用户名: 密码: 验证码:
金属纳米线阵列的制备及其表面增强光谱研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米线及其阵列材料是纳米材料应用研究中的热点。基于纳米线阵列为基底的表面增强拉曼散射(SERS)和针尖增强拉曼散射(TERS)研究对于形成新的一维增强基底,丰富SERS增强机制理论,拓展SERS应用领域,以及对纳米线自身电磁和界面特性的研究具有重大意义。本文首次在AAO模板上采用磁控溅射技术制备出了高质量的钛、铝和镍纳米线阵列,并首次将其应用于增强基底的SERS研究。通过实验与理论计算相结合的方式,系统地研究了在不同纳米线阵列的增强基底上存在着与传统基底上所不同的SERS增强机制,它同时存在着接触式增强;针尖增强和热点增强。
     本文主要的研究工作包括以下几点:
     采用二步阳极氧化法制备出孔洞排列规则,孔径均一的高质量AAO模板。分别用原子力显微镜、扫描电镜、X射线衍射、紫外-可见光吸收、光荧光和拉曼散射等手段对所制备AAO模板的各种性能进行了分析表征。随后还进一步研究了AAO模板的具体形成机理,根据阳极氧化过程中电流的变化把阳极氧化过程具体划分成了三个阶段。讨论了不同氧化电压对AAO模板孔洞直径大小的影响,对不同氧化电压所制备的模板孔径进行比较研究并拟合出了氧化电压与在该电压下制备模板孔径大小的经验关系式。
     采用激光分子束外延(LMBE)技术在AAO上限域生长成功的制备出银、镍纳米线和纳米线阵列。通过用扫描电镜、透射电镜和原子力显微镜等手段对所制备的纳米线及其纳米线阵列进行表征,可以看出采用该方法制备的纳米线粗细均匀、直径均一,大约100nm左右与所使用的AAO模板的孔径大小一致,纳米线长度可达2200nm,长径比为22。还可以看出,纳米线阵列表面总体比较平整,排列非常规则与AAO模板的孔洞排列一样呈正六边形排列。此外,每根纳米线端部不是平的而是针尖状的,因此用该方法所制备的银、镍纳米线阵列也是一个排列非常规则银、镍的针尖阵列。
     采用磁控溅射(MS)技术在AAO模板上限域生长成功制备出金、钛和铝纳米线阵列。通过用扫描电镜、原子力显微镜等手段对所制备的纳米线阵列进行表征,可以看出采用该方法制备的纳米线粗细均匀、直径均一大约100nm左右与所使用的AAO模板的孔径大小一致。纳米线阵列表面总体比较平整,排列非常规则与AAO模板的孔洞排列一样呈正六边形排列,同样是针尖阵列。
     采用真空蒸发镀膜技术在硅基片上制备出了表面平整的银颗粒状薄膜。用原子力显微镜对其进行表征,颗粒直径大小分布相对比较均匀,单个银颗粒直径大都分布在70-100nnm的范围内,这些小的银颗粒相互团聚成直径大约为500nm的大颗粒,而且这些大颗粒直径相对分布比较均匀。用激光烧蚀法制备出了近似球形的银、镍纳米颗粒,分别用透射电镜和紫外-可见吸收光谱对其表征可以看出粒径分布比较均匀,分散性好,直径大约在30nnm。
     在银、镍纳米线的增强基底上以苏丹红Ⅱ作为探针分子获得了很好的SERS谱图,通过与银、镍纳米颗粒上的SERS的比较,讨论了在银、镍纳米线上同时存在着接触式SERS增强和非接触式针尖TERS增强两种增强机制。
     以银纳米线阵列为基底,Rh 6G为探针分子得到了很好的SERS谱图,将其分别与在激光烧蚀法制备的银纳米颗粒和用真空蒸发镀膜法制备的银膜表面上的SERS谱进行分析比较,得出在银纳米线阵列上存在着与银纳米颗粒和银薄膜上不同的SERS增强机制,它同时存在着接触式SERS增强;TERS增强和热点增强机制。
     通过研究金纳米线阵列上NA分子在不同基底温度下SERS谱图相对强度的周期性变化,探讨了以金纳米线阵列为增强基底的SERS增强机制随基底温度的变化。首先,在110-150K的温度范围内SERS强度随着温度的升高而增大。因为探针分的振动强度在低温下很弱,随着温度的升高其振动强度会逐渐增加,所对应的拉曼散射频率强度也会随之增大。在150-270K的温度区域内SERS的相对强度呈现出先减小后增大的趋势。在这个范围内随着温度的升高探针分子的动能增大,吸附在金纳米线上的分子脱离金表面的几率越来越大,其SERS强度自然会随之减小。但是随着温度的进一步上升,分子将逐渐远离金表面而进入到金纳米线之间的热点中,在热点中探针分子的拉曼散射信号又将会被极大的增强,其SERS强度呈现出增大的趋势。在270-350K的范围内时,随着温度的升高SERS相对强度却又呈现出减小的趋势。随着基底温度的进一步上升,金纳米线内自由电子的无规则运动加剧。致使激发产生的表面等离子波的强度大大减弱,热点内局域电磁波的强度会随之大大减小,而处于热点内探针分子的拉曼散射强度随温度的上升而减小。
