用户名: 密码: 验证码:
凝固界面换热系数反求及铝合金薄壁件压铸造工艺优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了提高铝合金大型结构件在汽车中的应用,来降低汽车自重,减少油耗和尾气排放,需要探索和开发铝合金新的高效短流程加工工艺。本文在国家科技支撑计划项目“汽车用高性能铝合金整体压铸及高强度钢冲压成形工艺与装备”和湖南省科技重大专项“车辆轻量化关键技术研究与产业化示范”支持下,应用数值模拟技术对薄壁铝合金件金属型低压铸造工艺设计优化及铸件冷却凝固过程中界面换热行为方面做了大量的研究分析工作。
     本文的工作首先确定铸件冷却凝固过程中的界面换热系数来提高铸造数值模拟的精度,再结合数值模拟技术和优化技术对壁厚1.5mm铝合金薄壁件低压铸造工艺进行设计和优化。具体研究成果如下:
     1)分别使用两种不同的反分析方法,即反热传导方法和神经网络优化方法,结合实验测得的温度数据求解确定了铸件与金属铸型间的界面换热系数在铸件冷却凝固过程中并不是一个常数,而是不断变化的。并且当铸件温度降到液固两相区时换热系数迅速下降,铸件完全凝固后,换热系数较稳定变化不大。其变化规律为铸造数值模拟边界条件的设置提供了有价值的理论参考。
     2)为提高界面换热系数求解精度,本文分别建立了一维正热传导与反热传导模型,并编制了相应的计算机程序,通过与温度场的解析解比较证实了正热传导模型的准确性及程序计算的可靠性。并研究分析了反热传导模型中各种计算参数如阻尼系数μ、未来时间步长R及正热传导计算时的时间步长△t等对反算求解结果的稳定性及准确性的影响。
     3)建立了基于等效比热法的反热传导模型,通过靠近界面位置的温度数据计算界面热流或是界面换热系数可以有效地处理凝固过程的潜热释放问题,并通过此模型计算得到了A356铝合金与铜冷却介质间的界面热流和界面换热系数。结果表明界面热流和换热系数是随铸件凝固时间变化的,其变化范围在1200Wm-2K-1和6200Wm-2K-1之间,而且变化过程中因为结晶潜热的释放存在两个峰值。
     4)在准确获得铸造数值模拟的重要边界条件-界面换热系数的前提下,考虑到薄壁件金属低压铸造过程中液态金属充型困难的特点,本文同时采用LVQ学习向量化神经网络和BP多层前馈神经网络两种模型构造铸造工艺参数与铸件质量表征间的多目标函数关系。并结合数值模拟与正交实验设计方法代替实际实验来获得神经网络的训练样本,以减小实验成本和提高计算效率。进而再用遗传算法对所建立的函数关系中的参数寻优。
     5)采用优化的工艺参数制备了壁厚1.5mm的完整铸件,通过与工艺参数优化前仿真和实验结果比较,铸件质量明显改善。为铝合金薄壁件金属型低压铸造技术的研究提供了有价值的参考,并为汽车铝合金大型结构件整体金属型铸造的可行性方面具有宝贵的参考价值。
In order to promote large-scale structural aluminum alloy components applied in automotive industry and reduce the vehicle's own weight and fuel consumption and exhaust emissions, it is necessary to explore and develop an advanced forming technology with high efficiency and short process. Under the support of two project, National Science & Technology Pillar Program“Study on Forming Technology and Equipment of Pressure Cast for High Performance Aluminum Alloy and Stamping for High Strength Steel”and Key Project of Science & Technology of Hunan Province“Research and Demonstration of Light-weight Vehicle Key Technology”, some works on LPDC process design and forming technology for thin-walled aluminum alloy casting with permanent mould are done.
     In this thesis, the interfacial heat transfer coefficient during casting solidification is calculated to improve the simulation accuracy of the casting process. Then the LPDC process parameters of A356 aluminum thin-walled component with 1.5mm in thickness are designed and optimized using a combining numerical simulation and optimization technology method. The research results in this thesis are summarized as following:
     1) The casting-metal mold IHTC has been identified by using two different inverse analysis methods, inverse heat conduction method and neural network model, based on measured temperatures at the various locations of casting. The results show that the IHTC is not a constant and varies with time during the casting solidification. And the IHTC decreases rapidly down when the temperature of casting is between liquidus and solidus curve. However, under solidus curve it is almost invariant and remains a constant. This provides valuable references for setting accurately the boundary condition in numerical simulation process.
