K, Wang Y, Kneipp H, et al. Single Molecule Detection Using Surface-Enhanced RamanScattering (Sers)[J]. Physical Review Letters, 1997, 78 (9): 1667-1670.
    [41] Xu H X, Bjerneld E J, Kall M, et al. Spectroscopy of Single Hemoglobin Molecules by SurfaceEnhanced Raman Scattering[J]. Physical Review Letters, 1999, 83 (21): 4357-4360.
    [42] Abdelghani A, Chovelon J M, JaffrezicRenault N. Surface Plasmon Resonance Fibre-OpticSencor for Gas Detection[J]. Sens. Actuator B, 1997, 39: 407-510.
    [43] Robbio L L, Uboldi P, Marcovina S. Epitope Mapping Analysis of Apolipoprotein B-100 Usinga Surface Plasmon Resonance-Based Biosensor[J]. Biosens. Bioelectron, 2001, 16: 963-969.
    [44] Pattnaik P. Surface Plasmon Resonance[J]. Applied Biochemistry And Biotechnology, 2005, 126(2): 79-92.
    [45] Homola J, Yee S S, Gauglitz G. Surface Plasmon Resonance Sensors: Review[J]. Sensors andActuators B: Chemical, 1999, 54 (1-2): 3-15.
    [46] Johnsson B, L f s S, Lindquist G. Immobilization of Proteins to aCarboxymethyldextran-Modified Gold Surface for Biospecific Interaction Analysis in SurfacePlasmon Resonance Sensors[J]. Analytical Biochemistry, 1991, 198 (2): 268-277.
    [47] Lal S, Link S, Halas N J. Nano-Optics from Sensing to Waveguiding[J]. Nature Photonics, 2007,1 (11): 641-648.
    [48] Polman A. Plasmonics Applied[J]. Science, 2008, 322 (5903): 868.
    [49] Fischer U C, Pohl D W. Observation of Single-Particle Plasmons by near-Filed OpticalMicroscopy[J]. Physical Review Letters, 1989, 62 (4): 458-461.
    [50] Pines D, Bohm D. A Collective Description of Electron Interactions: Ii. Collective Vs IndividualParticle Aspects of the Interactions[J]. Physical Review, 1952, 85 (2): 338-353.
    [51] Pines D. Collective Energy Losses in Solids[J]. Reviews Of Modern Physics, 1956, 28 (3): 184.
    [52] Ritchie R. Plasma Losses by Fast Electrons in Thin Films[J]. Physical Review, 1957, 106 (5):874.
    [53] Powell C, Swan J. Origin of the Characteristic Electron Energy Losses in Aluminum[J].Physical Review, 1959, 115 (4): 869.
    [54] Stern E, Ferrell R. Surface Plasma Oscillations of a Degenerate Electron Gas[J]. PhysicalReview, 1960, 120 (1): 130.
    [55] Ferrell R A. Predicted Radiation of Plasma Oscillations in Metal Films[J]. Physical Review,1958, 111 (5): 1214.
    [56] Stern E A. Transition Radiation from Metal Films[J]. Physical Review Letters, 1962, 8 (1):7-10.
    [57] Buchsbaum S. Resonance in a Plasma with Two Ion Species[J]. Physics Of Fluids, 1960, 3: 418.
    [58] Hattori M, Yamada K, Suzuki H. Plasma Resonance Absorption in Thin Metal Films[J]. JournalOf The Physical Society Of Japan, 1963, 18: 203.
    [59] McAlister A J, Stern E. Plasma Resonance Absorption in Thin Metal Films[J]. Physical Review,1963, 132 (4): 1599.
    [60] Kretschmann E, Raether H. Radiative Decay of Non-Radiative Surface Plasmons ExcitedlyLight[J]. Z. Naturforsh, 1968, 23A: 2135-2136.
    [61] Otto A. Excitation of Nonradiative Surface Plasma Waves in Silver by the Method of RustratedTotal Reflection[J]. Z. Physik, 1968, 216 (4): 398-410.
    [62] Zayats A V, Smolyaninov I I, Maradudin A A. Nano-Optics of Surface Plasmon Polaritons[J].Physics Reports, 2005, 408 (3-4): 131-314.