     分别以银、镍、钛、铝纳米线阵列作为SERS增强基底,用苏丹红Ⅱ作为探针分子,通过对上述增强基底上SERS谱图的比较,讨论以上各种纳米线阵列为基底的SERS增强效果。在以上几种纳米线阵列上都获得了很好的SERS谱图,说明以上几种纳米线阵列都是很好的SERS增强基底。特别是长期以来,国内外学术界普遍认为铝对于SERS而言没有增强效果,在铝的纳米线阵列上却可以得到很好的SERS谱。我们认为,当激发光照射到铝纳米线阵列上时,在每两根纳米线之间的区域会产生大量热点,处在热点中探针分子的拉曼散射信号将会被极大的增强。他是一种非接触式的热点增强机制,与传统的接触式SERS增强机制不同,所以当铝制备成纳米线阵列时就会有了很好的SERS增强效果。
     选用NA分子作为研究对象,有针对性的选用了六种不同的基组进行GaussianO3模拟计算,然后分别与实验值对比,确定出了实验所需的最佳计算基组。采用金纳米线阵列作为增强基底,NA作为探针分子获得了其SERS谱图。根据实验具体情况建立了两种不同的模型,分别代表金纳米线阵列上接触式增强和非接触式增强两种不同的SERS增强机制。使用DFT-B3PW91/LanL2DZ基组对上述两种模型进行计算,通过对实验值和计算值的分析比较,得出在金纳米线阵列上同时存这接触式和非接触式两种SERS增强机制。
     以银纳米线阵列增强基底作为电极,以对硝基苯甲酸(PNA)为探针分子,通过比较不同电位下SERS谱图的差异并结合Gaussian 03的模拟计算,探针分子在银纳米线阵列上的吸附方式随基底电位不同的变化方式。即:在0.1-0V时,探针分子随机的吸附在银纳米线阵列表面,主要以热点增强为主;0-(-0.3)V阶段,分子从随机吸附向以羧基吸附方式转变;(-0.3)-(-0.5)V阶段,探针分子的吸附方式从以羧基吸附为主导向以硝基吸附为主导转变。
An investigation of nanowires and nanowires array-materials are more and more much attach importance in the area of applied material science and technology. The study of surface enhanced Raman scattering (SERS) effect on the substrate of metal nanowires and nanowires arrays exhibit more interesting variations. Because its. SERS enhanced mechanisms are very abundant, which include normal SERS, tip enhanced Raman scattering (TERS) and hot spots enhanced. It is very significative for enriching SERS mechanisms, out-spreading the application range of SERS and affording the method of study of material. In this paper, the titanium, aluminum and nickel nanowires arrays were prepared on the AAO templates by magnetic sputtering (MS); they were applied in the area of SERS as enhanced substrates, for the first time. The SERS enhancement-mechanisms were studied roundly on the metal nanowires arrays by integrate of experimentation with theoretics.
     In the dissertation, there are several segments which list as follows:
     The highly ordered anodic aluminum oxide (AAO) template was fabricated using aluminum anodizing in electrolytes with two-step method. Its performances were researched by some methods, which include AFM, SEM, XRD, visible-UV absorption spectrum, fluorescence spectrum and Raman spectrum. And its principle was discussed, which include three processes. We investigated the relation of AAO template apertures with anodic voltage, and then the function of it had been deduced.
