用户名: 密码: 验证码:
聚合物—十二烷基硫酸钠水溶液中纳米金的可控合成
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金纳米粒子是目前研究最为热点的一种金属纳米粒子,它的高催化活性,良好的生物相容性和能通过自组装形成特定纳米结构的特点,使其在高级材料的制造上具有很大的应用前景。纳米材料不同于常规物质的独特性质很大程度上取决于它们的形状和尺寸。因此,在纳米技术中,纳米材料的可控合成是最活跃的研究领域。与单一表面活性剂或聚合物模板相比,聚合物-表面活性剂聚集体具有更高级的自组装结构,其聚集状态具有更大的可调控性,并且能够发挥协同模板作用,在特殊形貌无机纳米粒子的制备方面具有更大的应用前景。本论文结合材料化学绿色化的发展趋势,利用聚乙烯吡咯烷酮(PVP),聚乙烯醇(PVA)和羟乙基纤维素(HEC)与阴离子表面活性剂十二烷基硫酸钠(SDS)形成的聚集体为模板,在水溶液中直接利用聚合物还原金盐前体,在低温,无需外加还原剂的条件下,通过一锅法制备出了不同形貌的金纳米粒子,考察了反应时间,SDS浓度,初始HAuCl4浓度等对产物形貌的影响,揭示了聚合物-SDS聚集体在金纳米粒子生长过程中的“两级软模板”作用机制,并初步考察了产物金纳米粒子的应用性能。
     PVP-SDS聚集体是目前研究较为全面的一种聚合物-表面活性剂聚集体结构。人们已经明确建立了PVP-SDS聚集体的微观作用模型,这为揭示PVP-SDS聚集体在纳米粒子形成过程中的模板作用机理奠定了良好的基础。在PVP-SDS聚集体水溶液中,以PVP为还原剂制备出了蛇状金纳米粒子。采用紫外-可见-近红外吸收光谱(UV-vis-NIR),透射电子显微镜(TEM),X-射线衍射(XRD),选区电子衍射(SAED)和高分辨透射电子显微(HRTEM)技术等对产物粒子的光谱吸收性质,形貌和晶体结构进行了表征和分析,推测出了金纳米蛇的生长机制。实验发现在相同浓度的单纯PVP溶液中产物为弯弯曲曲的金纳米带。PVP-SDS聚集体溶液中,SDS束缚胶束的存在使得沿着PVP链金盐反应前体出现浓度分布差异,有利于不对称金纳米结构的生长。调节SDS浓度可以改变PVP-SDS聚集体的聚集状态,从而对产物粒子的形貌进行调控。当体系中SDS浓度由3 mmol·L~(-1)增大到10 mmol·L~(-1)时,产物粒子发生了由蛇状→风筝状→片状的形貌转变。实验发现,金纳米蛇对于KOH介质中CH3OH氧化反应具有优异的电催化效果,这一性质使其在直接甲醇燃料电池(DMFC)制备方面具有广阔的应用前景。
     PVP的还原作用相对较弱,因此在现有的采用PVP直接作为还原剂和选择性吸附剂制备贵金属纳米粒子的报道中,产物多为2D片状纳米结构物。实验发现,在较高PVP浓度下,向PVP-SDS聚集体水溶液中添加NaOH将AuCl_4~ˉ转变成还原活性较低的AuCl_(4-x)(OH)_x~ˉ,使得体系中初级纳米晶的生长被抑制而相互聚集形成较大聚集体,最终可以长成形貌完整,结构密实的三维(3D)金纳米花。以UV-vis-NIR吸收光谱和TEM跟踪了金纳米花的生长过程,推测出了该体系中金纳米花的生长机制。在相同浓度的单纯PVP溶液中只得到了粒径较小的多脚状金纳米粒子这是因为与PVP-SDS聚集体相比,PVP对于金初级纳米晶的保护能力过强限制了它们的相互聚集和后续的各向异性的生长所致。通过改变SDS浓度可以对产物金纳米花的粒径进行调控。初始HAuCl4浓度对产物形貌影响显著,当体系中初始HAuCl_4浓度由0.1 mmol·L~(-1)增大到0.7 mmol·L~(-1)时,产物由多脚状粒子→3D纳米花→2D纳米花→中心带孔洞的纳米片→完整纳米片转变。实验发现,3D金纳米花具有非常优异的SERS性能。
     聚乙烯醇(PVA)可以与SDS发生疏水相互作用形成PVA-SDS有序聚集体,并且PVA分子结构中具有很多羟基基团,在金纳米粒子制备过程中同样可以发挥还原作用。因此将金纳米粒子的制备体系扩展到PVA-SDS聚集体水溶液。首先,采用表面张力法和电导法研究了PVA与SDS的相互作用,确定了形成PVA-SDS聚集体的SDS浓度范围。采用动态激光光散射(DLS)法测定了PVA-SDS聚集体的流体力学半径(R_h)。在PVA-SDS聚集体水溶液中,室温下以PVA直接还原HAuCl_4制备出了风筝状金纳米粒子,而在相同浓度单纯PVA溶液中产物为2D超枝化纳米粒子,说明SDS对于金纳米风筝的形成至关重要。PVA-SDS聚集体溶液中,SDS束缚胶束的存在使得沿着PVA链AuCl_4~ˉ出现浓度分布差异,有利于不对称金纳米结构的生长。初始HAuCl_4浓度对产物粒子的形貌影响显著,当体系中初始HAuCl_4浓度由0.5 mmol·L~(-1)增大到2.2 mmol·L~(-1)时,产物由枝化金纳米粒子逐渐向完整微米片转变。
     近年来,天然多糖类大分子及其简单改性物的研究和应用受到了越来越多的关注。水溶性的羟乙基纤维素(HEC)分子结构中存在大量羟基基团,可以用作金纳米粒子制备过程中的还原剂。采用表面张力法和电导法研究了HEC与SDS的相互作用。确定了形成HEC-SDS聚集体的SDS浓度范围。以稳态荧光猝灭法测定了HEC-SDS有序聚集体的束缚胶束聚集数Nb。采用DLS法测定了HEC-SDS聚集体的流体力学半径(Rh)。在HEC-SDS聚集体水溶液中,以HEC为还原剂制备出了枝化金纳米粒子和形貌规整的金纳米片。并采用两步种子法制备出了正二十面体金纳米粒子。
Gold nanostructures have attracted great attention for their peculiar properties, such as high catalytic activity, excellent biocompatibility and potentials in constructing advanced materials. Great progress has been achieved in the researches and applications of gold nanostructures in sensor, electronic devices, biochemical engineering (e.g. gene sequencing) and chemical catalysts. The special properties of nanomaterials are dependent on their sizes and shapes. Therefore, controlled synthesis of nanomaterials with certain morphologies is significant and it is the basis of their applications and the precondition of the fabrication of nano-devices. Compared with single surfactant or polymer, the structure of polymer-surfactant aggregations is more advanced and possess greater regulate. Furthermore, polymer-surfactant aggregations can exert synergistic template effect and possess greater prospect in the synthesis of inorganic nanomaterials. In this thesis, the polymer-surfactant aggregations formed by poly(vinyl pyrrolidone) (PVP), polyvinyl alcohol (PVA) and hydroxyethyl cellulose (HEC) with anionic surfactant, sodium dodecyl sulfate (SDS), were used as soft templates to synthesize gold nanostructures by directly reducing gold salt precursor with the polymers. Gold nanostructures with different morphologies were synthesized through a one-pot route, at low temperature and without any additional reducing agent. The influences of reaction time, SDS concentration and initial HAuCl4 concentration were studied in detail. The“secondary template effect”of polymer-SDS aggregations was proposed based on the experiment results. Moreover, the application properties of the synthesized gold nanoparticles were carefully detected.