    [63] Hecht B, Bielefeldt H, Novotny L, et al. Local Excitation, Scattering, and Interference ofSurface Plasmons[J]. Physical Review Letters, 1996, 77 (9): 1889-1892.
    [64] Smolyaninov I I, Mazzoni D L, Davis C C. Imaging of Surface Plasmon Scattering byLithographically Created Individual Surface Defects[J]. Physical Review Letters, 1996, 77 (18):3877-3880.
    [65] Bozhevolnyi S I, Pudonin F A. Two-Dimensional Micro-Optics of Surface Plasmons[J].Physical Review Letters, 1997, 78 (14): 2823-2826.
    [66] Dawson P, Puygranier B, Goudonnet J. Surface Plasmon Polariton Propagation Length: A DirectComparison Using Photon Scanning Tunneling Microscopy and Attenuated Total Reflection[J].Physical Review B, 2001, 63 (20): 205410.
    [67] Fleischmann M, Hendra P, McQuillan A. Raman Spectra of Pyridine Adsorbed at a SilverElectrode[J]. Chemical Physics Letters, 1974, 26 (2): 163-166.
    [68] Jeanmaire D L, Van Duyne R P. Surface Raman Spectroelectrochemistry:: Part I. Heterocyclic,Aromatic, and Aliphatic Amines Adsorbed on the Anodized Silver Electrode[J]. Journal ofElectroanalytical Chemistry and Interfacial Electrochemistry, 1977, 84 (1): 1-20.
    [69] Albrecht M G, Creighton J A. Anomalously Intense Raman Spectra of Pyridine at a SilverElectrode[J]. Journal of the American Chemical Society, 1977, 99 (15): 5215-5217.
    [70] Le Ru E C, Etchegoin P G. Principles of Surface-Enhanced Raman Spectroscopy: And RelatedPlasmonic Effects[M]. Elsevier Science, 2008.
    [71] Campion A, Ivanecky III J, Child C, et al. On the Mechanism of Chemical Enhancement inSurface-Enhanced Raman Scattering[J]. Journal of the American Chemical Society, 1995, 117(47): 11807-11808.
    [72] Doering W E, Nie S. Single-Molecule and Single-Nanoparticle Sers: Examining the Roles ofSurface Active Sites and Chemical Enhancement[J]. The Journal of Physical Chemistry B, 2002,106 (2): 311-317.
    [73] Shannon C, Campion A. Unenhanced Raman Scattering as an in Situ Probe of theElectrode-Electrolyte Interface: 4-Cyanopyridine Adsorbed on a Rhodium Electrode[J]. TheJournal of Physical Chemistry, 1988, 92 (6): 1385-1387.
    [74] Bilmes S, Rubim J, Otto A, et al. Sers from Pyridine Adsorbed on Electrodispersed PlatinumElectrodes[J]. Chemical Physics Letters, 1989, 159 (1): 89-96.
    [75] Guo L, Huang Q, Li X, et al. Iron Nanoparticles: Synthesis and Applications in SurfaceEnhanced Raman Scattering and Electrocatalysis[J]. Physical Chemistry Chemical Physics,2001, 3 (9): 1661-1665.
    [76] Tian Z Q, Ren B, Wu D Y. Surface-Enhanced Raman Scattering: From Noble to TransitionMetals and from Rough Surfaces to Ordered Nanostructures[J]. The Journal of PhysicalChemistry B, 2002, 106 (37): 9463-9483.
    [77] Lakowicz J R. Radiative Decay Engineering: Biophysical and Biomedical Applications[J]. Anal.Biochem, 2001, 298: 1-24.
    [78] Brown R W, Wessel P, Trounson E P. Plasmon Reradiation from Silver Films[J]. PhysicalReview Letters, 1960, 5 (10): 472-473.
    [79] Nitzan A, Brus L. Theoretical Model for Enhanced Photochemistry on Rough Surfaces[J]. TheJournal of Chemical Physics, 1981, 75: 2205.
    [80] Wokaun A, Lutz H P, King A, et al. Energy Transfer in Surface Enhanced Luminescence[J]. TheJournal of Chemical Physics, 1983, 79: 509.
    [81] Barnes W. Fluorescence near Interfaces: The Role of Photonic Mode Density[J]. Journal OfModern Optics, 1998, 45 (4): 661-699.
