用户名: 密码: 验证码:
SiO_2包覆纳米铁的制备及用于难降解有机物2,4-DCP降解研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氯酚类有机物的应用领域非常广泛,其中2,4-二氯苯酚(2,4-DCP)作为一种有机介质在制药、农药、润滑剂、印染、造纸和化工合成工业中被大量的应用。氯酚类物质因其具有诱变性和致癌性,一旦排放到环境中会对人类健康有着巨大的潜在的威胁。由于其生物毒性和难降解性的特点,寻找一种安全有效、环境友好的降解方法是现在研究的主要内容。近年来纳米零价铁(nZVI)技术用于废水处理受到广泛关注,因该技术具有廉价、高效、无二次污染的特点被认为是氯酚类有机物降解最有发展前景的方法之一。但nZVI技术在脱氯过程中由于其具有的高表面能,使nZVI表面容易钝化,导致nZVI的还原脱氯能力降低,使其在应用上受到了限制。为了解决这个问题,对nZVI表面进行改性是一种行之有效的手段。本文采用一步液相还原法制备了SiO2包覆nZVI(SiO2-nZVI),通过探讨制备工艺条件对SiO2-nZVI的还原脱氯和抗氧化能力的影响,优化了制备工艺条件,并对制备成功的SiO2-nZVI进行了表观表征;同时将SiO2-nZVI和nZVI应用于2,4-DCP的降解研究,对降解影响因素、降解过程中溶液的性质、降解过程中nZVI的表观形态变化、以及降解机制进行了系统的对比研究。
     SiO2-nZVI制备工艺条件研究。采用液相还原法制备出纳米铁微粒,再采用St ber水解法,使正硅酸乙酯水解生成介孔纳米SiO2,包覆在纳米铁的外层,形成一层网状介孔膜,通过控制介孔直径大小来抑制反应体系中的O2迁移到纳米铁表面,抑制nZVI钝化失去活性。通过探讨异丙醇/H2O体积比、NaOH投加量、TEOS的投加量和制备过程中包覆时间对SiO2-nZVI的抗氧化能力和氧化还原能力的影响,来优化制备条件。分别考察了在添加和未添加1mL聚乙二醇(PEG400)的两种情况下制备出的SiO2-nZVI的性能对比研究,结果显示添加PEG400对制备的SiO2-nZVI的抗氧化性和还原脱氯性有增强作用,比未包覆nZVI对2,4-DCP的去除率提高了近40%。根据纳米铁的抗氧化能力和还原效果优化出最佳制备条件为:异丙醇/H2O的最佳制备参数为1:2、NaOH投加量选择为4mL、TEOS的投加量为2mL及水解时间为4h。
     对SiO2-nZVI进行了表观表征研究。通过SEM和TEM电镜、傅里叶红外光谱(FTIR)、X射线衍射分析(XRD)、热重分析(TG)对SiO2-nZVI的表观特征及结构进行研究。结果显示,SiO2-nZVI呈现出链状的结构,SiO2-nZVI颗粒是球状的,呈核壳型结构,纳米颗粒粒径为80-100nm。FTIR显示出SiO2-nZVI的外层已经完全被纳米SiO2包覆着,同时外层还有大量的羟基,也证明了SiO2包覆层是靠羟基的结合实现的。XRD显示出纳米SiO2包覆层属于非晶态SiO2。TG图告诉我们,纳米SiO2包覆层中吸附着水,同时证明了纳米铁的氧化物有两种,即Fe2O3和Fe3O4。
     对比考察了nZVI和SiO2-nZVI在降解2,4-DCP的过程中各影响因素对降解效率的影响。探讨了FeSO4·7H2O的投加量、2,4-DCP的初始浓度、pH以及以及共存阳离子Al3+、Mn2+、Cu2+和阴离子Cl–、PO43–、NO3–对2,4-DCP去除率的影响。优化出最佳的降解工艺条件为单位质量纳米铁去除2,4-DCP的量确定了FeSO4·7H2O的投加量为1.5g时为最佳;2,4-DCP的浓度为150mg/L;pH值为2.73时,两种纳米铁对2,4-DCP去除效果最好。
     对比研究了nZVI和SiO2-nZVI在降解2,4-DCP的过程中溶液性质的变化及纳米铁表观形态的变化。溶液性质变化这部分研究主要考察了两种体系的溶液pH值的变化、Fe2+和Fe3+两种离子浓度变化、Cl-离子浓度变化、反应体系溶液的UV-Vis的变化四部分内容。对比两种纳米铁表观形态变化的研究包括:对比两种降解过程中两种纳米铁颗粒的FTIR谱图变化以及SEM-EDX图变化情况。结果显示SiO2-nZVI的氧化铁是呈现球状细小均有的颗粒物,而未包覆nZVI氧化后呈现的是多面体晶体结构。
     对比研究了nZVI和SiO2-nZVI降解途径和机制。两种纳米铁颗粒降解2,4-DCP的产物是相同的(4-CP、2-CP和苯酚),说明降解的机制是相同的,但是nZVI和SiO2-nZVI降解2,4-DCP的进行路径是不同的。2,4-DCP是直接通过扩散作用迁移到未包覆nZVI的表面进行还原脱氯的,即2,4-DCP的还原脱氯过程、nZVI产电子和还原性H原子及铁的钝化作用都是在未包覆纳米铁表面进行的。而包覆纳米铁的反应区域包括三个部分,第一个区域是nZVI产电子和还原性[H]原子是在纳米铁表面进行的;第二个是产生的Fe2+和Fe3+离子被吸附在包覆层的内表面;第三个是2,4-DCP的还原脱氯是在包覆层的外层,而纳米铁的氧化成氧化铁的过程在包覆层外层、内层和纳米铁表面都有发生。
Chlorinated organic compounds (COCs) have a wide range of uses. For example,2,4-dichlorophenol (2,4-DCP) is an important organic intermediate, and is widely used in themanufacture of pesticides, pharmaceuticals, lubricants, dyestuffs, and in the synthesis of otherchemicals. Chlorophenols(CPs) in water causes serious problems due to their toxicity arehighly mutagenic or carcinogenic and adverse effects on the human. Removing thesecontaminants from water is a sighificant challenge because of ever-increasing pollution andthe shortage of high quality fresh water. Recently, a chemical reduction method usingzero-valent iron (ZVI) has been widely studied for contaminated wastewater treatment.Earlier studies showed that this is a promising approach for chlorophenol removal because itis cheap, highly efficient, and environmentally friendly. However, using nZVI for treatingchlorinated organics has many drawbacks. For example, the high surface energy makesoxidation of nZVI in the atmosphere easy, which means that the rate constant for thedechlorination of chlorophenol is low, and this decreases the nZVI reducing abilities. In thisstudy, SiO2-coated nZVI using a one-step liquid-phase reduction method was synthesized andthe removal efficiency for2,4-DCP and the oxidation resistance of the SiO2-coated ironparticles was investigated. The effects of SiO2-coating preparation conditions on particlesurface texture, size, reduction efficiency, and antioxidation abilities were also investigated.The degradation characteristics of SiO2-coated nZVI and uncoated nZI were compared withthose of uncoated nZVI.