     2) In order to calculate the IHTC more accurately, the model of forward and inverse heat conduction problems for one-dimension is established. The code for the models is also compiled. The compared results between the analytical and numerical simulation solution confirm that the model and compiled code of heat conduction for one-dimension is stable and accurate. Moreover, the effects of some parameters in the inverse heat conduction model on the stability and accuracy of calculation results are also discussed in this thesis. The parameters include the damping factorμ, future time step R and time step△t in the forward heat conduction calculation.
     3) The interfacial heat flux and heat transfer coefficient of A356 casting on a water cooled copper chill are successfully obtained by using the inverse heat conduction method based on the measured temperatures closer to the interface in the casting after the‘equivalent specific heat’method is applied to the forward heat conduction calculation. And it was found that the IHTC varies with time during the casting solidification. The values are in the range of approximately 1200-6200Wm-2K-1 and two peak values exist when the casting temperature is above the solidus temperature because of the released latent heat.
     4) Considering the poor filling-ability of thin-walled casting in LPDC process, an ANN model combining learning vector quantization (LVQ) and back-propagation (BP) algorithm is proposed in this thesis to map the complex relationship between process conditions and quality indexes of LPDC parts based on the accurate boundary condition, IHTC, in numerical simulation. And the orthogonal array and finite-element method are successfully applied to obtain the training samples for the sake of experimental accuracy and cost saving. Then, a genetic algorithm is implemented to optimize the process.
     5) By applying the optimized parameters, a thin-walled component with 1.5mm in thickness is successfully prepared. And compared with the casting prepared before process parameters optimized, the quality of casting is obviously improved. Some new results provide the useful guidance for the further study on LPDC technology of aluminum alloy thin-walled component with permanent mould and mass-producing thin-walled aluminum alloy casting applied in automotive industry.
引文
[1]周晟.新世纪中国轿车工业发展的基本趋势.汽车工艺研究, 1999, 4(4): 29-33.
    [2]邵光杰,张恒华,许珞萍.汽车用铝合金材料及热处理进展.金属热处理, 2004, (1): 29-32.
    [3]邱庆荣,孙宝德,周尧和.铝合金铸件在汽车上的应用,铸造, 1998, 1(6): 46-49.
    [4]孙友松.刘艳.材料加工技术创新与汽车轻量化.锻压技术, 2007, 32(5): 1-7.
    [5]迟汉之.世界汽车轻量化及轻质材料应用趋势.轻型汽车技术, 2001, 140(4): 54-56.
    [6]姜玉波.铝合金材料在汽车轻量化中的应用分析.试验技术与试验机, 2004, 44(3、4): 31-33、55.
    [7]冯志军,申泽骥.大型铝合金铸件低压铸造.铸造, 2003, 52(12): 46-49.
    [8]毕维生.影响低压铸造铸件质量的几种因素.中国铸造装备与技术, 2004, (6): 52-54.
    [9]廖海洪,梁敏洁,程军.铝合金低压铸造浇注系统的CAD设计.稀有金属, 2006, 30(12): 43-48.
    [10]董秀琦.低压及差压铸造理论与实践.北京:机械工业出版社, 2003, 315-318.
    [11] Zhang B, Maijer D M, Cockcroft S L. Development of a 3-D thermal model of the low pressure die cast (LPDC) process of A356 aluminum alloy wheels. Materials Science and Engineering. 2007, 464: 295–305.
    [12] Penghuai F, Alan A L, Haiyan J. Low-pressure die casting of magnesium alloy AM50: Response to process parameters. Journal of Materials Processing Technology, 2008, 205: 224-234.
    [13]熊守美,郭志鹏.压铸过程铸件-铸型界面换热行为的研究进展.铸造技术, 2008, 29(9): 1163-1167.
    [14]孙逊,安阁英,苏仕方.铸造充型凝固过程数值模拟发展现状.航天铸造技术, 2000, 49(2): 84-88.
    [15]李殿中,康秀红,夏立军.可视化铸造技术的研究与应用.铸造, 2005, 54(2): 148-152.