    [82] Viger M L, Live L S, Therrien O D, et al. Reduction of Self-Quenching in FluorescentSilica-Coated Silver Nanoparticles[J]. Plasmonics, 2008, 3 (1): 33-40.
    [83] Okamoto K, Niki I, Shvartser A, et al. Surface-Plasmon-Enhanced Light Emitters Based onIngan Quantum Wells[J]. Nature materials, 2004, 3 (9): 601-605.
    [84] Mertens H, Polman A. Plasmon-Enhanced Erbium Luminescence[J]. Applied Physics Letters,2006, 89: 211107.
    [85] Aisaka T, Fujii M, Hayashi S. Enhancement of Upconversion Luminescence of Er Doped AloFilms by Ag Island Films[J]. Applied Physics Letters, 2008, 92: 132105.
    [86] Hayazawa N, Inouye Y, Sekkat Z, et al. Metallized Tip Amplification of near-Field RamanScattering[J]. Optics Communications, 2000, 183 (1-4): 333-336.
    [87] Anderson M S. Locally Enhanced Raman Spectroscopy with an Atomic Force Microscope[J].Applied Physics Letters, 2000, 76: 3130.
    [88] Pettinger B, Picardi G, Schuster R, et al. Surface Enhanced Raman Spectroscopy: TowardsSingle Moleculer Spectroscopy (E)[J]. Electrochemstry (Tokyo), 2000, 68 (12): 942-949.
    [89] Steidtner J, Pettinger B. High-Resolution Microscope for Tip-Enhanced Optical Processes inUltrahigh Vacuum[J]. Review Of Scientific Instruments, 2007, 78: 103104.
    [90] Steidtner J, Pettinger B. Tip-Enhanced Raman Spectroscopy and Microscopy on Single DyeMolecules with 15 Nm Resolution[J]. Physical Review Letters, 2008, 100 (23): 236101.
    [91] Ducamp-Sanguesa C, Herrera-Urbina R, Figlarz M. Synthesis and Characterization of Fine andMonodisperse Silver Particles of Uniform Shape[J]. Journal Of Solid State Chemistry, 1992,100 (2): 272-280.
    [92] Sun Y, Xia Y. Large-Scale Synthesis of Uniform Silver Nanowires through a Soft, Self-Seeding,Polyol Process[J]. Advanced Materials, 2002, 14 (11): 833.
    [93] Sun Y, Gates B, Mayers B, et al. Crystalline Silver Nanowires by Soft Solution Processing[J].Nano Letters, 2002, 2 (2): 165-168.
    [94] Xiong Y, Xie Y, Wu C, et al. Formation of Silver Nanowires through a Sandwiched ReductionProcess[J]. Advanced Materials, 2003, 15 (5): 405-408.
    [95] Sun X, Li Y. Cylindrical Silver Nanowires: Preparation, Structure, and Optical Properties[J].Advanced Materials, 2005, 17 (21): 2626-2630.
    [96] Dickson R M, Lyon L A. Unidirectional Plasmon Propagation in Metallic Nanowires[J]. TheJournal of Physical Chemistry B, 2000, 104 (26): 6095-6098.
    [97] Ditlbacher H, Hohenau A, Wagner D, et al. Silver Nanowires as Surface Plasmon Resonators[J].Physical Review Letters, 2005, 95 (25): 257403.
    [98] Li Z P, Hao F, Huang Y Z, et al. Directional Light Emission from Propagating Surface Plasmonsof Silver Nanowires[J]. Nano Letters, 2009, 9 (12): 4383-4386.
    [99] Li Z P, Bao K, Fang Y R, et al. Correlation between Incident and Emission Polarization inNanowire Surface Plasmon Waveguides[J]. Nano Letters, 2010, 10 (5): 1831-1835.
    [100] Zhang S, Wei H, Bao K, et al. Chiral Surface Plasmon Polaritons on Metallic Nanowires[J].Physical Review Letters, 2011, 107 (9): 096801.
    [101] Bozhevolnyi S I, Volkov V S, Devaux E, et al. Channel Plasmon Subwavelength WaveguideComponents Including Interferometers and Ring Resonators[J]. Nature, 2006, 440 (7083):508-511.