     The preparation conditions of SiO2-nZVI were investigated. In the present work, a novelmethod for in situ synthesis of SiO2-coated iron nanoparticles was investigated. The maincharacteristic of SiO2coating of nZVI is that improvements in the oxidation resistance,reducing capacity, coating, and stability of nZVI are accomplished in one step. SiO2-coatingtechnology provides an amorphous mesh structure, stops oxygen migration and nZVI surfaceoxidation, and gives improved pollutants degradation abilities. Core–shell SiO2-coated ironnanoparticles were synthesized using a one-step St ber method in the presence and absenceof PEG400. The2,4-dichlorophenol degradation and anti-oxidation abilities of thenanoparticles were investigated. The effects of isopropanol/H2O ratio, NaOH dosage, tetraethyl orthosilicate (TEOS) dosage, and reaction time used in the synthesis wereinvestigated. The results showed that the nanoparticles were stable in the presence of PEG400.A comparison of the removal rates of2,4-dichlorophenol using pure iron nanoparticles andusing SiO2-coated iron nanoparticles showed an improvement of about40%usingSiO2-coated iron nanoparticles, suggesting that SiO2-coated iron nanoparticles improve theantioxidation abilities and reducing capacity of iron nanoparticles; such nanoparticles couldhave wide applications in chlorophenol degradation. The optimum conditions for preparationcondition of SiO2-nZVI: isopropanol/H2O ratio1:2, NaOH dosage4mL, tetraethylorthosilicate (TEOS) dosage2mL, and reaction time4h.
     The characterizations of SiO2-nZVI were investigated. The SiO2-coated ironnanoparticles were characterized using transmission electron microscopy, scanning electronmicroscopy, X-ray diffraction, and Fourier-transform infrared spectroscopy. RepresentativeTEM and SEM images of SiO2-coated nZVI are shown. It can be seen that the bare nZVIparticle size was about80-100nm. Moreover, from the TEM images, we can clearly see thenanoparticles coated with a transparent film. The SEM images shows that the SiO2-coatednZVI were spherical and formed linear chains in space, and the surfaces of the coatedparticles were smooth and uniform. FTIR spectra of the nZVI, SiO2-nZVI and SiO2nanoparticles are shown that the presence of O-H stretching and bending vibrations showTEOS hydrolysis to produce SiO2containing hydroxyl groups, and reveal bonding of SiO2and nZVI by hydrogen, the Si-O-Si stretching vibrations reveal that the surfaces were coatedwith SiO2. The XRD patterns of analytically pure SiO2, freshly synthesized nZVI, and freshlysynthesized SiO2-coated nZVI samples indicated that pure Fe was prepared using the presentprocedures. The diffuse and broad peaks show that the SiO2from the hydrolysis process andSiO2nanoparticles are amorphous. TG was employed to examine the oxidation stability ofnZVI and SiO2-coated nZVI. SiO2-coated nZVI shows the weight loss of the first step due towater and solvent volatilize and the two produts of oxidation of nZVI were Fe2O3and Fe3O4was certified contemporary.
     Comparison of rates of2,4-DCP removal by nZVI and SiO2-coated nZVI duringdegradation process.2,4-DCP reaction conditions and changes in solution ion concentrationswith reaction progress were investigated. The effects of FeSO4·7H2O dosage,2,4-DCP concentration, pH, and co-existing ions(cations Al3+,Mn2+,Cu2+and anions Cl–,PO43–,NO3–) onthe degradation activity were investigated. The results showed that the efficiency ofSiO2-coated nZVI far exceeded that of uncoated nZVI for removal of2,4-DCP from aqueoussolutions. The best removal conditions were obtained when the FeSO4·7H2O dosage of theSiO2-coated nZVI was about3.0g/L, the2,4-DCP concentration was150mg/L, and the pHwas about2.72at25°C in a volume of100mL.
     Compared with those using uncoated nZVI,2,4-DCP reaction conditions and changes insolution ion concentrations with reaction progress were investigated. Changes in pH, Fe2+andFe3+concentration, and UV-Vis spectra with reaction time were analyzed. Changes in thesurface properties of the uncoated and SiO2-coated nZVI were characterized using scanningelectron microscopy (SEM), energy dispersive X-ray emission spectra (EDX), andFourier-transform infrared spectroscopy (FTIR). The redox reaction progressed on the nZVIsurface for uncoated nZVI and on the SiO2amorphous coating for coated nZVI. Theamorphous SiO2coatings obtained on the nZVI surface distinctly increased their oxidationresistance.
     Comparison of degradation products with progress of2,4-DCP degradation by nZVI andSiO2-coated nZVI. The reaction mechanism of the uncoated and SiO2-coated nZVI which hadthe same degradation path that the products were4-CP,2-CP and phenol but different masstransfer mode, was discussed. When nZVI was used alone, the nanoparticles easily andrapidly captured aqueous2,4-DCP easily due to their large surface area. The adsorbed2,4-DCP was partly reduced by electrons and Fe2+on the nanoparticles surface to produce2-CP and Fe3+, respectively, and were finally released back into the solution for phenoldegradation. Then, nZVI surface caused oxidation, which passivated the nZVI surface andreduced the internal electron supply of the particles. nZVI is known to easily react with wateror oxygen in its surrounding media, which results in the formation of an oxidation layer thathinders further reaction. For SiO2-coated nZVI, electrons, Fe2+, and Fe3+were absorbed oninner coating, and2,4-DCP and O2were then adsorbed on the outer coating. Because theoxygen was molecular phase, it was more difficult for it to migrate in the amorphousmicropores of the SiO2coating than the other ions, which increased the active time forreaction. At the same time, the layer strongly adsorbed Fe2+and Fe3+and slowed their migration from the inner to the outer surface, delaying the rate of iron oxide formation andnanoparticle passivation.