    [16]赵恒涛,米国发,王狂飞.铸造充型及凝固过程模拟研究概况.航天铸造技术, 2007, 2(1): 28-33.
    [17] Bastian K M. A look back at the 20th century casting process simulation. Modern Casting, 2000, 12: 43-45.
    [18]徐明武,代永朝,董海东.铸件凝固过程的宏观及微观计算机模拟研究.铸造工程, 2000, 3: 1-6.
    [19]曹洪吉,宋延沛,王文焱.铸造过程计算机模拟研究应用现状与工展.河南科技大学学报:自然科学版, 2006, 27(1): 5-9.
    [20] Hirt C W, Nichols B D. Volume of fluid method for the dynamics of free boundaries. Journal of Computational Physics, 1981, 39: 201- 225.
    [21]贵刚.压力铸造充型过程数值仿真及参数优选: [中科院博士学位论文].辽宁:中科院沈阳自动研究所, 2003, 3.
    [22]徐宏.铸造CAE集成技术研究: [北京科技大学博士学位论文].北京:北京科技大学, 2001, 5.
    [23]米国发,刘翔宇,王狂飞.铸造充型过程数值模拟的研究进展及应用.河南理工大学学报:自然科学版, 2007, 26(3): 334-340.
    [24]隋大山.铸造凝固过程热传导反问题参数辨识技术研究: [上海交通大学博士学位论文].上海:上海交通大学, 2008, 4.
    [25]王君卿,孙逊. 2004国际会议概况和铸造过程数值模拟技术发展动向.铸造, 2005, 54(4): 307-313.
    [26]金俊泽.大型铸钢件凝固进程的数值模拟.大连工学院学报, 1980, (2): 1-16.
    [27]张毅.铸件凝固数值模拟及铸造工艺CAD现代进展.铸造, 1987, (6): 8.
    [28]孙逊,王君卿.液态金属充型与传热数值模拟在球铁铸造工艺设计中的应用.铸造, 1991, 40(12): 2-5.
    [29]卢宏远,李荣彬,吕吴凝碧.计算机模拟压铸型腔内的金属液流动.铸造, 1994, 43(7): 1-5.
    [30]陈立亮,刘瑞详,林汉同等.气化模铸造充填过程的三维数值模拟.铸造, 1995, 44(12): 17-20.
    [31]孙小波,张春晖,安阁英.基于不规则网格模型的充型及凝固过程数值模似.铸造, 1998, 47(8): 5-9,37.
    [32]蒋永,张云鹏.铸件充型数值模拟的研究进展.热加工工艺, 2006, 35(1): 70-72.
    [33]周丹晨,蒋玉明,杨屹.国外铸件充型凝固过程数值模拟软件介绍.热加工工艺, 2000(5): 45-46.
    [34] Wu S P, Li C Y, Guo J J. Numerical simulation and experimental investigation of two filling methods in vertical centrifugal casting.Transactions of Nonferrous Metals Society of China, 2006, 16: 1035-1040.
    [35] Vijayaram T R, Sulaiman S, Hamouda, A.M.S. Numerical simulation of casting solidification in permanent metallic molds. Journal of Materials Processing Technology, 2006, 178: 29-33.
    [36]杜永平,滕启.反求工程技术.起重运输机械, 2003, (1): 1-4.
    [37] Sol H. Identification of anisotropic plate rigidities using free vibration data. Free University of Brussels, 1987, 12-14.
    [38] Gavrus A, Massoni E, Chenot J L. An inverse analysis using a finite element model for identification of rheological parameters. Journal of Materials Processing Technology, 1996, 60: 447-454.
    [39] Anghileri M, Chirwa E C, Lanzi L, et al. An inverse approach to indentify the constitutive model parameters for crashworthiness modeling of composite structures. Composite Structures, 2005, 68: 65-74.
    [40] Forestier R, Massoni E, Chastel Y. Estimation of constitutive parameters using an inverse method coupled to 3D finite element software. Journal of Materials Processing Technology, 2002, 125-126: 594-601.
    [41] Storch R B, Pimentel L C G, Orlande H R B. Identification of atmospheric boundary layer parameters by inverse problem. Atmospheric Environment, 2007, 41: 1417-1425.
    [42] Ehlers W, Scholz B. An inverse algorithm for the identification and the sensitivity analysis of the parameters governing micropolar elasto-plastic granular material. Archive of Applied Mechanics, 2007, 77: 911-931.