     PVP-SDS aggregation was one of the most widely studied polymer-surfactant assemblies. The interaction model of PVP and SDS has been builted up which is the basis for their further application in the synthesis of inorganic nanomaterials. In PVP-SDS aggregations solution, gold nanosnakes were synthesized by directly using PVP as reducing agent. The optical properties, morphologies and crystal structures were characterized by UV-vis-NIR spectra, transmission electron microscope (TEM), X-ray diffraction (XRD), selected area electron diffraction (SAED) and high-resolution transmission electron microscopy (HRTEM). A tentative growth mechanism of gold nanosnakes was given out based on the time-course measurements of TEM at the initial growth stages of gold nanosnakes. In pure PVP solution, only tortuous gold nanobelts were synthesized. In PVP-SDS necklace-like aggregations solution, the concentration of gold salt precursor at the vicinity of SDS bound micelles and PVP blank chains will be different because of the electrostatic repulsion between SDS bound micelles and gold salt precursor which facilitate the formation of asymmetrical nanostructures. The structures of PVP-SDS aggregations can be adjusted by changing SDS concentration which will induce the morphologies variation of the products. When SDS concentration was increased from 3 mmol·L~(-1) to 10 mmol·L~(-1), the morphologies of the products changed from snake-like to kite-like and finally to plate. Gold nanosnakes exhibited excellent electrocatalytic property toward the oxidation of methanol indicating their potential applications in direct methanol fuel cells (DMFC).
     2-dimentional (2D) planar precious metal nanoparticles were the most common synthesized products by using PVP directly as reducing agent due to its weak reducing power. In PVP-SDS aggregations aqueous solution, a certain amount of added NaOH induced the transformation of gold salt precursor from AuCl_4~ˉto AuCl_(4-x)(OH)_x~ˉwith lower reducing activity. The growing rate of the incipient small nanocrystals was slowed down which made them tend to aggregate to form larger aggregations and finally evolved to complete and compact 3D nanoflowers. The growth process of gold nanoflowers was monitored by UV-vis-NIR spectra and TEM based on which a tentative growth mechanism of gold nanoflowers was proposed. The diameters of the synthesized gold nanoflowers can be adjusted by changing SDS concentration. The initial HAuCl4 concentration was found to be of paramount importance to the final shape of the products. When HAuCl4 concentration was increased from 0.1 mmol·L~(-1) to 0.7 mmol·L~(-1), the synthesized products changed from multipod to 3D nanoflowers, 2D nanoflowers, nanoplates with a hole in the center and complete nanoplates. In pure PVP solution, the products were multipod nanoparticles of 43 nm in diameter and only possessed 4 to 8 branches which indicated that the protection effect of PVP was stronger than PVP-SDS aggregations and the exorbitant sufficient protecting effect might impede small nanocrystals agglomerating to form larger loose agglomerations and obstruct the subsequent anisotropic growing of the loose agglomerations. Moreover, the synthesized gold nanoflowers exhibited excellent SERS property.
     In aqueous solution, PVA can interact with SDS to form PVA-SDS aggregations through hydrophobic interaction and the hydroxyl groups in PVA molecular structure make it an available reducing agent in the synthesis of gold nanoparticles. Interaction of PVA and SDS was investigated by surface tension and specific conductance methods and determined the SDS concentration range for the formation of PVA-SDS aggregations. The hydrodynamic radius (Rh) of PVP-SDS aggregations was detected by dynamic light scattering (DLS) method. Gold nanokites were synthesized in PVA-SDS aggregations solution at room temperature by directly reducing HAuCl4 with PVA. However, in pure PVA solution, the products were 2D superbranched gold nanostructures which indicated that SDS was indispensable for the synthesis of the unique gold nanokites. In PVA-SDS aggregations solution, the concentration of AuCl_4~ˉat the vicinity of SDS bound micelles and PVA blank chains will be different because of the electrostatic repulsion between SDS bound micelles and AuCl_4~ˉwhich facilitate the formation of asymmetrical nanostructures. The initial HAuCl4 concentration was found to be of paramount importance to the final shape of the products. When HAuCl4 concentration was increased from 0.5 mmol·L~(-1) to 2.2 mmol·L~(-1), the synthesized products changed from branched nanostructures to complete microplates.
     Recently, the studies and applications of natural or modified polysaccharides have attracted great attention. Water-soluble HEC possesses many hydroxyl groups in their molecular structures and can be used as reducing agent in the synthesis of gold nanoparticles. Interaction of HEC and SDS was investigated by surface tension and specific conductance methods and determined the SDS concentration range for the formation of HEC-SDS aggregations. The bound micelles aggregation number (N_b) of SDS in HEC-SDS aggregations have been investigated by steady state fluorescence quenching. The hydrodynamic radius (R_h) of PVP-SDS aggregations was detected by DLS method. In HEC-SDS aggregations solution, branched gold nanostructures and gold nanoplates were synthesized. Moreover, well defined gold icosahedrons were synthesized through a two-step seed mediated method in HEC-SDS growth solution.
引文
[1]施利毅.纳米材料[M].上海:华东理工大学出版社,2007. 1.
    [2]稽天浩,孙家跃,杜海燕.分散型无机纳米粒子?制备,组装和应用[M].北京:科学出版社, 2009, 3.
    [3]汪信,刘孝恒.纳米材料学简明教程[M].北京,化学工业出版社, 2010, 14.
    [4] Lu W, Quilitz M, Schmidt H. Nanoscaled BaTiO_3 powders with a large surface area synthesized by precipitation from aqueous solutions: preparation, characterization and sintering[J]. J Eur Ceram Soc, 2007, 27(10): 3149–3159.
    [5] Yu T, Shen Z X, Xue J M, et al. Nanocrystalline PbTiO_3 powders from an amorphous Pb–Ti–O precursor by mechanical activation[J]. Mater Chem Phys, 2002, 75(1): 216–219.