引文
[1]杨若明.环境中有毒有害化学物质的污染与监测[M].北京:中央民族人学出版社,2001
    [2] Linke E., Kokossis A. Advanced process systems design technology for pollutionprevention and waste treatment[J]. Advances in Environmental Research,2004,8:229-245
    [3]何燧源.环境化学[M].华东理工大学出版社,2005
    [4] Doong R.A., Lai Y.L. Effect of metal ions and humic acid on the dechlorination oftetrachloroethylene by zerovalent iron[J]. Chemosphere,2006,64(3):371-378
    [5] Li Z.H., Willms C., Alley J., et al. A shift in pathway of iron-mediatedperchloroethylene reduction in the presence of sorbedsurfactant-A column study[J].Water Research,2006,40(20):3811-3819
    [6] Richard L., Leen B., Brigitte B. Batch-test study on the dechlorination of1,1,1-trichloroethane in contaminated aquifer material by zerovalent iron[J]. ContamHydrol,2004,74(2):133-144
    [7] Rong M.Z., Zhang M.Q., Wang H.B., et al. Surface modification of magnetic metalnanoparticles and its influence on the performance of polymer composites[J]. Journal ofPolymer Science(Part B):polymer physics,2003,41(10):1070-1084
    [8] Lamar R.T. The role of fungal lignin-degrading enzymes in xenobiotic degradation[J].Current Opinion Biotechnology,1992,3(3):261-266
    [9] Aggelis G., Ehaliotis C., Nerud F., et al. Evaluation of white-rot fungi for detoxificationand decolorization of effluents from the green olivedebittering process[J]. AppliedMicrobiology and Biotechnology,2002,(59):353-360
    [10] Gellman. Environmental effects of paper industry wastewater: an overview[J]. Wwt.Sci. Technol,1988,20(2):59-65
    [11] Chia Y.J., Annele H., Pekka M. Can co-culturing of two white-rot fungi increase lignindegradation and the production of lignin-degrading enzymes?[J]. InternationalBiodeterioration&Biodegradation,2007,59(1):32-39
    [12]黑中一,王红学,寇俊杰.制备高纯度2,4-二氯苯酚的几种方法[J].农药,2003,42(10):9-11
    [13]李从宝,石磊.新世纪2,4-二氯苯酚形式展望[J].化工中间体,2002,3(4):7-10
    [14] Hedin F., Boren H., Grimvall A. Formation of chlorophenols and related compounds innatural and technical chlorination process[J]. Water Science and Technology,1991,24(3/4):403-410
    [15] Grimvall A. Evidence of naturally-produced and man-made organohalogens in waterand sediments. Naturally produced organolalogens[J]. Kluwer Academic Publishers,1995,1:3-20
    [16] Redriguez L., Lompart M., Celaretal. Solid-phase extraction of phenols[J]. Journal ofChromatography A,2000,885(1-2):291-304
    [17] Beard A.P., Rawlargs N.C. Reproductive effects in mink(Mustela vision) exposed to thepesticides indane, carbofuran and pentachlorophenol in a muhiageneration study[J].Journal of Peprod Fertility,1988,113:95-104
    [18]聂晶磊,刘锋,周春玉,等.氯酚类化合物对金鱼的急性和亚急性毒性研究[J].环境科学研究,2001,14(3):6-8
    [19] Kanaus W., Wolf N. Reduced birth weight and length in the offspring of femalesexposed to PCDs, PCP and lindane[J]. Environmental Health Perspectives,1995,103(12):1120-1125
    [20] Dimich W.H., Hertazman C., Teschke K., et al. Reproducitive effects of femalesexposed to chlorophenated wood preservatives in sawmill industry[J]. ScandinavianJournal of Work Environment&Health,1996,22(4):267-273
    [21]傅德黔,孙宗光,章安安,等.我国水环境优先监测的现状与发展趋势[J].中国环境监测,1996,12(3):1-3
    [22] Devillers J., Chambon P. Acute toxicity and OSAR of chlorophenols on daphniamagna[J]. Bull. Environ. Contam. Toxicol.,1986,1(37):599-605
    [23]巴奇,王爽,宋宁,等.难降解有机废水的预处理进展[J].辽宁化工,2008.37(11):762-765
    [24]梁立伟,刘永革,赵兴龙,等.难降解有机物处理新技术[J].石油化工安全环保技术,2007,23(5):47-50
    [25] Cao Q.M., Wang H., Zhang L.M., et al. Contamination of per sistent organic pollutants(POPs) and it′s progress in treatment technology in china[J]. Chinese AgriculturalScience Bulletin,2006,22(2):361-365
    [26] Imai A., Onuma K., Inamori Y., et al. Biodegradation and adsorption in refractoryleachate treatment by the biological activated carbon fluidized bed process[J]. WaterResearch,1995,29(2):687-694
    [27]李学佳,季涛,胡碧玉,等.活性炭纤维吸附甲苯的影响因素[J].南通大学学报:自然科学版,2010,1:53-55
    [28] Tang D.Y., Zheng Z., Lin K., et al. Adsorption of p-nitrophenol from aqueous solutionsonto activated carbon fibers[J]. Journal of Hazardous Materials,2007,143(1):49-56
    [29] Gu Z.P., He S.H., Zhou Y., et al. Study of adsorption of dye in wastewater bydiatomite[J]. Express Information of Mining Industry,2008,7(12):67-72
    [30] Emin E., Gülay C., Ramazan D. The removal of textile dyes by diatomite earth[J].Journal of Colloid and Interface Science,2005,282(2):314-319
    [31]李志维,袁继祖,王志强.柱撑酸化膨润土对染料废水的处理实验研究[J].上海染料,2005,33(5):39-41
    [32]朱洪涛.改性粉煤灰对活性艳兰染料吸附性能的研究[J].环境污染治理技术与设备,2005,6(3):53-55
    [33]刘东方,丁耘,李江华.混凝剂处理染料及其中间体废水应用[J].城市环境与城市生态,1997,10(2):11-14
    [34]张柏钦,王文选.环境工程原理[M].化学工业出版社,2007
    [35]唐红萍,李中和. CLT酸废母液资源化萃取工艺[J].环境科学,2000,4(21):57-60
    [36]戴猷元,杨义燕.难降解有机废水的萃取置换法预处理[J].环境科学,1998,19(6):52-55
    [37] Zhang L.J., Su J.M., Zhou L.J.,et al. Study on extraction techniques of polynucleararomatic hydrocarbons in spiked solid samples [J]. Rock and Mineral Analysis,2003,22(2):113-116
    [38]万金泉,马邕文.造纸工业废水处理技术及工程实例[J].化学工业出版社,2008:63-64