    [43] Huber N, Tsakmakis Ch. A neural network tool for identifying the material parameters of a finite deformation viscoplasticity model. Computer Methods in Applied Mechanics and Engineering, 2001, 191: 353-384.
    [44] Deng S, Hwang Y. Applying neural networks to the solution of forward and inverse heat conduction problems. International Journal of Heat and Mass Transfer, 2006, 49: 4732-4750.
    [45] Liu G R, Lee J H, Patera A T, et al. Inverse identification of thermal parameters using reduced-basis method. Computer Methods in Applied Mechanics and Engineering, 2005, 194: 3090–3107.
    [46] Liu G R, Han X, Xu Y G, et al. Material characterization of functionally graded material by means of elastic waves and a progressive-learning neural network. Composites Science and Technology, 2001, 61: 1401-1411.
    [47] Han X, Xu D, Liu G R. A computational inverse technique for materialcharacterization of a functionally graded cylinder using a progressive neural network. Neurocomputing, 2003, 51: 341-360.
    [48]张艳妹.镁合金热变形性能试验研究及本构参数识别: [机械科学研究院博士学位论文].北京:机械科学研究院, 2005, 4-6.
    [49]刘迪辉,钟志华. Barlat1991材料模型参数反求.机械工程学报, 2006, 42(4): 47-51.
    [50]高宽,李光耀,韩旭.一种板料成形摩擦系数的反求技术.机械制造, 2006, 44(502): 12-14.
    [51] Beck J V, Blackwell B, Clair C. Inverse heat conduction: ill-posed problems. Wiley, London, 1985.
    [52] Beck J V. Transient sensitivity coefficient for thermal contact conductance. International Journal of Heat and Mass Transfer, 1967, 10: 1615-1619.
    [53] Beck J V, Litkouhi B, Stclair C R. Efficient numerical solution of the nonlinear inverse heat conduction problem. Mechanical Engineering, 1980, 102: 96-104.
    [54] Beck J V. Combined parameter and function estimation in heat transfer with application to contact conductance. Journal of Heat Transfer. 1988, 110: 1046-1058.
    [55] Beck J V, Blackwell B, Sheikh A H. Comparison of some inverse heat conduction methods using experimental data. International Journal of Heat and Mass Transfer, 1996, 39: 3649-3657.
    [56] Beck J V, Woodbury K A. Inverse problems and parameter estimation: integration of measurements and analysis. Measurement Science & Technology, 1998, 9: 839-847.
    [57] Kobryn P A, Semiatin S L. Determination of interface heat-transfer coefficients for permanent-mold casting of Ti-6Al-4V. Metallurgical and Materials Transactions B, 2001, 32: 685-695.
    [58] Gadala M S, Xu F C. An FE-based sequential inverse algorithm for heat flux calculation during impingement water cooling. International Journal of Numerical Methods for Heat & Fluid Flow, 2006, 16: 356-385.
    [59] Chen W L, Yang Y C, Lee H L. Inverse problem in determining convection heat transfer coefficient of an annular fin. Energy Conversion and Management, 2007, 48: 1081-1088.
    [60] Gafur M A, Nasrul H M, Narayan P K. Effect of chill thickness and superheat on casting-chill interfacial heat transfer during solidification of commercially pure aluminium. Journal of Materials Processing Technology, 2003, 133: 257-265.
    [61] Arunkumar S, Rao K V S, Kumar T S P. Spatial variation of heat flux at the metal mold interface due to mold filling effects in gravity die-casting. International Journal of Heat and Mass Transfer, 2008, 51: 2676-2685.
    [62] Hamasaiid A, Dargusch M S, Davidson C J, et al. Effect of mold coating materials and thickness on heat transfer in permanent mold casting of aluminum alloys. Metallurgical and Materials Transactions A, 2007, 38: 1303-1316.
    [63] Coates B, Argyropoulos S A. The effects of surface roughness and metal temperature on the heat-transfer coefficient at the metal mold interface. Metallurgical and Materials Transactions A, 2007, 38: 243-255.
    [64] Broucaret S, Michrafy A, Dour G. Heat transfer and thermo-mechanical stresses in a gravity casting die influence of process parameters. Journal of Materials Processing Technology, 2001, 110: 211-217.