    [6] Samdi A, Durand B, Daoudi A, et al. Influence of formation pH and grinding of precursors on compaction and sintering behaviours of 3 mol% Y2O_3-ZrO_2[J]. J Eur Ceram Soc, 1994, 14(2): 131–141.
    [7] Chu Y, Tang X, Zhao W, et al. Synthesis and growth of rodlike and spherical nanostructures CoSb_3 via ethanol sol-gel method[J]. Cryst Growth Des, 2008, 8(1): 208–210.
    [8] Gurlo A, Barsan N, Weimar U, et al. Polycrystalline well-shaped blocks of indium oxide obtained by the sol-gel method and their gas-sensing properties[J]. Chem Mater, 2003, 15(23): 4377–4383.
    [9] Wang X, Xi G, Liu Y, et al. Controllable synthesis of PbSe nanostructures and growth mechanisms[J]. Cryst Growth Des, 2008, 8(4): 1406–1411.
    [10] Mo M-S, Wang D, Du X, et al. Engineering of nanotips in ZnO submicrorods and patterned arrays[J]. Cryst Growth Des, 2009, 9(2): 797–802.
    [11] Xie Q, Dai Z, Huang W, et al. Large-scale synthesis and growth mechanism of single-crystal Se nanobelts[J]. Cryst Growth Des, 2006, 6(6): 1514–1517.
    [12] Li W, Zhang L, Sithambaram S, et al. Shape evolution of single-crystalline Mn2O_3 using a solvothermal approach[J]. J Phys Chem C, 2007, 111(40): 14694–14697.
    [13] Yang J, Zeng J H, Yu S H, et al. Formation process of CdS nanorods via solvothermal route[J]. Chem Mater, 2000, 12(11): 3259–3263.
    [14] Zhang Q, Cobley C, Au L, et al. Production of Ag nanocubes on a scale of 0.1 g per batch by protecting the NaHS-mediated polyol synthesis with argon[J]. Appli Mater Interfaces, 2009, 1(9): 2044–2048.
    [15] Li C, Sato R, Kanehara M, et al. Controllable polyol synthesis of uniform palladium icosahedra: effect of twinned structure on deformation of crystalline lattices[J]. Angew Chem Int Ed, 2009, 48(37): 6883–6887.
    [16] Tsuji M, Ogino M, Matsuo R, et al. Stepwise growth of decahedral and iIcosahedral silver nanocrystals in DMF[J]. Cryst Growth Des, 2010, 10(1): 296–301.
    [17] Liu Y, Hua L, Li S, et al. Synthesis and characterization of ZnO microstructures via a cationic surfactant-assisted hydrothermal microemulsion process[J]. Mater Charact, 2011, doi: 10.1016/j.matchar.2011.03.010.
    [18] Adityawarman D, Voigt A, Peter V, et al. Precipitation of BaSO_4 nanoparticles in a non-ionic microemulsion: identification of suitable control parameters[J]. Chem Eng Sci, 2005, 60(12): 3373–3381.
    [19] Jiang D, Hu W, Wang H, et al. Microemulsion template synthesis of copper sulfide hollow spheres at room temperature[J]. Colloids Surf, A: Physicochem. Eng. Aspects, doi:10.1016/j.colsurfa.2011.03.053.
    [20] Li L, Chu Y, Liu Y, et al. Microemulsion-based synthesis of BaCO_3 nanobelts and nanorods[J]. Mater Lett, 2006, 60(17): 2138–2142.
    [21] Smith D K, Korgel B A. The importance of the CTAB surfactant on the colloidal seed-mediated synthesis of gold nanorods[J]. Langmuir, 2008, 24(3): 644–649.
    [22] Li S, Zheng L, Yua L, et al. Preparation of flower-shaped barium sulfate nanoparticles in the presence of DTAB[J]. J Dispersion Sci Technol, 2011, 32(4): 601–603.
    [23] Yu D, Yam V W-W. Controlled synthesis of monodisperse silver nanocubes in water[J]. J Am Chem Soc, 2004, 126(41): 13200–13201.
    [24] Huang T-K, Chen Y-C, Ko H-C, et al. Growth of high-aspect-ratio gold nanowires on silicon by surfactant-assisted galvanic reductions[J]. Langmuir, 2008, 24 (11): 5647–5649.
    [25] Jana N R, Gearheart L, Murphy C J. Wet chemical synthesis of high aspect ratio cylindrical gold nanorods[J]. J Phys Chem B, 2001, 105(19): 4065–4067.
    [26] Jana N R, Gearheart L, Murphy C J. Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template[J]. Adv Mater, 2001, 13(18): 1389–1393.
    [27] Huang Y, Wang W, Liang H, et al. Surfactant-promoted reductive synthesis of shape-controlled gold nanostructures[J]. Cryst Growth Des, 2009, 9(2): 858–862.
    [28] Dong L, Chu Y, Liu Y, et al. Surfactant-assisted fabrication PbS nanorods, nanobelts, nanovelvet-flowers and dendritic nanostructures at lower temperature in aqueous solution[J]. J Colloid Interface Sci, 2006, 301(2): 503–510.
    [29] Bakshi M S, Possmayer F, Petersen N O. Aqueous-phase room-temperature synthesis of gold nanoribbons: soft template effect of a Gemini surfactant[J]. J Phys Chem C, 2008, 112(22): 8259–8265.
    [30] Li Y, Cao M, Feng L. Hydrothermal synthesis of mesoporous InVO4 hierarchical microspheres and their photoluminescence properties[J]. Langmuir, 2009, 25(3): 1705–1712.
    [31] Wang X, Xi G, Xiong S, et al. Solution-phase synthesis of single-crystal CuO nanoribbons and nanorings[J]. Cryst Growth Des, 2007, 7(5): 930–934.
    [32] Wang X, Zhao Z, Qu J, et al. Shape-control and characterization of magnetite prepared via a one-step solvothermal route[J]. Cryst Growth Des, 2010, 10(7): 2863–2869.
    [33] Deng B, Wang C-C, Li Q-G, et al. Highly ordered lamellar mesostructure of nanocrystalline PbSO4 prepared by hydrothermal treatment[J]. J Phys Chem C, 2009, 113(43): 18473–18479.
    [34] Kuo C-H, Huang M H. Facile synthesis of Cu2O nanocrystals with systematic shape evolution from cubic to octahedral structures[J]. J Phys Chem C, 2008, 112(47):18355–18360.
    [35] Sidhaye D S, Bala T, Srinath S, et al. Preparation of nearly monodisperse nickel nanoparticles by a facile solution based methodology and their ordered assemblies[J]. J Phys Chem C, 2009, 113(9): 3426–3429.
    [36] Ma Y, Qi L, Ma J, et al. Micelle-mediated synthesis of single-crystalline selenium nanotubes[J]. Adv Mater, 2004, 16(12): 1023–1026.