     The nanowires and nanowires array-materials of silver and nickel were fabricated on AAO template by LMBE. Their forms were investigated by the means of SEM, AFM and TEM. The diameter which about 100nm was very homogeneous, and the length which about 2200nm was very uniformity. So the ratio of length with diameter of the nanowires was about 22. The exterior of the nanowires arrays was very smooth. Moreover, the end of the nanowires which fabricated on AAO template by LMBE was acuminate. So the nanowires arrays of silver and nickel were the tip arrays.
     The highly ordered nanowires arrays of gold, titanium and aluminum were fabricated on AAO templates by MS. The diameter was about 100nm which consistent with the templates'. And the ends of the nanowires which collocate in hexagon format were tips.
     The silver nano-film was fabricated on the silicon substrate by the method of vacuum vapor plating. The film was made up with the silver agglomerated particles which the diameter was about 500nm. And the silver agglomerated particles were conglobated with the nanoparticles which the diameter from 70 to 100nm. In this paper, we ablated silver plates in redistilled deionized water using pulsed laser and obtained 'chemically pure' silver nanoparticles. Its diameter, which was good separate and uniform, was about 30nm.
     On the glasses covered with silver and nickel nanowires respectively, high quality surface enhanced Raman scattering (SERS) spectra of sudanⅡ(C18H16N20) were obtained. And the comparison of SERS on the silver and nickel nanoparticle indicated that there two enhanced mechanisms which include SERS and TERS on the substrates of the glasses covered with silver and nickel nanowires respectively.
     On the silver nanowires arrays, high quality SERS spectrum of probe molecules rhodamine 6G (Rh6G) was obtained. Comparison of SERS spectra on the substrates of silver nanowires array with silver film and colloids indicates that enhanced mechanism of SERS on the silver nanowires arrays different from the SERS on silver film or silver colloids. There are contiguously and non-contact enhanced mechanisms on the silver nanowires array.
     The change of SERS enhanced mechanisms on gold nanowires array at different temperature was studied by investigating the SERS spectra of probe molecules nicotinic acid (NA) relate with the different temperature on the substrate. In the first temperature range from 110 to 150K, the intensity of the molecule vibration was boosting up with temperature going up, so, the enhancement was ascending. In the second segment of 150-250K, the charge transfer enhancement was primary role. More and more molecules was disengaging from gold nanowires with temperature rising. Fewer and fewer molecules contributed to the effect of SERS, so, the intensity of SERS was diminishing in the range. However, in the range of 250-270K, electromagnetic enhancement became to leading function. The molecules movement was becoming strong with the raise of temperature. A lot of molecules moved to the hot spot where the extremely high enhancement of the electric field observed at the middle area of between each gold nanowies. And the molecules in the hot spot were enhanced largely, the intensity would be enhanced. In the fourth temperature segment from 270 to 350K, the electronic ruleless movement of gold nanowires was intensifying with the raise of temperature. The excitation of LSP produces a high local electromagnetic field in the middle area of between each gold nanowies that relate to the electronic ruleless movement of gold nanowires. The intensity of local electromagnetic field in the hot spot was receding with the enhancement of extent of the electronic ruleless movement. So, the intensity of SERS of the NA molecules which in hot spot would be lowering in the process of temperature from 207 to 350K.
     On the several kinds of nanowire arrays which silver, titanium, nickel, and aluminum, high-quality SERS spectra of probe molecules of the red dye SudanⅡwere obtained. In particular, the SERS spectrum of SudanⅡon an aluminum nanowire array is reported for the first time. Surface-enhanced Raman spectroscopy on the substrate of nanowire arrays is based on the extremely high enhancement of the electric field. observed in the area between the nanowires when excited with a laser beam which was called hot spots. The probe molecules should be enhanced when they are taken into the enhanced electric field between the nanowires. Under these conditions, the most enhanced molecules would not contact the nanowires.
     The optimal simulation method of Gaussian 03 was. confirmed by studying the computational spectra, which were simulated with six different methods, with the experimental spectrum of NA molecule. The investigation, which the experimenta SERS spectrum of probe molecule NA on the gold nanowires array and stimulant spectra which base on tow different models by the method of DFT-B3PW91/LanL2DZ, indicates that the presence, of contiguously and non-contact enhanced mechanisms on the gold nanowires array.