    [65] Rajaraman R, Velraj R. Comparison of interfacial heat transfer coefficient estimated by two different techniques during solidification of cylindrical aluminum alloy casting. Heat Mass Transfer, 2008, 44:1025-1034.
    [66] Guo Z P, Xiong S M, Ch S H. Heat transfer between casting and die-during high pressure die casting process of AM50 alloy-modeling and experimental results. Journal of Materials Science & Technology, 2008, 24: 131-135.
    [67] Guo Z P, Xiong S M, Liu B C. Effect of process parameters, casting thickness and alloys on the interfacial heat-transfer coefficient in the high-pressure die-casting process. Metallurgical and Materials Transactions, 2008, 39A: 2896-2905.
    [68] Guo Z P, Xiong S M, Liu B C. Determination of the heat transfer coefficient at metal-die interface of high pressure die casting process of AM50 alloy. International Journal of Heat and Mass Transfer, 2008, 51: 6032-6038.
    [69]郭志鹏,熊守美,曹尚铉等.热传导反算模型的建立及其在求解界面热流过程中的应用.金属学报, 2007, 43: 607-611.
    [70]郭志鹏,熊守美,曹尚铉等.合金材料以及工艺参数对压铸过程中铸件/铸型界面换热系数的影响.金属学报, 2008, 44: 433-439.
    [71]郭志鹏,熊守美.压铸过程铸件-铸型界面换热系数与铸件凝固速率的关系.金属学报, 2009, 45: 102-106.
    [72] Sui D SH, Cui ZH SH. Regularization method to parameter identification of interfacial heat transfer coefficient and properties during casting solidification. Journal of Shanghai Jiaotong University (science), 2007, 12(4): 511-516.
    [73] Sui D SH, Cui ZH SH, Regularization determination of interfacial heat transfer coefficient during the ZL102 solidification process. Transactions of Nonferrous Metals Society of China, 2008, 18(2): 399-404.
    [74]隋大山,崔振山.金属凝固过程界面换热系数的Tikhonov正则化辨识.计算物理, 2008, 25(4): 463-469.
    [75]隋大山,崔振山. ZL102凝固过程温度场的数值模拟与实验验证.铸造, 2008, 57(7): 674-677.
    [76]隋大山,范柳光,崔振山.大型铸钢件的热处理数值模拟与实验验证.铸造技术, 2007, 28(9): 1238-1242.
    [77]王登刚,刘迎曦,李守巨.弹性力学非线性反演问题概述.力学进展, 2003, 2: 166-174.
    [78] Tikhonov A N, Arsenin V Y. Solution of ill-posed problem. New York: wiley, 1977.
    [79] Prabhu K N, Ravishankar B N. Effect of modification melt treatment on casting/chill interfacial heat transfer and electrical conductivity of Al-13% Si alloy. Materials Science and Engineering A, 2003, 360: 293-298.
    [80] Martorano M A, Capocchi J D T. Heat transfer coefficient at the metal-mold interface in the unidirectional solidification of Cu-8%Sn alloys. International Journal of Heat and Mass Transfer, 2000, 43: 2541-2552.
    [81] Sun H C, Chao L S. Analysis of interfacial heat transfer coefficient of green sand mold casting for aluminum and tin-lead alloys by using a lump capacitance method. Journal of Heat Transfer, 2007, 129: 595-600.
    [82]纪莲清,熊守美,村上正幸等.内浇口速度和尺寸对ADC12铝合金组织及性能的影响.特种铸造及有色合金, 2008, 28(9): 396-695.
    [83]于海朋,王峰,于宝义等.工艺参数对压铸AM50组织和力学性能的影响.铸造, 2004, 53(8): 645-649.
    [84]华隆政.选择压力铸造高速压射切换点的经验和计算方法.特种铸造及有色合金, 2000, (1): 64-65.
    [85]张志峰,田战峰,杨必成等.汽车用铝合金半固态零件触变压铸工艺研究.有色合金及特种铸造工艺, 2002, 26(9): 770-774.
    [86]周中波,李金山,寇宏超等.王建国.工艺参数对低压铸造薄壁件充型能力的影响.特种铸造及有色合金, 2008, 28(1): 23-26.
    [87]张响,闫胜昝,童水光等.基于CAE的铝合金车轮低压铸造模具结构优化.材料工艺设备, 2007, (2): 39-43.