    [102] Oulton R F, Sorger V J, Genov D, et al. A Hybrid Plasmonic Waveguide for SubwavelengthConfinement and Long-Range Propagation[J]. Nature Photonics, 2008, 2 (8): 496-500.
    [103] Manjavacas A, García de Abajo F. Robust Plasmon Waveguides in Strongly InteractingNanowire Arrays[J]. Nano Letters, 2008, 9 (4): 1285-1289.
    [104] Fang Y R, Li Z P, Huang Y Z, et al. Branched Silver Nanowires as Controllable PlasmonRouters[J]. Nano Letters, 2010, 10 (5): 1950-1954.
    [105] Wei H, Li Z P, Tian X R, et al. Quantum Dot-Based Local Field Imaging RevealsPlasmon-Based Interferometric Logic in Silver Nanowire Networks[J]. Nano Letters, 2011, 11(2): 471-475.
    [106] Gather M C, Meerholz K, Danz N, et al. Net Optical Gain in a Plasmonic Waveguide Embeddedin a Fluorescent Polymer[J]. Nature Photonics, 2010, 4 (7): 457-461.
    [107] Dai D, He S. A Silicon-Based Hybrid Plasmonic Waveguide with a Metal Cap for a Nano-ScaleLight Confinement[J]. Optics Express, 2009, 17 (19): 16646-16653.
    [108] Chu H S, Li E P, Bai P, et al. Optical Performance of Single-Mode Hybrid Dielectric-LoadedPlasmonic Waveguide-Based Components[J]. Applied Physics Letters, 2010, 96: 221103.
    [109] Krug J T, Wang G D, Emory S R, et al. Efficient Raman Enhancement and Intermittent LightEmission Observed in Single Gold Nanocrystals[J]. Journal of the American Chemical Society,1999, 121 (39): 9208-9214.
    [110] Maier S A, Kik P G, Atwater H A, et al. Local Detection of Electromagnetic Energy TransportBelow the Diffraction Limit in Metal Nanoparticle Plasmon Waveguides[J]. Nature materials,2003, 2 (4): 229-232.
    [111] Knight M W, Grady N K, Bardhan R, et al. Nanoparticle-Mediated Coupling of Light into aNanowire[J]. Nano Letters, 2007, 7 (8): 2346-2350.
    [112] Xu H X, Kall M. Polarization-Dependent Surface-Enhanced Raman Spectroscopy of IsolatedSilver Nanoaggregates[J]. Chemphyschem, 2003, 4 (9): 1001-1005.
    [113] Etchegoin P, Galloway C, Le Ru E. Polarization-Dependent Effects in Surface-Enhanced RamanScattering (Sers)[J]. Physical Chemistry Chemical Physics, 2006, 8 (22): 2624-2628.
    [114] Ebbesen T W, Lezec H, Ghaemi H, et al. Extraordinary Optical Transmission throughSub-Wavelength Hole Arrays[J]. Nature, 1998, 391 (6668): 667-669.
    [115] S nnichsen C, Duch A, Steininger G, et al. Launching Surface Plasmons into Nanoholes inMetal Films[J]. Applied Physics Letters, 2000, 76: 140.
    [116] Martin-Moreno L, Garcia-Vidal F, Lezec H, et al. Theory of Highly Directional Emission from aSingle Subwavelength Aperture Surrounded by Surface Corrugations[J]. Physical ReviewLetters, 2003, 90 (16): 167401.
    [117] Yu N, Fan J, Wang Q J, et al. Small-Divergence Semiconductor Lasers by PlasmonicCollimation[J]. Nature Photonics, 2008, 2 (9): 564-570.
    [118] Bozhevolnyi S I, Volkov V S, Devaux E, et al. Channel Plasmon-Polariton Guiding bySubwavelength Metal Grooves[J]. Physical Review Letters, 2005, 95 (4): 46802.
    [119] Synge E. Xxxviii. A Suggested Method for Extending Microscopic Resolution into theUltra-Microscopic Region[J]. The London, Edinburgh, and Dublin Philosophical Magazine andJournal of Science, 1928, 6 (35): 356-362.
    [120] Ash E, Nicholls G. Super-Resolution Aperture Scanning Microscope[P]. 1972.