     We studied the SERS spectra of PNA on the silver nanowires array at different potential of the substrate. And the stimulant spectra which base on tow different models by the method of DFT-B3PW91/LanL2DZ were obtained. The investigation of the computational spectra and experimental SERS spectra indicates that the change of SERS enhanced mechanisms. It indicated that the hot-spot enhancement playing primary role and the probe molecule adsorbing on the silver nanowires at random in range of the potential from 0.1 to 0V. And in range of the 0-(-0.3) V, the adsorption of molecule transited from random to carboxylic adsorption. And the transformation, which carboxylic adsorption to nitro-adsorption, would occur in the range of the potential from (-0.3) to (-0.5) V.
引文
[1]Eychmuller A. Stucture and photophysics of semiconductor nanocrystalas [J]. J Phys Chem B,2000,104:6514-6528.
    [2]J. Lu and M. Tinkhan, "单电子晶体管",物理.1998,27(3):137-140
    [3]D. L. Feldhein, C. D. Keating. Self-assembly of single electron transistors. Chem. Soc. Rev.,1998,27 (1):1-13.
    [4]WANG W, WANG H, GONG Y L. Fabrication of Bi nanowire array by electrodeposition technology [J]. Transaction of tianjin University,2001, 7(3):207-209.
    [5]ZHU H, YANG S G, NI G, et al. Fabrication and magnetic properties of Co67Ni33 alloy nanowire array [J]. Scripta. Mater,2001(44):2291-2295.
    [6]XU Y.J, XU D S, CHEN D P. Electrochemistry preparation and characterization of CdS nanowire arras [J]. Acta Physical-Chemical Sinica,1999,15(7): 577-580.
    [7]胡晓歌,王铁,程文龙,等。金属纳米线的合成与组装[J].分析化学,2004,32(9):1240-1245.
    [8]SHEN C M, ZHANG X G, LI H L. DC electrochemical deposition of CdS nanowire array using porous andic aluminum oxide template [J]. Materials Science and Engineering,2001,19(2):89-94.
    [9]ALMAWLAWI D, COOMBS N, MOSKOVITS M. Magnetic properties of Fe deposited into anodic aluminum oxide pores as a function of particle size [J]. Journal of Applied Physics,1991,70(8):4421-4425.
    [10]VAZQUE M, HERNANDEZ-VELEZ M, PIROTA K, et al. Arrays of Ni nanowires in alumina membranes:Magnetic properties and spatial ordering [J]. The European Physical Journal B-Condensed Matter,2004,40(4):489-497.
    [11]HERNANDEZ-VELEZ M PIROTA K R, PASZTI F, et al. Magnetic nanowire arrays in anodic alumina membranes:Rutherford backscattering characterization [J]. Applied Physics A:Materials Science & Processing,2005,80(8):1701-1706.
    [12]OHGAI T, GRAVIER L, HOFFER X, et al. CdTe semiconductor nanowire and NiFe ferro-magnetic metal nanowires electrodeposited into cylindrical nano-pores on the surface of anodized aluminum [J]. Journal of Applied Electrochemistry, 2005,35(5):479-485.
    [13]刘建华,于美,李松海。氧化铁纳米线阵列的溶胶—凝胶模板法制备与表征[J].无机化学学报,2005,21(3):429-432.
    [14]ARANDA P, CEPAK V M, HULTEEN J C, et al. Chemical strategies for template synthesis of composite micro-and nanostructures [J]. Chem. Mater,1997, (9): 1065.
    [15]Khan H R, Petrikowski K. Anisotropic Structural and Magnetic Properties of Fe26 Ni74 Nanowires Electrodeposited in the Pores of Anodic Alumina [J]. J Magn Mgan Mater,2000,215:526-528.
    [16]Osaka T. Electrodeposition of Highly Function 111in Films for Magnetic Recording Devices of the Next Century [J]. Electrochim Acta,2000,45:311-321.
    [17]Shen C M, Zhang X G, H L L. DC Electrochemi cal Deposition of CdSe Nanorods Array Using Porous Anodic Oxide Template [J]. Materials Science and Engineering,2001, A303:19-23.
    [18]Li L C. AC Anod ization of Alumi num Electrodepe sition of Nickel and Optical Property Examination [J]. Solar Energy Materials & Solar Cells, 2000.64:279-289.
    [19]程光煦,拉曼布里渊散射,北京,科学出版社,2001.
    [20]席时全、王玮、李微、薛奇、吉敏,红外光谱与Raman光谱,山东,山东科学技术出版社,1999.