    [37] Ma Y, Qi L, Shen W, et al. Selective synthesis of single-crystalline selenium nanobelts and nanowires in micellar solutions of nonionic surfactants[J]. Langmuir, 2005, 21(14): 6161–6164.
    [38] Joseph D, Geckeler K E. Surfactant-directed multiple anisotropic gold nanostructures: synthesis and surface-enhanced Raman scattering[J]. Langmuir, 2009, 25(22): 13224–13231.
    [39] Sun Y, Mayers B, Herricks T, et al. Polyol synthesis of uniform silver nanowires: a plausible growth mechanism and the supporting evidence[J]. Nano Lett, 2003, 3(7): 955–960.
    [40] Xia Y, Xiong Y, Lim B, et al. Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics[J]. Angew Chem Int Ed, 2009, 48(1): 60–103.
    [41] Ah C S, Yun Y J, Park H J, et al. Size-controlled synthesis of machinable single crystalline gold nanoplates[J]. Chem Mater, 2005, 17(22): 5558–5561.
    [42] Xu Y, Jiao X, Chen D. PEG-assisted preparation of single-crystalline Cu_2O hollow nanocubes[J]. J Phys Chem C, 2008, 112(43): 16769–16773.
    [43] Wang Z, Wang L, Wang H. PEG-mediated hydrothermal growth of single-crystal tellurium nanotubes[J]. Cryst Growth Des, 2008, 8(12): 4415–4419.
    [44] Yang Q, Tang K, Wang C, et al. PVA-assisted synthesis and characterization of CdSe and CdTe nanowires[J]. J Phys Chem B, 2002, 106(36): 9227–9230.
    [45] Kim J-U, Cha S-H, Shin K, et al. Preparation of gold nanowires and nanosheets in bulk block copolymer phases under mild conditions[J]. Adv Mater, 2004, 16(5): 459–464.
    [46] Goy-López S, Juárez J, Cambón A, et al. Block copolymer-regulated synthesis of gold nanocrystals with sharp tips and edges[J]. J Mater Chem, 2010, 20(32): 6808–6814.
    [47] Wang Y, Chen L Q, Li Y F, et al. A one-pot strategy for biomimetic synthesis and self-assembly of gold nanoparticles[J]. Nanotechnology, 2010, 21: 305601. doi:10.1088/0957-4484/21/30/ 305601.
    [48] Mondal S, Roya N, Laskara R A, et al. Biogenic synthesis of Ag, Au and bimetallic Au/Ag alloy nanoparticles using aqueous extract of mahogany (Swietenia mahogani JACQ.) leaves[J]. Colloids Surf, B: Biointerfaces, 2011, 82(2): 497–504.
    [49] Knez M, Bittner A M, Boes F, et a1. Biotemplate synthesis of 3-nm nickel and cobalt nanowires[J]. Nano Lett, 2003, 3(8): 1079–1082.
    [50] Dickerson M B, Sandhage K H, Naik R R. Protein- and peptide-directed syntheses of inorganic materials[J]. Chem Rev, 2008, 108(11): 4935–4978.
    [51] Bakshi M S, Thakur P, Kaur G, et al. Stabilization of PbS nanocrystals by bovine serum albumin in its native and denatured states[J]. Adv Funct Mater, 2009, 19(9): 1451–1458.
    [52] Bhargava S K, Booth J M, Agrawal S, et al. Gold nanoparticle formation duringbromoaurate reduction by amino acids[J]. Langmuir, 2005, 21(13): 5949–5956.
    [53] Wang Q, Ye F, Fang T, et al. Bovine serum albumin-directed synthesis of biocompatible CdSe quantum dots and bacteria labeling[J]. J Colloid Interface Sci, 2011, 355(1): 9–14.
    [54] Ravindran A, Singh A, Raichur A M, et al. Studies on interaction of colloidal Ag nanoparticles with bovine serum albumin (BSA)[J]. Colloids Surf, B: Biointerfaces, 2010, 76(1): 32–37.
    [55] Xie J, Lee J Y, Wang D I C. Synthesis of single-crystalline gold nanoplates in aqueous solutions through biomineralization by serum albumin protein[J]. J Phys Chem C, 2007, 111(28): 10226–10232.
    [56] Shao Y, Jin Y, Dong S. Synthesis of gold nanoplates by aspartate reduction of gold chloride[J]. Chem Commun, 2004, 9: 1104–1105.
    [57] Selvakannan P R, Mandal S, Phadtare S, et al. Water-dispersible tryptophan-protected gold nanoparticles prepared by the spontaneous reduction of aqueous chloroaurate ions by the amino acid[J]. J Colloid Interface Sci, 2004, 269(1): 97–102.
    [58] Albrecht C, Blank K, Lalic-Mülthaler M, et a1. DNA: a programmable force sensor[J]. Science, 2003, 301(5631): 367–370.
    [59] Seeman N C. The use of branched DNA fornanoscale fabrication[J]. Nanotechnology, 1991, 2(3): 149–159.
    [60] Seeman N C. Biochemistry and structural DNA nanotechnology: an evolving symbiotic realationship[J]. Biochemistry, 2003, 42(24): 7259–7269.
    [61] Iyer K S, Bond C S, Saunders M, et al. Confinement of silver triangles in silver nanoplates templated by duplex DNA[J]. Cryst Growth Des, 2008, 8(5): 1451–1453.
    [62] Xu L, Zhu Y, Ma W, et al. New synthesis strategy for DNA functional gold nanoparticles[J]. J Phys Chem C, 2011, 115(8): 3243–3249.
    [63] Chaplais G, Bideau J L, Leclercq D, et al. Polarized-dependent IR ATR study for the structural characterization of solid-state phosphonates: case of aluminum (4-carboxyphenyl) methylphosphonate[J]. Chem Mater, 2003, 15(10): 1950–1956.
    [64] Shi H, Qi L, Ma J, et al. Architectural control of hierarchical nanobelt superstructures in catanionic reverse micelles[J]. Adv Funct Mater, 2005, 15(3): 442–450.
    [65] Zhao N, Qi L. Low-temperature synthesis of star-shaped PbS nanocrystals in aqueous solutions of mixed cationic/anionic surfactants[J]. Adv Mater, 2006, 18(3): 359–362.
    [66] Zhao N, Wei Y, Sun N, et al. Controlled synthesis of gold nanobelts and nanocombs in aqueous mixed surfactant solutions[J]. Langmuir, 2008, 24(3): 9919–998.
    [67] Fan L, Guo R. Growth of dendritic silver crystals in CTAB/SDBS mixed-surfactant solutions[J]. Cryst Growth Des, 2008, 8(7): 2150–2156.