    [88]米国发,赵大为,董翠粉.薄壁铝合金铸件低压铸造的数值模拟与工艺优化.金属铸锻焊技术, 2008, (23): 37-40.
    [89]宋文娟,王智民,杨璀珍等.低压铸造充型与凝固过程数值模拟.模具工业, 2008, 34(2): 08-13.
    [90]苏大为,赵玉涛.低压铸造铝合金轮毂充型和凝固过程模拟分析.特种铸造及有色合金, 2007, 27(9): 82-85.
    [91]付振南,程万里,吕朔等.铝合金轮毂低压铸造充型过程模拟及工艺改进.铸造技术, 2006, 27(6): 554-558.
    [92]钟志华,周彦伟.现代设计方法.武汉:武汉理工大学出版社, 2001, 12-16.
    [93]王力.低压铸造过程数值模拟及基于神经网络的优化系统开发与应用: [四川大学硕士学位论文].四川:四川大学, 2005, 4-6.
    [94]金聪,郭京蕾.人工智能原理与应用.北京:清华大学出版社, 2009, 18-25.
    [95]陶友瑞.压力铸造工艺参数优选研究进展.铸造技术, 2008, 29(10): 1350-1352.
    [96]章华,董朝阳,谢永军.基于神经网络和专家系统的铸造质量控制方法.测控技术, 2007, 26(2): 38-41.
    [97] Syrcos G P. Die casting process optimization using Taguchi methods. Journal of Materials Processing Technology, 2003, 135: 68-74.
    [98] Yarlagadda P K D V, Chiang E C W. A neural network system for prediction of process parameters in pressure die casting. Journal of Materials Processing Technology, 1999, 89-90: 583-590.
    [99] Yarlagadda P K D V. Development of an integrated neural network system for prediction of process parameters in metal injection moulding. Journal of Materials Processing Technology, 2002, 130-131: 315-320.
    [100] Krimpenis A, Benardos P G, Vosniakos G C, et al. Simulation-based selection of optimum pressure die-casting process parameters using neural nets and genetic algorithms. International Journal of Advanced Manufacturing Technology, 2006, 27: 509-517.
    [101] Rai J K, Lajimi A M, Xirouchakis P. An intelligent system for predictingHPDC process variables in interactive environment. Journal of Materials Processing Technology, 2008, 203: 72-79.
    [102] Shen CY, Wang LX, Li Q. Optimization of injection molding process parameters using combination of artificial neural network and genetic algorithm method. Journal of Materials Processing Technology, 2007, 183: 412-418.
    [103]罗蓬,周锦进.基于神经网络的压铸工艺参数设计.铸造, 2000, 49(5): 286-289.
    [104]邹凤山,王承志.压铸浇注工艺参数的人工神经网络优化设计.铸造设备研究, 2002, (12): 12-15.
    [105]王承志,赵云龙,黄勇.多输入/多输出GA-BP网络压铸工艺参数设计系统.铸造, 2009, 58(1): 49-53.
    [106]郑生荣,辛勇,杨国泰.人工神经网络在注塑参数预测中的应用.塑料工业, 2003, (10): 26-28.
    [107]贵刚,苏丽杰,聂义勇.铸造充型过程控制参数的智能先择.计算机工程与应用, 2003, (28): 46-48.
    [108]贵刚,于军,苏丽杰等.压力铸造充型过程多工艺参数的优化选择.中国科学院研究生院学报, 2004, 21(4): 532-537.
    [109]严青松,余欢,魏伯康等.智能控制的真空差压反重力铸造工艺参数优化.铸造, 2004, 53(9): 697-671.
    [110]黄松林,崔建忠.智能优化在铝合金低频电磁半连续铸造中的应用.特种铸造及有色合金, 2008, 28(12): 959-963.
    [111]柳百成,荆涛.铸造工程的模拟仿真与质量控制.北京:机械工业出版社, 2002, 41-57.
    [112]赵建华,陈红兵.浅析铸造过程模拟仿真技术.铸造设备研究, 2007, (2): 48-53.
    [113]张良,赵旭平.计算机模拟技术在铸造中的应用.石油机械, 2006, 34(9): 92-94.