    [39]任健新.膜分离技术及应用[M].北京:化学工业出版社,2005
    [40]张宇峰,腾洁,张雪英,等.印染废水处理技术的研究进展[J].工业水处理,2003,23(4):24-28
    [41] Li G.L., Xu Q.K., Ding Q.Q. Adsorption treatment of coking wastewater bycompounding of diatomite and inorganic flocculent[J]. Petrochemical Technology&Application,2010,4:302-304
    [42] He P.Y., Wang M., Meng X.Y., et al. Clarification process of compound astragalusaqueous extract with chitosan[J]. Chinese Journal of Biochemical Pharmaceutics,2010,31(3):173-175
    [43] Zou J., Zhao N., Zhang J.B. Removal congo red from simulated dye wastewater by abioflocculant HBF-3produced by deep-Sea halomonas sp. V3a′[J]. Journal ofHuazhong Agricultural University,2010,29(2):181-184
    [44]刘茉娥.膜分离技术[M].北京:化学工业出版社,1998
    [45]唐玉斌,陆柱,等.绿色水处理技术的研究与应用进展[J].水处理技术,2002,28(1):1-5
    [46]冯永凌,叶菊招,等.聚氨基葡糖超滤膜的研制及其在印染废水处理中的应用[J].工业水处理,1998,18(4):16-l8
    [47] Mozia, Sylwia, Morawski, et al. Integration of photocatalysis with ultrafiltration ormembrane distillation for removal of azo dye direct green99from water[J]. Journal ofAdvanced Oxidation Technologies,2009,12(1):111-121
    [48]喻胜飞,叶菊招,等.壳聚糖活性炭共混超滤膜的研制[J].水处理技术,1999,25(5):255-258
    [49] Min Y.U., Jin F.C. Treatment of wastewater containing disperse dyes with ultrafiltrationmembrane[J]. Industrial Water&Wastewater,2003,5:47-51
    [50] Hiroaki O., Huafang L. Rejection of organic compounds by ultra-low pressure reverseosmosis membrane[J]. Water Research,2002,36(1):123-130
    [51] How Y.N., Menachem E. Influence of colloidal fouling on rejection of trace organiccontaminants by reverse osmosis[J]. Journal of Membrane Science,2004,244(1-2):215-226
    [52]中国化工防治污染技术协会组织编写,化工废水处理技术[M].2000
    [53] Long D., Nghiem, Andrea I., et al. Removal of natural hormones by nanofiltrationmembranes: measurement, modeling, and mechanisms[J]. Environ. Sci. Technol.,2004,38(6):1888-1896
    [54] Bai H., Zhang X.W., Pan J.H., et al. Combination of nano TiO2photocatalytic oxidationwith microfiltration (MF) for natural organic matter removal[J]. Water Science&Technology,2009,9(1):31-37
    [55] Marina A., Krishna P. Effluent dissolved organic nitrogen and dissolved phosphorusremoval by enhanced coagulation and microfiltration[J]. Water Research,2010,44(18):5306-5315
    [56]张锡辉, Bajpai R.难降解有机污染物共降解机理分析[J].上海环境科学,2000,19(7):297-301
    [57]张锡辉, Bajpai R.微生物共降解动力学模型解析[J].环境科学学报,2000,20:58-63
    [58]施汉昌,王颖哲,韩英健,等.补充碳源对厌氧处理2,4,6-三氯酚的影响[J].环境科学,1999,20(5):11-15
    [59] Puhakka, Jaakko A.S., Wen K., et al. Chlorophenol degradation under oxic and anoxicconditions[J]. Water Science and Technology,1992,25(1)147-152
    [60] Fang F., Zhu R.Y., Zhang L.L. Biodegradation of MTBE with ethanol co-substrateusing all SBR and microbial community structure[J]. Acta Scientiae Circumstantiae,2008,28(11):2206-2212
    [61]王淑红,马邕文,万金泉,等.不同基质共代谢降解2,4,6-三硝基苯酚的研究[J].环境工程学报,2009,3(3):479-484
    [62]孔繁翔,尹大强,严国安.环境生物学[M].高等教育出版社,2000
    [63] Yang W.H. Construction of2,4,6-trintrotoluene and nitrobenzene-catabolizing bacilli bytransformation and gene fusion with plasmid[J]. Mississippi Water Resources Conf.,2000,(18-19):228-237
    [64] Kolenc R.J. Transfer and expression of mesophilic plasmid mediated degradativecapcity in a psychortophic bocterium[J]. Appl. Environ, Mivrobiol.,1988,54(3):638-641
    [65] Song L., Wang H., Shi H., et al. Studies on isolation of1,2,4-trichlorobenzenedegrading strain and its degradative plasmid[J]. China Environmental Science,2005,25(4):385-388
    [66] Yurika T., Masaki S., Hisakazu Y., et al. The complete nucleotide sequence of pCAR2:pCAR2and pCAR1were structurally identical incP-7carbazole degradativeplasmids[J]. Bioscience, Biotechnology, and Biochemistry,2009,73(3):744-746
    [67] Philip R., Lehrbach, Ian M.G., et al. Molecular relationships between pseudomonas INCP-9degradative plasmids TOL, NAH, and SAL[J]. Plasmid,1983,10(2):164-174
    [68] Tjibbe B. Utilization of trihalogenated propanes by agrobacterium radiobacter AD1through heterologus expression of the haloalkane dehalogenase from rhodococcussp.[J]. Strainm15-3, Appl Environ Microbiol,1999,65(10):4575-4581
    [69]王建龙.生物固定化技术与水污染控制[M].科学出版社,2002
    [70]吴立波.生物自固定化技术及其在难降解有机废水处理中的应用[D].清华大学,1999
    [71] Gina S. Shreve, Timothy M. et al. Comparison of substrate utilization and growthkinetics between immobilized and suspended Pseudomonas cells[J]. Biotechnology andBioengineering,1993,41(3):370-379
    [72] Ding X.L., Jia C.N. Treatment of refractory organic wastewater by submergedbiomembrane reactor[J].2005,7(7):20-24
    [73] Li Y., Lei H.B. Cometabolic transformation of high concentrations of4-chlorophenol inan immobilized cell hollow fiber membrane bioreactor[J]. Chinese Journal ofEnvironmental Science,2005,131(9):1285-1292
    [74]杨光,张剑波,王杉霖,等.固定化过氧化物酶催化去除五氯酚反应装置和条件探讨[J].北京大学学报(自然科学版),2008,44(2):233-236
    [75]邱凌峰,黄志心. Sol-gel法固定化漆酶处理氯酚类污染物[J].福州大学学报(自然科学版),2008,36(6):910-914
    [76] CasfiUo L.A., sineE A., Roussy J., et a1. Treatment of high organic-loaded industrialeffluents rivera[J].Water Science and Technology,2000,(11):115-l18