    [68] Leontidis E, Orphanou M, Kyprianidou-Leodidou T. Composite nanotubes formed by self-assembly of PbS nanoparticles[J]. Nano Lett, 2003, 3(4): 569–572.
    [69] Wei H, Shen Q, Zhao Y, et al. Crystallization habit of calcium carbonate in the presence of sodium dodecyl sulfate and/or polypyrrolidone[J]. J Cryst Growth, 2004, 260(3): 511–516.
    [70] Liu X, Fu S, Xiao H. Preparation and Characterization of Shuttle-Like a-Fe_2O_3 Nanoparticles by Supermolecular Template[J]. J Solid State Chem, 2005, 178(9):2798–2803.
    [71] Huo L, Chu Y. Controlled synthesis of PbWO4 crystals via microemulsion-based solvothermal method[J]. Mater Lett, 2006, 60(21): 2675–2681.
    [72] Huang T, Meng F, Qi L. Controlled synthesis of dendritic gold nanostructures assisted by supramolecular complexes of surfactant with cyclodextrin[J]. Langmuir, 2010, 26(10): 7582–7589.
    [73] Brust M, Walker M, Bethell D, et al. Synthesis of thiol-derivatized gold nanoparticles in a two-phase liquid-liquid system[J]. J Chem Soc, 1994, 7: 801–802.
    [74] Frens G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspension[J]. Nat Phys Sci, 1973, 241(105): 20–21.
    [75] Kumar S, Gandhi K S, Kumar R, et al. Modeling of formation of gold nanoparticles by citrate method. Ind Eng Chem Res, 2007, 46(10): 3128–3136.
    [76] Kim F, Connor S, Song H, et al. Platonic gold nanocrystals[J]. Angew Chem Int Ed, 2004, 43(28): 3673–3677.
    [77] Wu H-L, Kuo C-H, Huang M H. Seed-mediated synthesis of gold nanocrystals with systematic shape evolution from cubic to trisoctahedral and rhombic dodecahedral structures[J]. Langmuir, 2010, 26(14): 12307–12313.
    [78] Chen Y, Gu X, Nie C-G, et al. Shape controlled growth of gold nanoparticles by a solution synthesis[J].Chem Commun, 2005, 1(33): 4181–4183.
    [79] Li C, Shuford K L, Chen M, et al. A facile polyol route to uniform gold octahedra with tailorable size and their optical properties[J]. ACS Nano, 2008, 2(9): 1760–1769.
    [80] Seo D, Yoo C, Chung I S, et al. Shape adjustment between multiply twinned and single-crystalline polyhedral gold nanocrystals: decahedra, icosahedra, and truncated Tetrahedra[J]. J Phys Chem C, 2008, 112(7): 2469–2475.
    [81] Kwon K, Lee K Y, Lee Y W, et al. Controlled synthesis of icosahedral gold nanoparticles and their surface-enhanced Raman scattering property[J]. J Phys Chem C, 2007, 111(3): 1161–1165.
    [82] Tian N, Zhou Z-Y, Sun S-G, et al. Synthesis of tetrahexahedral platinum nanocrystals with high- index facets and high electro-oxidation activity[J]. Science, 2007, 316(5825): 731–735.
    [83] Zhang J, Langille M R, Personick M L, et al. Concave cubic gold nanocrystals with high-index facets[J]. J Am Chem Soc, 2010, 132(40): 14012–14014.
    [84] Ming T, Feng W, Tang Q, et al. Growth of tetrahexahedral gold nanocrystals with high-index facets[J]. J Am Chem Soc, 2009, 131(45): 16350–16351.
    [85] Liao H-G, Jiang Y-X, Zhou Z-Y, et al. Shape-controlled synthesis of gold nanoparticles in deep eutectic solvents for studies of structure-functionality relationships in electrocatalysis[J]. Angew Chem Int Ed, 2008, 47(47): 9100–9103.
    [86] Chen S, Wang Z L, Ballato J, et al. Monopod, bipod, tripod, and tetrapod gold nanocrystals[J]. J Am Chem Soc, 2003, 125(52): 16186–16187.
    [87] Zhao L, Ji X, Sun X, et al. Formation and stability of gold nano?owers by the seeding approach: the effect of intraparticle ripening[J]. J Phys Chem C, 2009, 113(38): 16645–16651.
    [88] Jana N R, Gearheart L, Murphy C J. Wet chemical synthesis of high aspect ratio cylindrical gold nanorods[J]. J Phys Chem B, 2001, 105(19): 4065–4067.
    [89] Kou X, Zhang S, Tsung C-K, et al. One-step synthesis of large-aspect-ratio single-crystalline gold nanorods by using CTPAB and CTBAB surfactants[J]. Chem Eur J, 2007, 13(10): 2929–2936.
    [90] Yuan H, Ma W, Chen C, et al. Shape and SPR evolution of thorny gold nanoparticles promoted by silver ions[J]. Chem Mater, 2007, 19(7): 1592–1600.
    [91] Wu H-Y, Chu H-C, Kuo T-J, et al. Seed-mediated synthesis of high aspect ratio gold nanorods with nitric acid[J]. Chem Mater, 2005, 17(25): 6447–6451.
    [92] Kim F, Sohn K, Wu J, et al. Chemical synthesis of gold nanowires in acidic solutions[J]. J Am Chem Soc, 2008, 130(44): 14442–14443.
    [93] Lu X, Yavuz M, Tuan H-Y, et al. Ultrathin gold nanowires can be obtained by reducing polymeric strands of oleylamine-AuCl complexes formed via aurophilic interaction[J]. J Am Chem Soc, 2008, 130(28): 8900–8901.
    [94] Zhang J, Du J, Han B, et al. Sonochemical formation of single-crystalline gold nanobelts[J]. Angew Chem Int Ed, 2006, 45(7): 1116–1119.
    [95] Tan Y N, Lee J Y, Wang D I C. Aspartic acid synthesis of crystalline gold nanoplates, nanoribbons, and nanowires in aqueous solutions[J]. J Phys Chem C, 2008, 112(14): 5463–5470.
    [96] Murphy A, McPhillips J, Hendren W, et al. The controlled fabrication and geometry tunable optics of gold nanotube arrays[J]. Nanotechnology, 2011, 22: 045705. doi:10.1088/0957-4484/22/4/045705.
    [97] Sun X, Dong S, Wang E. Large-scale synthesis of micrometer-scale single-crystalline Au plates of nanometer thickness by a wet-chemical route[J]. Angew Chem Int Ed, 2004, 43(46): 6360–6363.
    [98] Sun X, Dong S, Wang E. High-yield synthesis of large single-crystalline gold nanoplates through a polyamine process[J]. Langmuir, 2005, 21(10): 4710–4712.
    [99] Xie J, Lee J Y, Wang D I C, et al. Identification of active biomolecules in the high-yield synthesis of single-crystalline gold nanoplates in algal solutions[J]. Small, 2007, 3(4): 672–682.