    [114] Yang J W, Du Y P, Shi R, et al. Fluid flow and solidification simulation in beam blank continuous casting process with 3D coupled model. Journal of Iron and Steel, International, 2006, 13(4): 17-21.
    [115] Zhang L, Rong Y M, Shen H F, et al. Solidification modeling in continuous casting by finite point method. Journal of Materials Processing Technology, 2007, 192-193: 511-517.
    [116]熊守美,许庆彦,康进武.铸造过程模拟仿真技术.北京:机械工业出版社, 2004, 72-83.
    [117] Zhang L, Shen H F, Rong Y M, et al. Numerical simulation on solidification and thermal stress of continuous casting billet in mold based on meshless methods. Materials Science and Engineering A, 2007, 466: 71-78.
    [118]孔祥谦.有限单元法在传热学中的应用.北京:科学出版社, 1998, 5-7.
    [119] Phuong V. Mathematical modeling of microporosity in A356 aluminum alloy: [Thesis]. Vancouver: University of British Columbia, 1999, 56.
    [120] Mills K C. Recommended Values of Thermophysical Properties for Selected Commercial Alloys. Cambridge: Woodhead, UK, 2002.
    [121] Liu G R, Han X. Computational inverse techniques in nondestructive evaluation. U.S. CRC Press, 2006, 22.
    [122]金星姬,贾炜玮.人工神经网络研究概述.林业科技情报, 2008, 40(1): 65-71.
    [123]周政. BP神经网络的发展现状综述.山西电子技术, 2008, (2): 90-92.
    [124] Bouhoughe S, Lahreche M, Bast J. Control of heat transfer in continuous casting process using neural networks. Acta Automatica Sinica, 2008, 34(6): 701-706.
    [125] Scott D J, Coveney P V, Kilner J A, et al. Prediction of the functional properties of ceramic materials from composition using artificial neural networks. Journal of the European Ceramic Society, 2007, 27: 4425-4435.
    [126]姚锡凡.人工智能技术及应用.北京:中国电力出版社, 2008, 4-10.
    [127] Zhao X G, Chen B ZH, He X R. A novel neural network for the prediction of process variables. Science in China (Series A), 1995, 38(3): 355-367.
    [128]张俊.基于神经网络的双金属复合弯管铸造过程的数值仿真.铸造, 2007, 56(1): 56-58.
    [129]黄松林,崔建忠.基于人工神经网络的铝合金铸锭裂纹倾向预测.中国有色金属学报, 2008, 18(9): 1699-1706.
    [130] Dour G, Dargusch M, Davidson C, et al. Development of a non-intrusive heat transfer coefficient gauge and its application to high pressure die casting effect of the process parameters, Journal of Materials Processing Technology, 2005, 169: 223-233.
    [131] Li M, Allison J E. Determination of thermal boundary conditions for the casting and quenching process with the optimization tool optcast. Metallurgical and Materials Transactions B, 2007, 38: 567-574.
    [132] Mirbagheri S M H, Shrinparvar M, Chirazi A. Modeling of metalo-staticpressure on the metal-mould interface thermal resistance in the casting process. Materials and Design, 2007, 28: 2106-2112.
    [133] ?ahin H M, Kocatepe K, Kay?kc? R, et al. Determination of unidirectional heat transfer coefficient during unsteady-state solidification at metal casting-chill interface, Energy Conversion and Management, 2006, 47: 19-34.
    [134] Massimo D C. Measurement of primary region heat transfer in horizontal direct chill continuous casting of aluminum alloy re-melt ingots: [Thesis]. Toronto: University of Toronto, 2004, 51.
    [135]郭志鹏.压铸过程铸件-铸型界面热交换行为的研究: [清华大学博士学位论文].北京:清华大学, 2009, 25-26.
    [136] Qi L H, Liu J, Guan J T, et al. Damage prediction for magnesium matrix composites formed by liquid-solid extrusion process based on finite element simulation. Transactions of Nonferrous Metals Society of China, 2010, 20: 1737-1742.
    [137] Liu Y, Guo J J, Jia J, et al. Equivalent heat transfer coefficient at casting/Cu mould interface and temperature field simulation. Transactions of Nonferrous Metals Society of China, 2003, 13(5): 1119-1124.
    [138] Abdel I N K, Yahia K. A numerical simulation of the DC continuous casting using average heat capacity. Scandinavian Journal of Metallurgy, 2004, 33: 347-354.