    [121] Binnig G, Rohrer H. Scanning Tunneling Microscope[P]. 1982.
    [122] Pohl D, Denk W, Lanz M. Optical Stethoscopy: Image Recording with ResolutionΛ/20[J].Applied Physics Letters, 1984, 44 (7): 651-653.
    [123] Moller R, Albrecht U, Boneberg J, et al. Detection of Surface Plasmons by Scanning TunnelingMicroscopy[J]. Journal of Vacuum Science & Technology B: Microelectronics and NanometerStructures, 1991, 9 (2): 506-509.
    [124] Kroo N, Thost J P, V lcker M, et al. Decay Length of Surface Plasmons Determined with aTunnelling Microscope[J]. Europhysics Letters, 1991, 15: 289.
    [125] Specht M, Pedarnig J, Heckl W, et al. Scanning Plasmon near-Field Microscope[J]. PhysicalReview Letters, 1992, 68 (4): 476-479.
    [126] Rendell R, Scalapino D. Surface Plasmons Confined by Microstructures on Tunnel Junctions[J].Physical Review B, 1981, 24 (6): 3276.
    [127] Zayats A V. Electromagnetic Field Enhancement in the Context of Apertureless near-FieldMicroscopy[J]. Optics Communications, 1999, 161 (1-3): 156-162.
    [128] Zeman E J, Schatz G C. An Accurate Electromagnetic Theory Study of Surface EnhancementFactors for Silver, Gold, Copper, Lithium, Sodium, Aluminum, Gallium, Indium, Zinc, andCadmium[J]. Journal of physical chemistry, 1987, 91 (3): 634-643.
    [129] Kelly K L, Coronado E, Zhao L L, et al. The Optical Properties of Metal Nanoparticles: TheInfluence of Size, Shape, and Dielectric Environment[J]. The Journal of Physical Chemistry B,2003, 107 (3): 668-677.
    [130] Prodan E, Nordlander P. Structural Tunability of the Plasmon Resonances in MetallicNanoshells[J]. Nano Letters, 2003, 3 (4): 543-547.
    [131] Lee P, Meisel D. Adsorption and Surface-Enhanced Raman of Dyes on Silver and Gold Sols[J].The Journal of Physical Chemistry, 1982, 86 (17): 3391-3395.
    [132] Munro C, Smith W, Garner M, et al. Characterization of the Surface of a Citrate-ReducedColloid Optimized for Use as a Substrate for Surface-Enhanced Resonance Raman Scattering[J].Langmuir, 1995, 11 (10): 3712-3720.
    [133] Fievet F, Lagier J, Figlarz M. Preparing Monodisperse Metal Powders in Micrometer andSubmicrometer Sizes by the Polyol Process[J]. Mrs Bulletin, 1989, 14 (12): 29-34.
    [134] Liang H Y, Yang H X, Wang W Z, et al. High-Yield Uniform Synthesis andMicrostructure-Determination of Rice-Shaped Silver Nanocrystals[J]. Journal of the AmericanChemical Society, 2009, 131 (17): 6068-6069.
    [135] Stober W, Fink A, Bohn E. Controlled Growth of Monodisperse Silica Spheres in Micron SizeRange[J]. Journal of Colloid and Interface Science, 1968, 26 (1): 62-69.
    [136] Yin Y, Lu Y, Sun Y, et al. Silver Nanowires Can Be Directly Coated with Amorphous Silica toGenerate Well-Controlled Coaxial Nanocables of Silver Silica[J]. nano Letters, 2002, 2 (4):427-430.
    [137] Wang W, Li Z P, Gu B H, et al. Ag@Sio2 Core-Shell Nanoparticles for Probing SpatialDistribution of Electromagnetic Field Enhancement Via Surface-Enhanced Raman Scattering[J].Acs Nano, 2009, 3 (11): 3493-3496.
    [138] Rayleigh L. On the Scattering of Light by Small Particles[J]. Philosophical Magazine, 1871, 41:447-454.
    [139] Mie G. Beitr ge Zur Optik Trüber Medien, Speziell Kolloidaler Metall sungen[J]. Annalen DerPhysik, 1908, 330 (3): 377-445.
    [140] Raman C V, Krishnan K. A New Type of Secondary Radiation[J]. Nature, 1928, 121 (3048):501-502.