    [100] Kan C, Zhu X, Wang G. Single-crystalline gold microplates: synthesis, characterization, and thermal stability[J]. J Phys Chem B, 2006, 110(10), 4651–4656.
    [101] Kan C, Wang C, Li H, et al. Gold microplates with well-defined shapes[J]. Small, 2010, 6(16): 1768–1775.
    [102] Tsuji M, Hashimoto M, Nishizawa Y, et al. Microwave-assisted synthesis of metallic nanostructures in solution[J]. Chem Eur J, 2005, 11(2), 440–452.
    [103] Li Z, Liu Z, Zhang J, et al. Synthesis of single-crystal gold nanosheets of large size in ionic liquids[J]. J Phys Chem B, 2005, 109(30): 14445–14448.
    [104] Liu Y, Guo R. Synthesis of protein–gold nanoparticle hybrid and gold nanoplates in protein aggregates[J]. Mater Chem Phys, 2011, 126(3): 619–627.
    [105] Ghodake G S, Deshpande N G, Lee Y P, et al. Pear fruit extract-assisted room-temperature biosynthesis of gold nanoplates[J]. Colloids Surf, B: Biointerfaces,2010, 75(2): 584–589.
    [106] Shankar S S, Rai A, Ahmad A, et al. Controlling the optical properties of lemongrass extract synthesized gold nanotriangles and potential application in infrared-absorbing optical coatings[J]. Chem Mater, 2005, 17(3): 566–572.
    [107] Shankar S S, Ahmad A, Pasricha R, et al. Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes[J]. J Mater Chem, 2003, 13(7): 1822–1826.
    [108] Chandran S P, Chaudhary M, Pasricha R, et al. Synthesis of gold nanotriangles and silver nanoparticles using aloe wear plant extract[J]. Biotechnol Prog, 2006, 22(2): 577–583.
    [109] Lim B, Camargo P H C, Xia Y. Mechanistic study of the synthesis of Au nanotadpoles, nanokites, and microplates by reducing aqueous HAuCl4 with poly(vinyl pyrrolidone) [J]. Langmuir, 2008, 24 (18): 10437–10442.
    [110] Pardias-Blanco I, Hoppe C E, Pieiro-Redondo Y, et al. Formation of gold branched plates in diluted solutions of poly(vinylpyrrolidone) and their use for the fabrication of near-infrared-absorbing films and coatings[J]. Langmuir, 2008, 24 (3): 983–990.
    [111] Gonzaga F, Singh S, Brook M A. Biomimetic synthesis of gold nanocrystals using a reducing amphiphile[J]. Small, 2008, 4 (9): 1390–1398.
    [112] Ding Y, Erlebacher J. Nanoporous metals with controlled multimodal pore size distribution[J]. J Am Chem Soc, 2003, 125(26): 7772–7773.
    [113] Ding Y, Kim Y J, Erlebacher J. Nanoporous gold leaf:“Ancient technology”[J]. Adv Mater, 2004, 16(21): 1897–1900.
    [114] Xu C, Su J, Xu X, et al. Low temperature CO oxidation over unsupported nanoporous gold[J]. J Am Chem Soc, 2007, 129(1): 42–43.
    [115] Jia C, Yin H, Ma H, et al. Enhanced photoelectrocatalytic activity of methanol oxidation on TiO2-decorated nanoporous gold[J]. J Phys Chem C, 2009, 113(36): 16138–16143.
    [116] Fu Y, Li J, Du Y, et al. Formation of long range ordered arrangement of quantum dots with the help of lateral centripetal ?ow[J]. Surf Sci, 2006, 600(4): 835–840.
    [117] Polavarapu L, Xu Q-H. Water-soluble conjugated polymer-induced self-assembly of gold nanoparticles and its application to SERS[J]. Langmuir, 2008, 24(19): 10608–10611.
    [118] Smith B D, Liu J. Assembly of DNA-functionalized nanoparticles in alcoholic solvents reveals opposite thermodynamic and kinetic trends for DNA hybridization[J]. J Am Chem Soc, 2010, 132(18): 6300–6301.
    [119] Khanal B P, Zubarev E R. Rings of nanorods[J]. Angew Chem Int Ed, 2007, 46(13): 2195–2198.
    [120] Pan B, Cui D, Ozkan C, et al. DNA-templated ordered array of gold nanorods in one and two dimensions[J]. J Phys Chem C, 2007, 111(34): 12572–12576.
    [121] Selvakannan P R, Dumas E, Dumur F, et al. Coordination chemistry approach for the end-to-end assembly of gold nanorods[J]. J Colloid Interface Sci, 2010, 349(1): 93–97.
    [122] Wang L, Zhu Y, Xu L, et al. Side-by-side and end-to-end gold nanorod assemblies for environmental toxin sensing[J]. Angew Chem Int Ed, 2010, 49(32): 5472–5475.
    [123]方云,吴云兰,丁远飞,等. SDS-PEG及SDS-PVP的γ-lgc曲线的双拐点特征[J].精细化工, 2000, 17(11): 630–632.
    [124]黄盛友,方云,陈方博,等.碱金属硫酸盐十二烷基硫酸钠三元复合体系的束缚胶束特性[J].高等学校化学学报, 2005, 26 (10): 1881–1885.
    [125]方云,刘雪峰,夏咏梅,等.十二烷基硫酸钠水溶性非离子大分子间团簇化作用部位的1H和13C及2D NMR表征[J].高等学校化学学报, 2006, 27(4): 731–734.
    [126] Cao X, Yu F, Li L, et al. Copper nanorod junctions templated by a novel polymer-surfactant aggregate[J]. J Cryst Growth, 2003, 254(1): 164–168.
    [127]王纯荣,方云,冯杰文.以SDS-PEG团簇为软模板在温和条件下合成金纳米环[J].化学学报, 2007, 65(12): 1177–1180.
    [128]王纯荣,方云,李波.在SDS-PVP团簇软模板中自组装多脚状金纳米粒子[J].物理化学学报, 2008, 24(1): 183–186.
    [129]胡瑾,王婷,任月萍,等.以SDS-PVP项链状软团簇为模板简易一锅法合成Cu2O中空亚微球[J].化学学报, 2009, 67(14): 1591–1596.
    [130]阮小云,方云,樊晔. SDS-PVP水溶液中超细镍粉的制备[J].物理化学学报, 2008, 24(8): 1513–1518.
    [131] Purcell I P, Thomas R K, Penfold J, et al. Adsorption of SDS and PVP at the air/water interface[J]. Colloids and surf, A: Physicochemical and Engineering Aspects, 1995, 94(2): 125–130.
    [132] Turro N J, Baretz B H, Kuo P-L. Photoluminescence probes for the investigation of interactions between sodium dodecyl sulfate and water-soluble polymers[J]. Macromolecules, 1984, 17(7): 1321–1324.