    [21]G. Landsberg, L. Mandelstam. Eine Neue Erscheinung bei der Lichtzerstreuung in Krystallen. Naturwiss,1928,16:557-580. Landsberg G, Mandelstam L., Naturwiss,16(1928),557.
    [22]Cabanues J. Compt. Rend. Acad. Sci., Paris,186(1928),1107.
    [23]Rocard Y. Compt. Rend. Acad. Sci., Paris,186(1928),1107.
    [24]Porto S. P. S., Wood K. L., J. Opt. Soc. Am.,52(1962),251.
    [25]吴国祯,分子振动光谱学原理与研究,北京,清华大学出版社,2001.
    [26]M. Fleischman, P. J. Hendra, A. MacQuillan. Raman Spectra of Pyridine Adsorbed at a silver Electrode [J]. Chem. Phys. Lett.,1974,26:163-166.
    [27]D. L. Jeanmaire, Richard P. Vanduyne. Electronal. "Chem.,84(1977),1.
    [28]M. G. Albrecht, J. A. Creighton. Anomalously intense Raman spectra of pyridine at a silver electrode. J. Am. Chem. Soc.,1977,99:5215-5217.
    [29]张鹏翔,郭伟力,李秀英.表面增强Raman效应(SERS)[J].光谱学与光谱分析,1987,7(3):1-7.
    [30]M. Moskovits, Surface-Enhanced Spectroscopy. [J] Rev. Mod. Phys, 1985,57:783-787.
    [31]Chang R. K., Furtak T. E. Eds., Surface Enhanced Raman Scattering, New York, Plenum Press,1982.
    [32]Hilton, P. R., D. W. Oxtoby. Surface-enhanced Raman spectra:a critical. review of the image dipole description. Journal of Chemical Physics,1980, 72:346-350.
    [33]A. Otto, et al, in'Surface Enhanced Raman Scattering', edited by R. K. Chang,1983,147.
    [34]Mo Yujun, Leijie, Li Xiuying, Wachter P. Surface enhanced Raman scattering of rhodamine 6G and dye 1555 adsorbed on roughened copper surfaces. Solid State. Commun.,1988,66:127-131.
    [35]H. Ueba. Theory of charge transfer excitation in surface enhanced Raman scattering. Surface Science,1983,131:347-366.
    [36]Mrozek I., Otto A. No evidence for local electromagnetic depolarization effects in SERS from coldly deposited silver films. J. Electron Spectrosc. Related Phenom.,1987,45:143-152.
    [37]Furtak T. E., Advances in Leser Spectroscopy., Vol.2, edited by Garedz B. A., Lambardi J. R. John Wiley,1983.
    [38]Hohenberg P., Kohn, W. Inhomogeneous electron gas. Phys. Rev.1964, 136:B864-B871.
    [39]Kohn, W. and Sham, L. Self-consistent equations including exchange and correlation effects. J. Phys. Rev.,1965,140:A1133-A1138.
    [40]Parr R G, Yang W, Density Functional Theory of Atoms and Molecules, Oxford: Oxford Science,1989.
    [41]J. C. Burant, G. E. Scuseria, M. J. Frisch. Direct Analytic SCF Second Derivatives and Electric Field Properties. J. Chem. Phys.195,8969 (1996).
    [42]B. I. Dunlap. A comment on Numerical Hartree-Fock-Slater calculations on diatomic molecules. J. Chem. Phys.,1983,78:3140-3145.
    [43]A. K. Rappe and W. A. Goddard Ⅲ. Charge equilibration for molecular dynamics sim- ulations. J. Phys. Chem.,1991,95:3358-3363.
    [44]M. J. S. Dewar, W. Thiel, Ground states of molecules.38. The MNDO method. Approximation and parameters, J. Am. Chem. Soc.99 (1977) 4899-4907.
    [45]J. J. P. Stewart. Optimization of parameters for semiempirical method. [J]. J. Comput. Chem.,1989,10:209-221.
    [46]McWeeny, R.; Dierksen, G. Self-Consistent Perturbation Theory. Ⅱ. Extension to Open Shells. J. Chem. Phys.1968,49,4852-4856.
    [47]C. Moller, M. S. Plesset. Note on an approximation treatment for. many-electron systems. Phys. Rev.,1934,46:618-622.