    [139] Yao S, Gong X N, Dai L X, et al. The mathematical model of solidification latent heat under high cooling rate. Journal of Heat Transfer, 2006, 35: 115-121.
    [140] Adrian B, Allan D K. Heat transfer handbook. U.S. WILEY Press, 2003, 119-120.
    [141] Santos C A, Quaresma J M V, Garcia A. Determination of transient interfacial heat transfer coefficients in chill mold castings. Journal of Alloys and Compounds, 2001, 319: 174-186.
    [142]安海军.大型薄壁铝合金铸件金属型铸造的模具设计.特种铸造及有色合金, 1994, (1): 19-21.
    [143] Dobrzan′ski, L.A. Krupinski, M.; Sokolowski, J.H. Computer aided classification of flaws occurred during casting of aluminum. Journal of Materials Processing Technology, 2005, 167: 456-462.
    [144] Verran G O, Mendes R P K, Dalla V L V O. DOE applied to optimization ofaluminum alloy die castings. Journal of Materials Processing Technology, 2008, 200: 120-125.
    [145] Zhang Y, Zhao S D, Zhang Z Y. Optimization for the forming process parameters of thin-walled valve shell. Thin-Walled Structures, 2008, 46: 371-379.
    [146] Kuo J H, Hsu F L, Hwang W S. Development of an interactive simulation system for the determination of the pressure-time relationship during the filling in a low pressure die casting process. Science and Technology of Advanced Materials, 2001, 2: 131-145.
    [147]李萍,薛克敏.基于人工智能的钛合金热变形工艺参数优化.中国有色金属学报, 2006, 16(7): 1202-1206.
    [148]尚守平,雷敏,蒯行成.土-结构系统的非线性参数反演研究.湖南大学学报:自然科学版, 2008, 35(1): 6-11.
    [149] Paszkowicz W. Genetic algorithms, a nature-inspired tool: survey of applications in materials science and related fields. Materials and Manufacturing Processes, 2009, 24: 174-197.
    [150] Coello C A C, Becerra R L. Evolutionary multiobjective optimization in materials science and engineering. Materials and Manufacturing Processes, 2009, 24: 119-129.
    [151] Mitra K. Genetic algorithms in polymeric material production, design, processing and other applications: a review. International Materials Reviews, 2008, 53: 275-297.
    [152] Chakraborti N. Genetic algorithms in materials design and processing. International Materials Reviews, 2004, 49: 246-260.
    [153] Pettersson F, Chakraborti N, Saxen H. A genetic algorithm based multi-objective neural net applied to noisy blast furnace data. Applied Soft Computing, 2007, 7: 387-397.
    [154] Pettersson F, Biswas A, Sen P K, et al. Analyzing leaching data for low-grade manganese ore using neural nets and multiobjective genetic algorithms. Materials and Manufacturing Processes, 2009, 24: 320-330.
    [155] Martorano M A, Capocchi J D T. Heat transfer coefficient at the metal–mould interface in the unidirectional solidification of Cu–8%Sn alloys. Internatinal Journal of Heat and Mass Transfer, 2000, 43: 2541-2552.
    [156] Shepel S V, Paolucci S. Numerical simulation of filling and solidification of permanent mold castings. Applied Thermal Engineering, 2002, 22: 229-248.
    [157]谢敏,王迎春,李大永等.镁合金轮毂低压铸造模具冷却与温度场的模拟.铸造技术, 2005, 26(4): 296-300.
    [158] Zhang L Y, Jiang Y H, Ma Z, et al. Effect of cooling rate on solidified microstructure and mechanical properties of aluminium-A356 alloy. Journal of Materials Processing Technology, 2008, 207: 107-111.
    [159] Drar H, Svensson I L. Improvement of tensile properties of Al-Si alloys through directional solidification. Materials Letters, 2007, 61: 392–396.
    [160]薛寒松,李华基,王勇勤.薄壁件差压铸造的充型特点及影响因素.重庆大学学报, 2002, 25(10): 20-23.
    [161]李庆春.铸件形成理论基础.北京:机械工业出版社, 1982, 24-30.
    [162]黄龙辉,邵光杰,杨弋涛.冷却速度对A356铝合金铸件组织影响的定量分析.特种铸造及有色合金, 2008, 165-168.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700