    [77]张乃东. HV/Fe(C2O4)33-/H2O2法处理苯胺类废水的研究[D].哈尔滨:哈尔滨工业大学,1999
    [78]巩建英.辉光放电等离子体技术处理难降解有机污染物及机理研究[D].上海交通大学,2008
    [79]孙丽颖.光催化-臭氧氧化处理水中难降解有机物[D].大连理工大学,2005
    [80]周启星,黄国宏.环境生物地球化学及全球环境变化[M].科学出版社,2001:14-15
    [81] Solpan D., Guven O. Decolomtion and degradation of some textile dyes by gammairradiation[J]. Radiation Physics and Chemistry,2002,65(4):549-558
    [82] A1-Momani E., Touraud E., Degorce-Dumas J.R., et al. Biodegradability enhancementof textile dye and textile wastewater byⅥⅣphotolysis[J]. Journal of Photo-chemistryand PhotobiologyA[J]. Chemistry,2002,153(1):191-197
    [83]张光明,张盼月,张信芳.水处理高级氧化技术[M].哈尔滨工业大学出版社,2007
    [84] Chen J.B., Zhou X.F., Zhang Y.L. The ozone oxidation and advanced oxidationtechnology of PPCPs in the water environment[J]. Technology of Water Treatment,2009,35(2):85-90
    [85] Liu Z.Q., Hu W.F., Yang W.H., et al. Activated carbon catalytic ozonation for removalof organic pollutants from water[J]. China Water&Wastewater,2010,26(4):6-9,14
    [86] Roberto A., Vincenzo C., Amedeo I., et al. Advanced oxidation processes (AOP) forwater purification and recovery[J]. Catalysis Today,1999,53(1):51-59
    [87]张洪林.难降解有机物的处理技术进展[J].水处理技术,1998,24(5):159-164
    [88]于秀娟,张熙林,王宝贞,等.臭氧-生物活性炭工艺去除水中有机徽污染物[J].环境污染与防治,2000,22(4):l-3
    [89] Ernst M., Lurot F., Schrotter J.C. Catalytic ozonation of refractory organic modelcompounds in aqueous solution by aluminum oxide[J]. Applied Catalysis B:Environmental,2004,47(1):15-25
    [90] Devendra P. Saroj, Kumar A., et al. Mineralization of some natural refractory organiccompounds by biodegradation and ozonation[J]. Water Research,2005,39(9):1921-1933
    [91]朱伟,潘复生,张胜涛.高铁酸盐的研究现状[J].材料导报.2002,16(8):51-52,67-68
    [92]苑宝玲,王洪杰.水处理新技术原理与应用[M].化学工业出版社,2006
    [93] Yuan B. L., Qu J.H., Fu M.L. Removal of cyanobacterial microcystin-LR by ferrateoxidation–coagulation[J]. Toxicon,2002,40(8):1129-1134
    [94]姜成春,李湘中,庞素艳等.高铁酸盐去除水中氯酚类化合物研究[J].哈尔滨工业大学学报,2006.38(3):476-480
    [95] Lee J., Tryk D.A. Electrochemical generation of ferrate acidic media at boron-dopeddiamond electrodes[J]. Chem. Commun,2002,5:486-487
    [96]郁志勇,王文华.紫外光作用下氯酚矿化程度比较[J].环境化学,1998,17(5):490-493
    [97] Joseph J. Pignatello. Dark and photoassisted iron(3+)-catalyzed degradation ofchlorophenoxy herbicides by hydrogen peroxide[J]. Environ. Sci. Technology,1992,26(5):944-951
    [98] Irmak S., Yavuz H.I., Erbatur O. Degradation of4-chloro-2-methylphenol in aqueoussolution by electro-Fenton and photoelectro-Fenton processes[J]. Applied Catalysis B:Environmental,2006,63(3-4):243-248
    [99] Wang X.J., Chen S.L., Gu X.Y., et al. Pilot study on the advanced treatment of landfillleachate using a combined coagulation, fenton oxidation and biological aerated filterprocess[J]. Waste Management,2009,29(4):1354-1358
    [100] Joglekar H.S., Samant S.D., Joshi J.B.Kinetics of wet air oxidation of phenol andsubstituted phenols[J].Water Research,1991,25(2):135-145
    [101] Vedprakash S.Miahra.Wet air oxidation[J].Ind.Eng.Chem.Res.,1995,34:2-48
    [102] Luck F. Wet air oxidation: past, present and future[J]. Catalysis Today,1999,53(1):81-91
    [103]何立平,杨迎春,徐成华. Fe/活性炭多相类Fenton法湿式氧化罗丹明B废水的研究[J].环境工程学报,2009,3(8):1433-1440
    [104]方宗堂,王宏,朱世云,等.均相催化湿式氧化法处理乙氧基喹啉合成工艺废水[J].水处理技术,2005,31(11):61-64
    [105]胡筱敏,张永利,王庆雨.非均相催化湿式氧化亚甲蓝水溶液的研究[J].环境工程学报,2007,1(2):16-22
    [106] Garg A., Mishra I.M., Chand S. Catalytic wet oxidation of the pretreated synthetic pulpand paper mill effluent under moderate conditions[J]. Chemosphere,2007,66(9):1799-1805
    [107]赵国方,赵宏斌.有机废液湿式氧化处理的现状与进展[J].江苏化工,2000,28(5):23-25
    [108]廖传华,李永生,朱跃钊.制浆黑液超临界水氧化过程的动力学研究[J].中华纸业,2010,31(5):63-68
    [109] Pérez I.V., Rogak S., Branion R. Supercritical water oxidation of phenol and2,4-dinitrophenol[J]. The Journal of Supercritical Fluids,2004,30(1):71-87
    [110]于秀娟,王永强,孙德智.光催化氧化苯甲酸的动力学分析[J].哈尔滨工业大学学报,2008,40(6):860-867
    [111] Zhao D.H., Zhang J., Sun Z.T. Study on photocatalytic oxidation of dibenzothiopheneby activated carbon supported Ti02[J]. Jounal of Fuel Chemistry and Technology,2008,36(3):322-329
    [112]齐军,顾温国,李劲.水中难降解有机物氧化处理技术的研究现状和发展趋势[J].工程与技术,2000,3:17-19
    [113] Nickelson M.G., Cooper W.J., Kurucz C.N., et al. Removal of benzene and selectedalkylsubstituted benzenes from aqueous solution utilizing continuous high-energyelectron irradiation[J]. Environ. Sci. Technol.1992,26:144-152
    [114] Wang T., Waite T.D., Kurucz C., et al. Oxidation reduction and biodegradabilityimprovement of paper mill effluent by irradiation[J]. Wat. Res,1994,28:227-241
    [115] Steve K. Johnson, Linda L., et a1. Electrochemical incineration of4-chlorophenol andthe identification of products and intermediates mass spectrometry[J].Environ.Sci&Technol,1999,(33):2638-2644
    [116] Tzedakis T., Saval1A. Electrochemical generation of Ce(Ⅳ) for Oxidation ofMethoxytoluene[J]. J. of App1.Electrochemistry,1997,(27):589-597.