    [48]J. A. Pople, J. S. Binkley, R. Seeger. Theoretical Models Incorporating Electron Correlation. Int. J. Quant. Chem.,1976,10:1-19.
    [49]S. Parthiban and JML Martin, Assessment of Wl and W2 theories for the computation. Phys.2001,114:6014-6029.
    [50]Peng, C.; Schlegel, H. B. Combining synchronous transit and quasi-newton methods for finding, transition states. Israeli J. Chem.,1994,33:449-454.
    [51]Y. Yamaguchi, M. J. Frisch, J. F. Gaw. Basis Set Dependence of Intensities of Infrared Spectra. J. Chem. Phys.,1986,84:2262-2278.
    [52]M. J. Frisch, Y. Yamaguchi, J. F. Gaw, et al. Analytic Raman... Electronic Wave Functions. J. Chem. Phys.,1986,84(1):531-532.
    [53]R. D. Amos. Dipole moment derivatives of H2O and H2S. Chem. Phys. Lett, 1984,108(2):185-190.
    [54]A. Kormornicki, R. L. Jaffe. An ab initio investigation of the structure, vibrational frequencies, and intensities of HO2 and HOCl. J. Chem. Phys.,1979, 71:2150-2155.
    [55]Charles R. Martin. Nanomaterials:A membrane-Based Synthetic Approach [J], Science,1994,263 (23):1961-1966.
    [56]A.P.Li, F. Muller, A. Birner, K. Nielsch, and U. Gosele. Hexagonal Pore Arrays with a 50-420nm Interpore Distance Formed by Self-organization in Anodic Alumina[J], JOURNAL OF APPLIED PHYSICS,1998,84 (11):6023-6026.
    [57]Xu Yajie, Xu Dongsheng, Chen Dapeng, and Guo Guolin. Electrochemistry Preparation and Characterization of CdS Nanowire Arrays [J], Acta Phys. Chim, 1999,15 (7):577-580.
    [58]王银海,牟季美,蔡维理,石刚.交流电在A1203模板中沉积金属机理探讨[J],物理化学学报,2001,17(2):116-118。
    [59]郜涛,孟国文,张立德.金属氧化物纳米点薄膜的模板法合成[J],中国科学院研究生院学报,2003,2(1):69-72。
    [60]Dmitri Routkevitch, Terry Bigioni, Martin Moskovits, and Jing Ming Xu. Electrochemical Fabrication of CdS Nanowire Arrays in Porous Anodic Aluminum Oxide[J], J. Phys. Chem.,1996,100:14037-14047.
    [61]Xu Yajie, Xu Dongsheng, Chen Dapeng, Guo Guolin, and Li Chongjia. Electrochemistry Preparation and Characterization of CdS Nanowire Arrays[J], Acta Phys. Chim,1999,15 (7):577-580.
    [62]徐金霞,黄新民,钱利华.二次阳极氧化方法制备有序多孔氧化铝膜[J],化学物理学报,2003,16(3):224-226。
    [63]Kong X Y, Wang Z L. Spontaneous polarization-induced nanohelixes, nanosprings, and nanorings of piezoelectric nanobelts. Nano. Lett. 2003,3:1625-1632.
    [64]R P Feynman. R. P. Feynman. There's plenty of room at the bottom. Engineering and Science,1960,22-36.
    [65]Keller F, Hunter MS, Robinson DL. Structural features of oxide coatings on aluminum. J Electrochem Soc,1953; 100 (9):411-419.
    [66]Masuda H, Yamada H, Satoh M, et al. Highly ordered nanochannel-array architecture in anodic alumina[J]. Appl Phys Lett,1997,71:2770-2772.
    [67]O'Sullivan, J. P., Wood, G. C. The Motphology and Mechanism of Formation of Porous. Roy. Soc. Lond.,1970, A,317:511-543.
    [68]苏育志,龚克成,纳米结构材料的模板合成方法,材料科学与工程,17(4),1999。
    [69]王刚,阎康平,周川,严季新,阳极氧化铝模板法制备纳米电子材料,电子元件与材料,21(5),2002。
    [70]孔令彬,陈淼,力虎林,用AFM研究阳极氧化铝的不稳定生长,化学学报,2004,62(7):680-685.
    [71]Murphy J. P., Michelson C. E., Proc. Conf. Anodiz. Aluminum, Nottingham: Alumin. Federation, p114,1961.