    [133] Péron N, Mészáros R, Varga I, et al. Competitive adsorption of sodium dodecyl sulfate and polyethylene oxide at the air/water interface[J]. J Colloid Interface Sci, 2007, 313(2): 389–397.
    [134] Wei H, Shen Q, Zhao Y, et al. Effect of anionic surfactant–polymer complexes on the crystallization of calcium carbonate[J]. J Cryst Growth, 2004, 264(1): 424–429.
    [135] Xiong Y, Washio I, Chen J, et al. Poly(vinyl pyrrolidone): a dual functional reductant and stabilizer for the facile synthesis of noble metal nanoplates in aqueous solutions[J]. Langmuir, 2006, 22(20): 8563–8570.
    [136] Luo Y, Large-scale preparationn of single-crystalline gold nanoplates[J]. Mater Lett, 2007, 61(6): 1346–1349.
    [137] Penn R L, Banfield J F. Imperfect oriented attachment: dislocation generation in defect-free nanocrystals[J]. Science, 1998, 281(5379): 969–971.
    [138] Pacholski C, Kornowski A, Weller H. Self-assembly of ZnO: from nanodots to nanorods[J]. Angew Chem Int Ed, 2002, 41(7): 1188–1191.
    [139] Xia Y, Halas N J. Shape-controlled synthesis and surface plasmonic properties of metallic nanostructures[J]. MRS Bulletin, 2005, 30(5): 338–344.
    [140] Ghosh S K, Nath S, Kundu S, et al. Solvent and ligand effects on the localized surface plasmon resonance (LSPR) of gold colloids[J]. J Phys Chem B, 2004, 108(37):based on an assembly of Tween 20-stabilized gold nanoparticles[J]. Anal Chem, 2010, 82(16): 6830–6837.
    [158] Lippitz M, Dijk M A, Orrit M. Third-harmonic generation from single gold nanoparticles[J]. Nano Lett, 2005, 5(4): 799–802.
    [159] Huang W, Chen C, Huang M H. Investigation of the growth process of gold nanoplates formed by thermal aqueous solution approach and the synthesis of ultra-small gold nanoplates[J]. J Phys Chem C, 2007, 111(6): 2533–2538.
    [160] Wang L, Wei G, Guo C, et al. Photochemical synthesis and self-assembly of gold nanoparticles[J]. Colloids and Surf, A: Physicochem. Eng. Aspects, 2008, 312(2): 148–153.
    [161] Sharma J, Tai Y, Imae T. Synthesis of confeito-like gold nanostructures by a solution phase galvanic reaction[J]. J Phys Chem C, 2008, 112(44): 17033–17037.
    [162] Mohanty A, Garg N, Jin R. A universal approach to the synthesis of noble metal nanodendrites and their catalytic properties[J]. Angew Chem Int Ed, 2010, 49(29): 4962–4966.
    [163] Jena B K, Raj C R. Synthesis of flower-like gold nanoparticles and their electrocatalytic activity towards the oxidation of methanol and the reduction of oxygen[J]. Langmuir, 2007, 23(7): 4064–4070.
    [164] Rodríguez-Lorenzo L,álvarez-Puebla R A, Abajo F J G, et al. Surface enhanced Raman scattering using star-shaped gold colloidal nanoparticles[J]. J Phys Chem C, 2010, 114(16): 7336–7340.
    [165] Liang H, Li Z, Wang W, et al. Highly surface-roughened‘‘flower-like’’silver nanoparticles for extremely sensitive substrates of surface-enhanced Raman scattering[J]. Adv Mater, 2009, 21(45): 4614–4618.
    [166] Bechelany M, Brodard P, Elias J, et al. Simple synthetic route for SERS-active gold nanoparticles substrate with controlled shape and organization[J]. Langmuir, 2010, 26(17): 14364–14371.
    [167] Xie J, Zhang Q, Lee J Y, et al. The synthesis of SERS-sctive gold nano?ower tags for in vivo applications[J]. ACS Nano, 2008, 2(12): 2473–2480.
    [168] Kou X, Sun Z, Yang Z, et al. Curvature-directed assembly of gold nanocubes, nanobranches, and nanospheres[J]. Langmuir, 2009, 25(3): 1692–1698.
    [169] Lu L, Ai K, Ozaki Y. Environmentally friendly synthesis of highly monodisperse biocompatible gold nanoparticles with urchin-like shape[J]. Langmuir, 2008, 24(3): 1058–1063.
    [170] Xu D, Gu J, Wang W, et al. Development of chitosan-coated gold nanoflowers as SERS-active probes[J]. Nanotechnology, 2010, 21:375101 doi: 10.1088/0957-4484/21/37/ 375101.
    [171] Audronis M, Kelly P J, Leyland A, et al. A TEM study of the structure of magnetron sputtered chromium diboride coatings[J]. J Phys: Conference Series, 2006, 26: 355–358.
    [172] Bakr O M, Wunsch B H, Stellacci F, et al. High-yield synthesis of multi-branched urchin-like gold nanoparticles[J]. Chem Mater, 2006, 18(14): 3297–3301.
    [173] Shen Q, Wei H, Wang L, et al. Crystallization and aggregation behaviors of calcium carbonate in the presence of poly(vinylpyrrolidone) and sodium dodecyl sulfate[J]. J Phys Chem B, 2005, 109(39): 18342–18347.
    [174] Narayanaswamy A, Xu H, Pradhan N, et al. Crystalline nanoflowers with different chemical compositions and physical properties grown by limited ligand protection[J]. Angew Chem Int Ed, 2006, 45(32): 5361–5364.
    [175] Wu H Y, Liu M, Huang M H. Direct synthesis of branched gold nanocrystals and their transformation into spherical nanoparticles[J]. J Phys Chem B, 2006, 110(39): 19291–19294.
    [176] Li L, Weng J. Enzymatic synthesis of gold nanoflowers with trypsin[J]. Nanotechnology, 2010, 21: 305603 doi:10.1088/0957-4484/21/30/305603.
    [177] Peck J A, Tait C D, Swanson B I, et al. Speciation of aqueous gold(III) chlorides from ultraviolet/visible absorption and Raman/resonance Raman spectroscopies[J]. Geochim Cosmochim Acta, 1991, 55(3): 671–676.
    [178] Goia D V, Matijevi? E. Tailoring the particle size of monodispersed colloidal gold[J]. Colloids Surf, A: Physicochemical and Engineering Aspects, 1999, 146(1): 139–152.
    [179] Golan Y, Margulis L, Rubinstein I, et al. Epitaxial electrodeposition of CdSe nanocrystals on gold[J]. Langmuir, 1992, 8(3): 749–752.
    [180] Soejima T, Kimizuka N. One-pot room-temperature synthesis of single-crystalline gold nanocorolla in water[J]. J Am Chem Soc, 2009, 131(40): 14407–14412.