    [117] James D., Rodgers, Jedral W., et al. Electrochemical Oxidation of ChlorirhatedPhenols[J].Environ.Sci&Technol,1999,(33):1453-1457
    [118]孙晓君,冯玉杰,蔡伟民.废水中难降解有机物的高级氧化技术[J].化工环保,2001,21(5):264-269
    [119] Gray L.W. Therin trent radioact hazard chem mixed med was proc[C]. Internation Conf,1992,11:157-165
    [120] James D. Rodgers, Jedral W., et al. Electrochemical Oxidation of ChlorinatedPhenols[J]. Environ. Sci&Technol,1999,(33):1453-1457
    [121] Agboola B., Nyokong T. Electrocatalytic oxidation of chlorophenols byelectropolymerised nickel(II) tetrakis benzylmercapto and dodecylmercaptometallophthalocyanines complexes on gold electrodes[J]. Electrochimica Acta,2007,52:5039-5045
    [122] Wang B.J., Lee K.L. Electrocatalytic oxidation of2-chlorophenol on a compositepbO2/polypyrrole electrode in aqueous solution[J]. J.App1.Elec-ochemistry,1996,26:153-159
    [123] Muller K.J. Electrochemical eell design and opti-mization rocedures[J]. DechemaMonograohien,1991,123:190-200
    [124] Gillham, R.W., O’Hannesin. S.F. Enhanced degradation of halogenated aliphatics byzero-valent iron[J]. Ground Water,1994,32(6):958-967
    [125] Scheutz C., Winther K., Kjeldsen P. Removal of halogenated organic compounds inlandfill gas by top covers containing Zero-valent iron[J]. Environ. Sci. Technol,2000,34:2557-2563
    [126] Karri S., Reyes S.A., Jim A. Zero valent iron as an electron-donor for methanogenesisand sulfate reduction in anaerobic sludge[J]. Biotechnology a Bioengineering,2005,92(7):810-819
    [127]王子,马鲁铭.催化铁还原技术在工业废水处理中的应用进展[J].中国给水排水,2009,25(6):9-13,18
    [128] Noubactep C. A critical review on the process of contaminant removal in Fe0-H2Osystems[J]. Environ Technol,2008,29(8):909-920
    [129]马鲁铭.废水的催化还原处理技术原理及应用[M].科学出版社,2008
    [130] Li L., Fan M.H., Brown R.C., et al. Synthesis, properties, and environmentalapplications of nanoscale iron-based materials:A review[J]. Critical Reviews in EnvironSci Technol,2006,36(5):405-431
    [131] Elsner M., Chartrand M., Vanstone N., et al. Identifying abiotic chlorinated ethanedegradation: Characteristic isotope patterns in reaction products with nanoscalezero-valent iron[J]. Environ Sci Technol,2008,42(16):5963-5970
    [132] Naja G., Halasz A., Thiboutot S., et al. Degradation ofhexahydro-1,3,5-trinitro-1,1,5-triazine(RDX) using zero-valent iron nanoparticles[J].Environ Sci Technol,2008,42(12):4364-4370
    [133]郝志伟.改性零价铁还原去除污染水体中的六价铬和硝酸盐的研究[D].同济大学环境科学与工程学院,2008
    [134] Ghauch A., Tuqan A., Assi H.A. Antibiotic removal from water:Elimination ofamoxicillin and ampicillin by microscale and nanoscale iron particles[J]. EnvironmentalPollution,2009,157:1626-1635
    [135] Kim H., Hong H.J., Jung J., et al. Degradation of trichloroethylene(TCE) by nanoscalezero-valent iron(nZVI) immobilized in alginate bead[J]. Journal of Hazardous Materials,2010,176:1038-1043
    [136] Shin K.H., Daniel K.C. Microbial reduction of nitrate in the presence of nanoscalezero-valent iron[J]. Chemosphere,2008,72:257-262
    [137] Xu X.H., Zhou H.Y., He P., et al. Catalytic dechlorination kinetics of p-dichlorobenzeneover Pd/Fe catalysts[J]. Chemosphere,2005,58:1135-1140
    [138] Wei J.J., Xu X.H., Liu Y., et al. Catalytic hydrodechlorination of2,4-dichlorophenolover nanoscale Pd/Fe: Reaction pathway and some experimental parameters[J]. WaterResearch,2006,40:348-354
    [139] Fang Y.H., Souhail R., Al-Abed. Dechlorination kinetics of monochlorobiphenyls byFe/Pd: Effects of solvent, temperature, and PCB concentration[J].2008,78:371-380
    [140] He N., Li P.J., Zhou Y.C., et al. Catalytic dechlorination of polychlorinated biphenyls insoil by palladium-iron bimetallic catalyst[J].2009,164:126-132
    [141] Zhang W.H., Quan X., Zhang Z.Y. Catalytic reductive dechlorination of p-chlorophenolin water using Ni/Fe nanoscale particles[J]. Journal of Environmental Sciences,2007,19:362-366
    [142] Han Y., Li W., Zhang M.H., et al. Catalytic dechlorination of monochlorobenzene witha new type of nanoscale Ni/Fe bimetallic catalytic reductant[J]. Chemosphere,2008,72:53-58
    [143] Tian H., Li J.J., Mu Z., et al. Effect of pH on DDT degradation in aqueous solutionusing bimetallic Ni/Fe nanoparticles[J]. Separation and Purification Technology,2009,66:84-89
    [144] Xu W.Y., Gao T.Y. Dechlorination of carbon tetrachloride by the catalyzed Fe-Cuprocess[J]. Journal of Environmental Sciences,2007,19:792-799
    [145] Ghauch A., Tuqan A. Catalytic degradation of chlorothalonil in water using bimetalliciron-based systems[J]. Chemosphere,2008,73:751-759
    [146]段志婕,吴德礼,马鲁铭.零价金属还原技术处理氯代有机物的研究进展[J].环境科学与管理,2007,32(6):79-83
    [147] María L. Támara, Elizabeth C. et al. Effects of iron purity and groundwatercharacteristics on rates and products in the degradation of carbon tetrachloride by ironmetal[J]. Environ. Sci. Technol,2004,38:1866-1876
    [148] O′Loughlin E.J, Kemner K.M, Burris D.R. Effects of AgⅠ, AuⅢ, and CuⅡ on thereductive dechlorination of carbon tetrachloride by green rust[J]. Environ. Sci. Technol,2003,37(13):2905-2912
    [149] Arnold W.A., Winget P, Cramer C.J. Reductive dechlorination of1,1,2,2-tetrachloroethane[J]. Environ. Sci.Technol,2002,36(16):3536-3541
    [150] George P., Michael R., Hyman, et al. Acetylene inhibition of trichloroethene and vinylchloride reductive dechlorination[J]. Environ. Sci. Technol,2003,37:3181-3188