    [72]Roger Kelly,Antonio Miotello.In:D.B.Chrisey,G.K.Hubier eds,Pulsed Laser Deposition of Thin Films.New York:Wiley 1994:55-87.
    [73]Amoruso S. Appl Surf Surf Sci,1999,138-139:292-298.
    [74]Tatarakis M, Watts. I. Laser technologyMeasuring huge magnetic fields.Nature,2002,415:280.
    [75]Ozegowski M,Metev S, Sepold G.Appl Surf Sci,1998,127-129:614-619.
    [76]Zenkevitch A, Chevallier J, Khabelashvili I.Thin Solid Fims,1997, 311:119-123.
    [77]王广昌,准分子激光器的新应用,光电子技术与信息,1999,12:38-40.
    [78]赵建新,激光精细加工及其质量检测的最新进展,激光杂志,1993,14:281-284.
    [79]CaminoD, Jones A H S, Mercs D, et al High performance sputtered carbon coatings forwear resistant applications[J]. Vacuum,1999,52:125-131.
    [80]刘兴举,王成彪,于翔.非平衡磁控溅射制备氮化铬膜及其摩擦学性能研究[J].金属热处理,2005,30(5):1-4.
    [81]Mattox DM. Handbook ofPhysicalVaporDeposition (PVD) Processing[M]. Noyes:W illiam Andrew Publishing,1998:253-256.
    [82]达道安编.真空设计手册.北京:国防工业出版社,1991.698-702.
    [83]Kukla R, Bahr M, Beibwengers et al. High rate sputtering of metals and metal oxides with a moving plasma zone. Thin Solid Films,1993,228:51-55.
    [84]F. Bouchard, M. B. Dittmar, B. Manring. Monte Carlo simulations of textured planar magnetron targets. J. Vac. Sci. Technol.,1993, A 11:2765-2770.
    [85]Ohara, Y., Akiba, M., Horiike, H., Imai, H.3D Computer simulation of the primary electron orbits in a magnetic.multipole. J. Appl, Phys.,1987, 61 (4):1323-1328.
    [86]Faraday M. Experimental relations of gold (and other metals) to light. Phil. Trans. R. Soc. London,1857,147:145-181.
    [87]A. Fojtik, A. Henglein. Laser ablation of films and suspended particles in a solvent:formation of cluster and colloid solutions. Ber. Bunsen-Ges. Phy. Chem.,1993,97:252-254.
    [88]J. Neddersen, G.Chumanov, T.M.Cotton.Laser ablation of metals:a new method for preparing SERS active colloids. Appl. Spetrosc.,1993,47: 1959-1964.
    [89]I. Lee, S. W. Han, K. Kim. Simultaneous preparation of SERS-active metal colloids and plates by laser ablation. J. Raman. Spectrosc.,2001,32:947-951.
    [90]Sibbald M S, Chumanov G, Cotton T M. Reduction of. Cytochrome c by halide-modified, laser-ablated silver colloids. J. Phys. Chem.,1996,100: 4672-4678.
    [91]M. ProchOzka, P. Mojzef, et al. Probing applications of laser-ablated Ag colloids in SERS spectroscopy:improvement of ablation procedure and SERS spectral testing. Anal. Chem.,1997,69:5103-5108.
    [92]I.SrnovA, M. ProchAzka, et al. Surface-enhanced Raman scattering-active systems prepared from Ag colloids laser-ablated in chemically modified aqueous media. Langmuir. Langmuir.,1998,14:4666-4673.
    [93]P. fmejkal, et al. SERS spectra of cationic freebase porphyrin species adsorbed on laser ablated Ag colloids modified by mercapto-acetate spacer. J. Mol. Struct.,1999,225:482-483.
    [94]M. ProchAzka, J. ItepAnek, et al. Drastically different porphyrin adsorption and metalation processes in chemically prepared and laser-ablat2 ed SERS-active colloidal substrates. J. Phy. hem. B,2002,106:1543-1549
    [95]J. S. Jeon, C. S. Yeh. S J. Studies of silver nanoparticles by laser ablation method. Chin. Chem. Soc.,1998,45:721-725.
    [96]M.S.Yeh, Y.S.Yang, et al. Formation and Characteristics of Cu colloids form CuO powder by laser irradiation in-propanol. Phys.Chem. B.,1999, 1:4681-4685.