    [141] Lombardi J R, Birke R L, Lu T, et al. Charge-Transfer Theory of Surface Enhanced RamanSpectroscopy: Herzberg–Teller Contributions[J]. The Journal of Chemical Physics, 1986, 84 (8):4174.
    [142] Langhammer C, Schwind M, Kasemo B, et al. Localized Surface Plasmon Resonances inAluminum Nanodisks[J]. Nano Letters, 2008, 8 (5): 1461-1471.
    [143] Chan G H, Zhao J, Schatz G C, et al. Localized Surface Plasmon Resonance Spectroscopy ofTriangular Aluminum Nanoparticles[J]. The Journal of Physical Chemistry C, 2008, 112 (36):13958-13963.
    [144] D rfer T, Schmitt M, Popp J. Deep‐Uv Surface‐Enhanced Raman Scattering[J]. Journal ofRaman Spectroscopy, 2007, 38 (11): 1379-1382.
    [145] Taguchi A, Hayazawa N, Furusawa K, et al. Deep‐Uv Tip‐Enhanced Raman Scattering[J].Journal of Raman Spectroscopy, 2009, 40 (9): 1324-1330.
    [146] Quail J, Rako J, Simon H. Long-Range Surface-Plasmon Modes in Silver and AluminumFilms[J]. Optics Letters, 1983, 8 (7): 377-379.
    [147] Ray K, Chowdhury M H, Lakowicz J R. Aluminum Nanostructured Films as Substrates forEnhanced Fluorescence in the Ultraviolet-Blue Spectral Region[J]. Analytical Chemistry, 2007,79 (17): 6480-6487.
    [148] Te Velde G, Bickelhaupt F M, Baerends E J, et al. Chemistry with Adf[J]. Journal OfComputational Chemistry, 2001, 22 (9): 931-967.
    [149] Parr R G, Yang W. Density-Functional Theory of Atoms and Molecules[M]. Oxford UniversityPress, USA, 1994: Vol. 16.
    [150] Gross E, Kohn W. Local Density-Functional Theory of Frequency-Dependent LinearResponse[J]. Physical Review Letters, 1985, 55 (26): 2850-2852.
    [151] Sanders A W, Routenberg D A, Wiley B J, et al. Observation of Plasmon Propagation,Redirection, and Fan-out in Silver Nanowires[J]. Nano Letters, 2006, 6 (8): 1822-1826.
    [152] Li Z P, Bao K, Fang Y R, et al. Effect of a Proximal Substrate on Plasmon Propagation in SilverNanowires[J]. Physical Review B, 2010, 82 (24): 241402.
    [153] Chang D E, S rensen A S, Hemmer P, et al. Strong Coupling of Single Emitters to SurfacePlasmons[J]. Physical Review B, 2007, 76 (3): 035420.
    [154] Ma Y, Li X, Yu H, et al. Direct Measurement of Propagation Losses in Silver Nanowires[J].OPTICS LETTERS, 2010, 35 (8): 1160-1162.
    [155] Shegai T, Huang Y Z, Xu H X, et al. Coloring Fluorescence Emission with Silver Nanowires[J].Applied Physics Letters, 2010, 96 (10): 103114.
    [156] Fang Y, Li Y, Xu H, et al. Ascertainingp,P′-Dimercaptoazobenzene ProducedFromp-Aminothiophenol by Selective Catalytic Coupling Reaction on Silver Nanoparticles[J].Langmuir, 2010, 26 (11): 7737-7746.
    [157] Fang Y R, Wei H, Hao F, et al. Remote-Excitation Surface-Enhanced Raman Scattering UsingPropagating Ag Nanowire Plasmons[J]. Nano Letters, 2009, 9 (5): 2049-2053.
    [158] Fang Y R, Li Y Z, Xu H X, et al. Ascertaining P,P '-Dimercaptoazobenzene Produced fromP-Aminothiophenol by Selective Catalytic Coupling Reaction on Silver Nanoparticles[J].Langmuir, 2010, 26 (11): 7737-7746.
    [159] Wang W, Yang Q, Fan F, et al. Light Propagation in Curved Silver Nanowire PlasmonicWaveguides[J]. Nano Letters, 2011, 11 (4): 1603-1608.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700