    [151] Qi L., Plagentz V., Schafer D., et al. Remediation of trichloroethylene andmonochlorobenzene contaminated aquifers using the ORC-GAC-Fe0-CaCo3system:volatilization, precipitation, and porosity losses[J]. Soil Science Society of China,2007,17(1):109-116
    [152] Rosenthal H., Adrian L., Martin S. Dechlorination of PCE in the presence of Fe0enhanced by a mixed culture containing two dehalococcoides strains[J]. Chemosphere,2004,55:661-669
    [153] Ma C.J., Wu Y.Q. Dechlorination of perchloroethylene using zero-valent metal andmicrobial community[J]. Environ Geol,2008,55:47-54
    [154] Clark C.J., Rao P.S.C., Michael D. et al. Degradation of perchloroethylene in cosolventsolutions by zero-valent iron[J]. Journal of Hazardous materials,2003,96(1):65-78
    [155] Dong R.Y., Chen K.T., Tsai H.C. Reductive dechlorination of Carbon tetrachloride andtetrachloroethylene by Zero-valent iron reductants[J]. Environ. Sci. Technol,2003,37(11):2575-2581
    [156] Choi J.H., Kim Y.H., Choi S.J.. Reductive dechlorination and biodegradation of2,4,6-trichlorophenol using sequential permeable reactive barriers: Laboratorystudies[J]. Chemosphere,2007,67:1551-1557
    [157] Joo S.H., Zhao D.Y. Destruction of lindane and atrazine using stabilized ironnanoparticles under aerobic and anaerobic conditions: Effects of catalyst andstabilizer[J]. Chemospere,2008,70:418-425
    [158] Kallel M., Belaid C., Mechichi T., et al. Removal of organic load and pehenoliccompounds from olive mill wastewater by fenton oxidation with zero-valent iron[J].Chemical Engineering Journal,2009,150:391-395
    [159] Kim Y.H., Carraway E.R. Dechlorination of pentachlorophenol by Zero-valent iron andmodified zero valent irons[J]. Environ. Sci. Technol,2000,34(10):2014-2017
    [160] Mitoma Y., Nagashima S., Simion C., et al. Dehalogenation of aromatic halides usingmetallic calcium in ethanol[J]. Environ. Sci. Technol,2001,35(20):4145-4148
    [161] Eggen T., Majcherczyk A. Effects of zero valent iron and temperature on thetransformation of DDT and its metabolites in lake sediment[J]. Chemosphere,2006,62:1116-1125
    [162] Ghauch A., Tuqan A. Catalytic degradation of chlorothalonil in water using bimetalliciron-based systems[J]. Chemosphere,2008,73:751-759
    [163] Sayles G.D., You G., Wang M., et al. DDT, DDD, and DDE dechlorination by zerovalent iron[J]. Environ. Sci. Technol,1997,31(12):3448-3454
    [164] Wei J.J., Xu X.H., Liu Y., et al., Catalytic hydrodechlorination of2,4-dichlorophenolover nanoscale Pd/Fe: Reaction pathway and some experimental parameters[J]. WaterResearch,2006,40:348-354
    [165] Xu L.J., Wang J.L. A heterogeneous Fenton-like system with nanoparticulatezero-valent iron for removal of4-chloro-3-methyl phenol[J]. Journal of HazardousMaterials,2010,186:256-264
    [166] Zhang Z., Cissoko N., Wo J.J., et al., Factors influencing the dechlorination of2,4-dichlorophenol by Ni-Fe nanoparticles in the presence of humic acid[J]. Journal ofHazardous Materials,2009,165:78-86
    [167]侯春凤,葛小鹏,周岩梅,等.纳米铁颗粒物表征及其对2,4-二氯苯酚的脱氯降解性能[J].科学通报,2009,54(23):3623-3629
    [168]任蓉,马邕文,万金泉.包覆型纳米铁的制备及对氯酚类化合物的降解研究[J].工业水处理,2012,32(10):54-56
    [169]刘凯,庞志华,李小明.有机蒙脱石负载纳米铁去除4-氯酚的研究[J].环境科学学报,2011,31(12):2616-2623
    [170]程荣,戚道铎,王建龙.用纳米铁降解氯酚的分子结构-性质相关性[J].清华大学学报(自然科学版).2010,50(6):873-876
    [171]程荣,戚道铎,董伟娜.水体中硝酸盐对纳米铁降解五氯酚的影响[J].清华大学学报(自然科学版).2010,50(6):877-880
    [172]张耘.有机膨润土负载纳米铁处理废水中氯代有机物[D].浙江理工大学,2011
    [173] Kim H.J., Phenrat T., Tilton R.D., et al. Fe0nanoparticles remain mobile in porousmedia after aging due to slow desorption of polymeric surface modifiers[J]. Environ.Sci. Technol.2009,43(10):3842-3830
    [174] Dale L.H., Eugene L.V., James E. Synthesis of highly magnetic iron nanoparticlessuitable for field structuring using a,β-diketone surfactant[J]. Magnetism and MagneticMaterials,2004,278(3):311-316
    [175] Kataby G., Cojocaru M. Coating carboxylic acids on amorphous iron nanoparticles[J].Langmuir,1999,15(5):1703-1708
    [176] Kanel S.R., Nepal D., Manning B., et al. Transport of surfacemodified iron nanoparticlein porous media and application to arsenic(III) remediation[J]. J. Nanopart. Res,2007,9(5):725–735
    [177] Berge N.D., and Ramsburg C.A. Oil-in-water emulsions for encapsulated delivery ofreactive iron particles[J]. Environ. Sci. Technol,2009,43(13):5065-5085
    [178] Phenrat T., Kim H.J., Fagerlund T., et al. Particle size distribution, concentration, andmagnetic attration affect transport of polymer-modified Fe0nanoprticles in sandcolumns[J]. Environ. Sci. Technol,2009,43(13):5079-5085
    [179] Phenrat T., Liu Y., Tilton R.D., et al. Adsorbed polyelectrolyte coatings decrease Fe0nanoparticle reactivity with TCE in water: conceptual model and mechanisms[J].Environ. Sci. Technol,2009,43(5):1507-1514
    [180] Phenrat T., Long T.C., Lowry G.V., et al. Partial oxidation(“aging”) and surfacemodification decrease the toxicity of nanosized zero valent iron[J]. Environ. Sci.Technol,2008,43(13):195-200
    [181] Schrick B., Hydutsky B.W., Blough J.L., et al. Delivery vehicles for zero valent metalnanoparticles in soil and groundwater[J]. Chemistry of Materials,2004,16:2187-2193
    [182] Quinn j., Geiger C., Clausen C., et al. Field demonstration of DNAPL dehalogenationusing emulsified zero-valent ion[J]. Environ. Sci. Technol,2005,39:1309-1318