    [181] Wang S G, Tian E K, Lung C W, et al. Surface energy of arbitrary crystal plane of bcc and fcc metals[J]. J Phys Chem Solids, 2000, 61(8): 1295–1300.
    [182] Liu X, Sun C H, Linn N C, et al. Wafer-scale surface-enhanced Raman scattering substrates with highly reproducible enhancement[J]. J Phys Chem C, 2009, 113(33): 14804–14811.
    [183] Lu C-H, Saha S K. Low temperature synthesis of nano-sized lithium manganese oxide powder by the sol-gel process using PVA[J]. J Sol-Gel Sci Technol, 2001, 20(1): 27–34.
    [184]许兢,钱庆荣,肖良建,等.聚乙烯醇模板合成链状纳米氢氧化钙机理研究[J].化学工程, 2008, 36(11): 50–54.
    [185] Feng Q, Dang Z, Li N, et al. Preparation and dielectric property of Ag-PVA nano-composite[J]. Mater Sci Eng, B, 2003, 99(1): 325–328.
    [186] Adhyapak P V, Khanna P K, Dadge J W, et al. Tuned Optical Properties of In-Situ Synthesized m-Nitroaniline Doped Ag/PVA Nano-Composites[J]. J Nanosci Nanotechnol, 2006, 6(7): 2141–2146.
    [187] Luo L-B, Yu S-H, Qian H-S, et al. Large-scale fabrication of flexible silver/cross-linked poly(vinyl alcohol) coaxial nanocables by a facile solution approach[J]. J Am Chem Soc, 2005, 127(9): 2822–2823.
    [188] Zhan Y J, Yu S H. Necklace-like Cu@cross-linked poly(vinyl alcohol) core-shell microcables by hydrothermal process[J]. J Am Chem Soc, 2008, 130(17): 5650–5651.
    [189] Pérez-Juste J, Rodríguez-González B, Mulvaney P, et al. Optical control and patterning of gold-nanorods-poly(vinyl alcohol) nanocomposite films[J]. Adv Funct Mater, 2005, 15(7): 1065–1071.
    [190] Atanase L-I, Boscher V, Lasuye T, et al. Colloidal Characteristics of Vinyl Alcohol-Vinyl Acetate Copolymers by complex formation with sodium dodecyl sulphate[J]. Rev Roum Chim, 2009, 54(7): 577–581.
    [191] Arai H, Horin S. Interaction between polymer and detergent in aqueous solution[J]. J Colloid Interface Sci, 1969, 30(3): 372–377.
    [192] Atanase L I, Riess G. Poly(vinyl alcohol-co-vinyl acetate) complex formation with anionic surfactants particle size of nanogels and their disaggregation with sodium dodecyl sulfate[J]. Colloids Surf, A: Physicochem. Eng. Aspects, 2010, 355(1): 29–36.
    [193] Pon-On W, Meejoo S, Tang I-M. Formation of hydroxyapatite crystallites using organic template of polyvinyl alcohol (PVA) and sodium dodecyl sulfate (SDS)[J]. Materials Mater Chem Phys, 2008, 112(2): 453–460.
    [194]赵国玺.表面活性剂物理化学[M] .北京:北京大学出版社, 1984.
    [195]刘天晴,郭荣,沈明,等. SDS和CTAB水溶液中胶束扩散系数及第一、第二CMC测定[J].物理化学学报, 1996, 12(4): 337–340.
    [196] Minatti E, Zanette D. Salt effects on the interaction of poly(ethylene oxide) and sodium dodecyl sulfate measured by conductivity[J]. Colloids Surf, A: Physicochemical and Engineering Aspects, 1996, 113(3): 237–246.
    [197]纪云,张晓红,郭荣.明胶和表面活性剂CTAB的相互作用[J].化学学报, 2004, 62(4):345–350.
    [198] Katarzyna L, Danuta U S, Miloslav B. The huggins viscosity coefficient of aqueous solution of poly(vinyl alcohol)[J]. Eur Polym J, 2001, 37(1): 25–32.
    [199] Jin R, Cao Y, Mirkin C A, et al. Photoinduced conversion of silver nanospheres to nanoprisms[J]. Science, 2001, 294(5548): 1901–1903.
    [200] Li C, Cai W, Cao B, et al. Mass synthesis of large, single-crystal Au nanosheets based on a polyol process[J]. Adv Funct Mater, 2006, 16(1): 83–90.
    [201] Yang S, Wang Y, Wang Q, et al. Growth of gold nanoplates: the case of a self-repair mechanism[J]. Cryst Growth Des, 2007, 7(11): 2258–2261.
    [202] Sharma J, Vijayamohanan K P. Organic dye molecules as reducing agent for the synthesis of electroactive gold nanoplates[J]. J Colloid Interface Sci, 2006, 298(2): 679–684.
    [203] Porel S, Singh S, Radhakrishnan T P. Polygonal gold nanoplates in a polymer matrix[J]. Chem Commun, 2005, 18: 2387–2389.
    [204] Li Y, Xu G, Luan Y, et al. Studies on the interaetion between tetradeeyl dimethyl betaine and sodidm carboxymethyl cellulose by DPD simulations[J]. Colloids Surf, A: Physicochemical and Engineering Aspects, 2005, 257(5): 385–390.
    [205] Li Y M, Xu G Y, Chen A M, et al. Aggregation between xanthan and nonyphenyloxypropylβ-hydroxyltrimethylammonium bromide in aqueous solution: MesoDyn simulation and binding isotherm measurement[J]. J Phys Chem B, 2005, 109(47): 22290–22295.
    [206] Yang J, Zhao J, Fang Y. Calorimetric studies of the interaction between sodium alginate and sodium dodecyl sulfate in dilute solutions at different pH values[J]. Carbohydr Res,2008, 343(4): 719–725.
    [207] Yang J, Chen S, Fang Y. Viscosity study of interactions between sodium alginate and CTAB in dilute solutions at different pH values[J]. Carbohydr Polym, 2009, 75(2): 333–337.
    [208] Guo Z, Zhang Y, Xu A. Layered assemblies of single crystal gold nanoplates: direct room temperature synthesis and mechanistic study[J]. J Phys Chem C, 2008, 112(33): 12638–12645.
    [209] Zhang J, Gao Y, Alvarez-Puebla R A, et al. Synthesis and SERS properties of nanocrystalline gold octahedra generated from thermal decomposition of HAuCl4 in block copolymers[J]. Adv Mater, 2006, 18(24): 3233–3237.
    [210] Kim D, Heo J, Kim M, et al. Size-controlled synthesis of monodisperse gold nanooctahedrons and their surface-enhanced Raman scattering properties[J]. Chem Phys Lett, 2009, 468(4): 245–248.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700