    [97]Y.H.Chen, Y.H.Tseng, C. S. Yeh. Laser-induced alloying Au-Pd and Ag-Pd colloid mixtures:the formation of dispersed Au/Pd and Ag/Pd nanoparticles. J.Mater. Chem.,2002,12:1419-1423.
    [98]Y. H. Chen, C.S.Yeh. Laser ablation method:use of surfactants to form the dispersed Ag nanoparticles. J. Colloids and Surface,2002,197:133-138
    [99]I. Lee, S. W. Han. Production of Au-Ag alloy nanoparticles by laser ablation of bulk alloys. Chem. Commun.,2001,1782.
    [100]F. MafunO, J. Y. Kohno, Y. Takeda, et al. Formation and size control of silver nanoparticles by laser ablation in aqueous so lution. J. Phys. Chem. B,2000, 104:9111-9117.
    [101]F. MafunO, J. Y. Kohno, Y. Takeda, et al. Dissociation and Ag gregation of gold nanoparticles under laser ablation. J. Phys. Chem. B,2001,105:9050-9055
    [102]S.Link, C. Burda, B. Nikoobakht, M. A. El-Sayed. Laser-induced shape changes of colloid gold nanorods using femtosecond and nanosecond laser pulses. J. Phys. Chem. B,2000,104:6152-6157.
    [103]F. MafunO, J. Y. Kohno, Y. Takeda, et al. Full physical preparation of size-selected gold nanoparticles in solution:laser ablation and laser-induced size control. J. Phys. Chem. B,2002,106:7575-7583.
    [104]M. Fleischman, P. J. Hendra, A. J. McQuillan. Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett.,1974,26:163-166.
    [105]Jeanmaire, DL, RPV Duyne. Surface Raman spectroscoelectrochemistry. Part 1. Heterocyclic, aromatic, and aliphatic amines adsorbed to anodized water. J Electroanal Chem,1977,84:1-20.
    [106]N. Hayazawa, T. Yano, H Watanabe. Y. Inouye, et al. Detection-of an individual Raman, spectroscopy, Chem-Phys (Lett).2003,376:174-180.
    [107]A. Hartschuh, N. Anderson, L. Novotny. Near-field Raman spectroscopy using a sharp metal tip. J. of Microscopy,2003,210:234-240.
    [108]Pettinger B, Ren B, Picardi G, et al. Nanoscale probing of adsorbed species by tip-enhanced Raman spectroscopy. Phys. Rev. Lett.,2004,92(9): 096101-096109.
    [109]W. H. Li,; X. Y. Li, N. T. Yu. Surfaceenhanced resonance hyperRaman... and silver. Chem. Phys. Lett.,1999,312:28-36.
    [110]田昭武,电化学研究方法,科学出版社,1984。
    [111]A. J. Bard著,谷林瑛等译,电化学方法原理及应用,化学工业出版社,1988。
    [112]查全性,电极过程动力学,科学出版社,1987。
    [113]R.Greef著,柳厚田等译,电化学中的仪器方法,复旦大学出版社,1992。
    [114]林仲华..电化学的前沿与展望.物理(化学):学报,1992,805:712-720.
    [115]李五湖,田中群.光导纤维拉曼光谱技术及其在化学中的应用.光散射学报,1993,5:50-56.
    [116]Garrell, RL, KD Beer, Surface-enhanced Raman scattering from 4-ethylpyridine and poly (4-vinylpyridine) on gold and silver electrodes. Langmuir,1989,5:452-458.
    [117]Bertolino, JR, CO Della Vedova,O. Sala. Study by SERS of the electroreduction of the pentacyanonitrosylferrate(Ⅱ) anion. Polyhedron, 1989.8(3):361-365.
    [118]J. Bukowska, M. Szklarczyk. SERS of Dimethyl Sulphoxide on Silver Electrode and on Silver Chloride Sol. J. Electroanal. Chem.,1988,251: 339-348.
    [119]王荫庭,李郁,马光,黄明东.电化学体系中苯甲酸的表面增强喇曼散射.中国激光,1988,15:697-700.
    [120]田中群.表面增强拉曼光谱研究电化学中的共吸附现象.物理化学学报,1988, 4:344-345.
    [121]P.Hohenberg, W.Kohn. Inhomogeneous Electron Gas. Phys. Rev.,1964,136: B864-B872.
    [122]W. Kohn and L. J. Sham. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev.,1965,140:A1133-A1139.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700