    [183] Saleh N., Phenrat T., Sirk K., et al. Adsorbed triblock copolymers deliver reactive ironnanoparticles to the oil/water interface[J]. Nano Letters,2005,5(12):2489-2494
    [184]曹茂盛,刘海涛,陈玉田.气-液反应法合成包覆型纳米铁粒子[J].功能材料,2003,34(2):146-178
    [185]张环,金朝晖,韩璐,等.负载型纳米铁化学反硝化法去除硝酸盐氮的研究[J].中国给水排水,2006,22(15):83-87
    [186]李铁龙,金朝晖,刘海水,等. Span/Tween混合表面活性剂微乳液制备纳米铁及脱硝研究[J].高等学校化学学报,2006,27(4):672-675
    [187]钱慧静,CMC对纳米零价铁去除污染水体中六价铬的影响[D].浙江大学,2008
    [188]刘炳晶,金朝晖,李铁龙,等.包覆型纳米铁的制备及对三氯乙烯的降解研究[J].环境科学,2009,30(1):140-145
    [189]王薇.包覆型纳米铁的制备及用于地下水污染修复的实验研究[D].南开大学,2008
    [190]柳昕义.包埋型纳米铁(NZVI)的制备及其去除废水中铬(Cr(Ⅵ))的研究[D].天津大学,2011
    [191]王丹.空气稳定性纳米铁的合成及其修复地下水中TCE污染研究[D].南开大学,2008
    [192]李勇超,李铁龙,王学,等.纳米Fe@SiO2一步合成及其对Cr(Ⅵ)的去除[J].物理化学学报,2011,27(11):2711-2718
    [193] Chin A.B., Yaacob I.I. Synthesis and characterization of magnetic iron oxidenanoparticles via w/o microemulsion and Massart′s procedure[J]. J Mater. Process.Tech.,2007,191:235-237
    [194]景苏,鲁新宇.室温固相法合成纳米FeOOH及Fe2O3[J].南京工业大学学报,2002,24(6):52-55
    [195] Saleh N., Sirk K., Liu Y.Q., et al. Surface modifications enhance nanoiron transport andNAPL targeting in saturated porous media[J]. Environ. Sci. Technol.,2007,24(1):45-57
    [196]王娟,分子印迹、掺杂纳米Ti02光催化剂的制备及其选择性降解水中BPA的研究[D].云南大学,2012
    [197] Song H.Q., Zhou Y., Li A. M., et al. Selective removal of nitrate by using a novelmacroporousacrylic anion exchange resin[J]. Chinese Chemical Letters,2012,23:603–606
    [198] Li Y., Li X., Li Y.Q., et al. Selective removal of2,4-dichlorophenol from contaminatedwater using non-covalent imprinted microspheres[J]. Environmental Pollution,2009,157:1879-1885
    [199]徐宏,刘剑洪,陈沛,等.纳米氧化铁的制备及其对吸收药热分解催化作用的研究[J].火炸药学报,2002,3:51-52
    [200] Goya G.F. Handing the particle size and distribution of Fe3O4nanoparticles through ballmilling[J]. Solid State Commun,2004,130:783-787
    [201]张蕴.氨基功能化高分子复合材料的合成、表征及其对水中磷酸盐的吸附研究[D].浙江大学,2013
    [202]潘胜东.巯基功能化纳米Fe304磁性高分子复合材料的合成、表征及其对水中Hg(II)的吸附研究[D].浙江大学,2012
    [203] Wu J., Yu H.Q. Biosorption of2,4-dichlorophenol from aqueous solution byPhanerochaete chrysosporium biomass: Isotherms, kinetics and thermodynamics[J]. J.Hazard. Mater.,2006,B137:498-508
    [204] Zhang Z., Cissoko N., Wo J. J., et al. Factors influencing the dechlorination of2,4-dichlorophenol by Ni-Fe nanoparticles in the presence of humic acid[J]. J. Hazard.Mater.,2009,165:78–86
    [205] Jeong Y.U., Manthiram A. Synthesis of nickel sulfides in aqueous solutions usingsodium dithionite[J]. Inorg. Chem.,2001,40:73–77
    [206] Chen H.I., Chang H.Y. Homogeneous precipitation of cerium dioxide nanopartlcles inalcohol water mixed solvents[J]. Colloids Surf. A,2004,24:61–69
    [207] Liu J., Yang Q., Zhao X.S., et al. Pore size control of mesoporous silicas from mixturesof sodium silicate and TEOS[J]. Mater. Sci. Eng. C,2007,106:62–67
    [208] Huang Y.Q.,Wang J.K. Application of polysiloxane to modification of epoxyencapsulant[J]. Silicon Mater. Appl.,1999,3:10–12
    [209] Jafari T., Simchi A., Khakpash N. Synthesis and cytotoxicity assessment ofsuperparamagnetic iron-gold core-shell nanoparticles coated with polyglycerol[J].J.Colloid Interface Sci.,2010,345:64-71
    [210] Li Y.C., Li T.L., Wang X., et al. One-step synthesis of Fe@SiO2and its application inCr(VI) removal[J]. Acta Phys. Chim. Sin.,2011,27:2711-2718
    [211] Kobayashi Y., Inose H., Nakagawa T., et al. Control of shell thickness in silica-coatingof Au nanoparticles and their x-ray imaging properties[J]. J. Colloid Interface Sci.,2011,358:329-333
    [212] Lv, X.S., Xu, J., Jiang, G.M., et al. Highly active nanoscale zero-valent iron(nZVI)-Fe3O4nanocomposites for the removal of chromium(IV) from aqueoussolutions[J]. Journal of Colloid and Interface Science,2012,369:460-469
    [213] Jou, C.J. Degradation of pentachlorophenol with zero-valence iron coupled withmicrowave energy[J]. Journal of hazardous materials,2008,152:699-702
    [214] Stachowicz, M., Hiemstra, T., van Riemsdijk W.H. Multi-competitive interaction ofAs(III) and As(III) oxyanions with Ca2+, Mg2+, PO43-, and CO32-ions on goethite[J].Journal of Colloid and Interface Science,2008,320:400-414
    [215] Pan, B.J., Qiu, H., Pan, B.C.,et al. Highly efficient removal of heavy metals bypolymer-supported nanosized hydrated Fe(III) oxides: behavior and XPS study[J].Water Research,2010,44:815-824
    [216] Gao, Y., Mucci, A. Acid base reactions, phosphate and arsenate complexation, and theircompetitive adsorption at the surface of goethite in0.7M NaCl solution[J]. Geochimicaet Cosmochimica Acta,2001,65:2361-2378
    [217] Sayles, G.D., You, G.R., Wang, M.X., et al. DDT, DDD, and DDE dechlorination byzero-valent iron[J]. Environmental Science and Technology,1997,31:3448-3454
    [218] Kobayashi, Y., Inose, H., Nakagawa, T., et al. Control of shell thickness insilica-coating of Au nanoparticles and their X-ray imaging properties[J]. Journal ofColloid and Interface Science,2011,358:329-333
    [219] Jafari, T., Simchi, A., Khakpash, N. Synthesis and cytotoxicity assessment ofsuperparamagnetic iron-gold core-shell nanoparticles coated with polyglycerol[J].Journal of Colloid and Interface Science,2010,345:64-71
    [220] Li, D., Huang, F., Ding, S. Sol-gel preparation and characterization of nanoporousZnO/SiO2coatings with broadband antireflection properties[J]. Applied SurfaceScience,2011,257:9752-9756

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700